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Hello! Welcome to the talk about Destiny Shader Pipeline.
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In this talk we will be describing the shader pipeline system we developed for 
creation of Destiny games. 
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We have covered some of the details of the Destiny renderer architecture in the GDC 
2015’s talk (http://www.gdcvault.com/play/1021926/Destiny-s-Multithreaded-
Rendering) which we recommend you take a look at if you want more context.  But 
don’t worry, anything relevant for this talk, we will be sure to cover here directly!
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Destiny is a vast and diverse world.

Starting in the wilderness of Russia,
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We may move to a giant evil spaceship orbiting Saturn,
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Delve into deep dark dungeons
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Climb Snow-swept mountains
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Explore the sandy dunes of Mars
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Or the desolate surface of the moon
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A Mysterious space station
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Wild frontiers 
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Alien worlds
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And Crumbling European cities, just to name a few.
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Destiny worlds are complex, alive and beautiful.  
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Destiny players explore large destinations, with diverse environments, lush 
vegetation.
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All of this required a renderer with high-quality lighting, dynamic time of day, real-
time shadows, high-resolution rendering, and a host of other rendering systems.
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We wanted our renderer and shader pipeline to be data-driven, to respond to 
changes quickly and automatically.
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We wanted to support a high level of dynamic content.

For example, dynamic time of day – here’s Mars during the bright sun midday.
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And from another vantage point, this is what Mars looks like in the middle of the 
night
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To reach as many players as possible, we ship games on a multitude of platforms
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And to handle dynamic situations in game with reliable frame rate, we multithreaded 
everything in our engine including all of the rendering.
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We also needed a great variety of different materials and effects. 
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And everything needed to be fast.  In each frame in our game we: 
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• Submit several dozens of render passes
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• Process thousands of drawcalls
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• Execute heavy CPU and GPU workloads all while ensuring we have low latency 
responsiveness in the game
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Destiny also provided players with an incredible variety of armor, guns

30



And player gear
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While we define shaders or shader elements in code, most of the shader content is 
now authored by artists directly (including shader parameters). 
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We  had less than ten graphics engineers on Destiny, while we had several hundred 
artists. 
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We wanted to create a shader pipeline system that allowed us to unleash the 
creativity of the artists - create visuals programmers didn’t think of (as you can see in 
these exotic gear examples here)
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We also had to handle custom materials such as subsurface scattering on skin…
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and anisotropic material model for hair
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We needed our shader system to support deep customization – with little changes to 
content we wanted to create drastically varied looks – such as this floating purple 
balls of death
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That could turn into Floating red balls of death with a toggle of a shader variant
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The incredible shader variety was particularly important – and in fact – required for
effects and custom visuals (such as the Taken character here and its sword). 
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giant robots with guns
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Undead bony guys with swords
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Flying drones with guns
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Flying space wizards
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This friendly guy
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And these nice fellas..
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And just to give you an idea of the scale per frame – this Venus Destination uses over 
3500 unique shader techniques at runtime for just this frame (3102 - 3518 
techniques) (this is after collapsing non-unique materials) (on Xbox One)
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And in a different area of our Cosmodrome destination we use over 9000 techniques 
used for the frame submission 
(Cosmo Ambient Activity: 9107 techniques) (on Xbox One)
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We had a huge variety of shaders authored by artists – in the Taken King there were 
18,000 artist authored shaders (content) (Although a number of them shared vast 
portions of their subgraphs from a few key templates). 

58



From the technical perspective, we setup the following goals for the TFX shader 
system:
- We want the shader pipeline architecture to be agnostic of the specific material 
representation (for example, PBR or alternatives), and rendering submission pipeline, 
like deferred or forward. It should let us express either approach without having to 
change the underlying system
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- Defines much of submission state for any given draw / dispatch call with good 
encapsulation mechanisms
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- Supports multiplatform “write-once/use many” authoring paradigm – we only 
want to write the shader code once
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- Easily extensible to support growing material library – we ship DLCs and we want 
to be able to grow as needed without any pain, for example, when we added snow 
materials in the Rise of Iron
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- Make the system performant = optimize automatically to reduce redundant state 
changes which yields better CPU and GPU performance and lower memory 
footprint
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- Automatically build artist-friendly front end from the shader code with minimal 
markup. Allow artists to edit shaders using the visual node graph paradigm. 
Additionally, we wanted to support easy creation of new shader building blocks by 
the tech artists
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When we designed TFX (along with our Destiny renderer), we relied on several key 
design principles that helped us make choices throughout development:
- Design for data-driven validated GPU / CPU state management – ensure that the 

GPU state is encapsulated from the source code / content data provided and that 
we always validate the state the shader expects versus what the runtime layers 
provide. This became particularly important once we started working on platforms 
with flexible low-level API that could easily result in GPU crashes
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- Support flexible state management to allow handling of variety of situations we 
needed to ship. We did not want to have a system that needed to be re-designed 
any time a new edge case was discovered. 
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- Ensure that the system is performant on CPU by optimizing frequency of GPU state 
submission. The less we have to send data to the GPU, the less it costs us per 
frame. 

69



- However, especially in the previous generations of consoles, we did not have 
unlimited state registers to bind state, so we had to be very careful to ensure that 
we maintain locality of state to reduce state collisions for runtime submission

- Well-encapsulated interfaces hide complexity behind simpler interfaces (including 
platform differences)
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Let’s take a deeper look at the TFX shader system
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First a quick set of definitions, because it can get a bit confusing sometimes:

Now: ‘TFX Source’ refers to code in the TFX language – which is a custom language 
that we treat as content.
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Shader refers to code that drives the GPU (for example: a pixel shader) –

this can refer to either a compiled native hardware format, or a source format like 
HLSL.
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We have the Node Graph, which refers to the content creator interface file, where 
options and parameter values are chosen.

Confusingly, this is also sometimes called a ‘shader’ or a ‘material’, but we’ll try to 
keep it straight.
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The Technique is the combination of a number of shaders and their corresponding 
GPU state.

This is basically the encapsulated state necessary to render any dispatch or drawcall.
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And, finally, when we say “HLSL” we just mean any one of our platform’s shading 
languages (it could HLSL, PSSL, CG.. or similar)
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Breaking down the TFX shader pipeline, we will go over these key elements:

- First, how do we author shaders? (This refers to authoring both the TFX shader 
source, and the Node Graphs.)
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Where do we get the data to feed to the GPU?

Managing shader data sources is an important part of TFX.  It handles both static data 
sources from content files (like textures, constants, or animation curves), as well as 
dynamic sources from the runtime engine (for example, sampling from render targets 
as textures, or binding data from game objects)
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Another key element is how we manage and validate GPU state for the shaders.  How 
do we encapsulate GPU state coherently, and manage its frequency of submission to 
avoid redundant state setting.

And how do we validate that we have all the correct state specified and aren’t 
corrupting GPU state for any other elements of the frame?
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We also needed to determine a good way to manage shader permutations.

This involves using components to encapsulate shader options, as well as 
drive nodes in the node graph, and the connections between them.

Then we have a templating system, allowing easy sharing of functionality and values 
between Node Graphs.
And we also have the variant layer system, which allows us to store many 
permutations of a shader in a single Node Graph file.
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And finally, there are numerous details on how we integrated the shading system into 
the core renderer and engine architecture.
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We will cover these key elements of the TFX system in this presentation in-depth.

Hopefully, we can give you a good understanding of what drove our system’s design, 
and how it worked for our game, to give you some ideas of how you can adopt these 
principles for the design of your game systems.
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So this is the basic TFX pipeline.

We start with the TFX Source files;
These allow a graphics programmer or technical artist to define nodes, parameters 
and fragments of HLSL code, using the TFX language.
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The TFX source files are then used to automatically build the node graph interface, 
allowing content creators to construct node graphs, defining their shaders.
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At bake time, we compile our shaders in three steps:

First we generate the HLSL by splicing together the HLSL fragments defined by the TFX 
source.
This is then passed off to the platform’s shader compiler,
And the result of that is linked to the parameter values, defined in either the node 
graph or the TFX source.
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The final result of all this is a runtime technique that is ready to submit to the GPU at 
runtime.
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How exactly does the TFX Source work?   It is written in the TFX language, 
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Which is built as a thin layer on top of the underlying HLSL language.

91



TFX acts very much like a fancy pre-processor; it doesn’t really understand the code, 
but it knows enough to manipulate it.
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Remember, we use copy/paste splicing to generate the HLSL code to compile.

And this is not JUST laziness on our part..
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There are some advantages to splicing.

Every language feature of HLSL is available; which makes it super simple to convert 
existing shaders to TFX or understand how they work.

It also makes it easier to add new platforms or languages, as we don’t have to write 
code to generate those languages.

And on the next slide, we can see what these HLSL fragments that we are splicing 
look like.
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On top of this basis, TFX also adds a bunch of other features:
- It gives you the ability to organize state with Scopes,
- You can use components to wrap up functionality, similar to classes in C++
- It builds the node graph interface automatically
- It also lets us build complex expressions of game state, and evaluate them efficiently 
at runtime.
- We also have a flexible metadata system that lets us add functionality easily.
And of course much more

Let’s take a quick look at a simple TFX shader:
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So, this is about as simple of a shader as you can get -- no parameters, 100% 
procedural.
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All this shader really does is just take the texture coordinates from the interpolators, 
scale them and write them out to the render target.

On the left you have what it would look like.
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At the top we have “import” commands to pull in definitions from other files.

I’ve separated the vertex shader and interpolators into their own files, to make this 
slide more readable.
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Then this section here between #hlsl and #end is an HLSL FRAGMENT
This is a chunk of HLSL shader code that will get copy/pasted into the generated HLSL 
when we go to do splicing.
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Note that the code in the fragment is actually cross platform. 

We do the standard thing of using preprocessor defines to standardize the syntax –
for example TFX_TARGET0 here, gets defined as either SV_TARGET0, or COLOR0 or 
S_TARGET_OUTPUT0
depending on which platform you are baking out.

If your language is sufficiently different from others, you could also make use of 
preprocessor conditionals,
like #if #else, to do more drastic changes to the code on each platform.
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The technique declaration at the bottom, defines how to build the technique during 
the baking process.

Basically it is saying: if someone requests ‘my_technique’
then we need to compile both a vertex shader and a pixel shader for all platforms,
using the ‘main_vs’ and ‘main_ps’ entry points.
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Each of these compile_shader commands invokes the three operations:  of splice, 
compile, and link.

All of the compiled shader programs, plus the corresponding GPU state descriptions, 
are combined to make the runtime technique that we can then submit to the GPU.

So let’s take a look at what our example shader looks like after it is spliced together:
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TFX has spliced the global definitions for the given platform at the top, as well as the 
HLSL fragments coming from various files.

This code would then be fed into the shader compiler in order to build the pixel 
shader.

So, now let’s make a bit more interesting, and add some parameters to this.
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Parameters and the GPU state they control is where much of the magic lies…
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Whereas TFX is very much hands-off with the HLSL fragments, it gets it’s hands dirty 
dealing with the parameters.

Because one of our goals is to manage and organize GPU state, TFX has to understand 
the parameters completely.

During splicing, TFX generates the HLSL code to declare the GPU state for each 
parameter.
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We want to author parameters and not have to recompile code for the engine 
(preprocessor or runtime) (this also include the editor code)
We want to ensure that all the changes required to change shader parameters are in 
one place (in the shader source code only) keeping them local to the location of 
authoring.
We want our bake, runtime and Node Graph UI automatically picks up the changes
The UI should be automatically building UX elements for shader components
The runtime engine manages GPU state automatically from the declared parameters 
in a data driven mannerWe want them to be tightly bound to the TFX state
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We’ve added three parameters, ‘scale’, ‘center’, and ‘offset’, to control the transform 
we apply before writing to the render target.

Because these parameters are not assigned to anything, they will automatically be 
picked up as tweakable values in our shader node graph interface.
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We also have a mechanism to specify default values for the parameters –
these are the values used if no one specifies a value in the node graph.
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The defaults here make use of the TFX metadata system – anything starting with the 
@ symbol is a metadata tag.
You can add whatever metadata you wish, ‘default’ is just the one it looks for to find 
default values for parameters.
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The meta-data system is incredibly useful in a large number of situations where you 
might otherwise have to go back and write some new language features to handle 
special cases.  We’ll touch base on other use cases for metadata in our system later 
on in this talk.

110



So these parameters are now exposed to the artists for editing directly in our visual 
node graph editor..  

111



Each of the three parameters is shown on the shader node,

and by selecting the node, you can edit the parameter values.

(video 1)
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What next?

Your content creators probably won’t be happy with just a scale/offset transform.

They might want a rotation too..  or some kind of warp…
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On older systems, this kind of choice was often represented using preprocessor 
defines that activated different sections of code.

But this doesn’t scale well to combinations of transforms.

This is one of the main reasons (but definitely not the only reason) behind a TFX 
feature called….
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Which brings us to TFX Components! 

115



What is a Component?
You can think of components kind of like classes in C++.
- But Instead of member variables it has member parameters
- And instead of member functions it has member HLSL fragments
- And you can instantiate the whole thing, just like a class.
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Components serve a range of purposes:
- Mainly, they are a way of providing flexible shader ‘options’; for example, every 

node graph node is defined by a component.

- But components also can be used to wrap common functionality, so we can use it 
in many locations.

- Components also provide an interface, behind which you can hide complexity, or 
platform differences.
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This an example of a component declaration.

The name of the component is somewhat special –
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… it is broken into two parts:

interface colon variant

the idea here is that components with the same interface are basically
interchangeable

So this code is declaring a component using the ‘c_transform’ interface, with a variant 
called ‘scale_offset’.
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Next, we’ve moved the three parameters we used before into the component,
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And pulled out the transform code and moved it into the ‘Apply’ member HLSL 
function, declared in this fragment.
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In this case we have decided that all components using the c_transform interface 
should have an ‘apply’ function like this.

NOTE however, that this interface requirement is implicit –
we didn’t find any reason to actually declare or enforce the interface requirements.
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You could make it an explicit interface, which may be worthwhile if you expect to 
have complex interfaces and want comprehensive errors to catch the non-compliant 
components.
But, in our case, the interfaces were generally fairly simple, so it wasn’t worth the 
added complexity.

So this whole component declaration only declares the component, we need to 
instantiate it if we want to use it.

If we go back to our main shader code…
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.. go back to our main shader code…

We can instantiate it by name like so,
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And then use it’s member values and functions, like this.

Instantiating a component by name like this will inline all of the members of that 
component into the parent node in the node graph.
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Which means the node graph looks identical to what we had before – the only 
difference is under the hood, those parameters are coming from the component.

The other way to instantiate a component is …
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… to use the interface:* syntax.

This defines the instance to be ANY component that has the matching interface.

In the node graph, this instance will show up as a node connection point, that can be 
connected to any matching component.
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This is now what your shader would look like in the node graph editor: 

We have a single connection point for the ‘transform’, which we can connect to our 
scale_offset component, which then contains the three parameters we defined.

Now we have options -- we could, instead, connect the transform to a different
component, say, a spherical warp.

One interesting thing to note is that the lines in our node graph actually represent the 
component instantiation connections – NOT values or function calls. but, interfaces
are a superset of those, so our node graph can be used that way if you want.

(Video2)

128



So to summarize: The component interfaces define how they are plugged together;  
only matching interface names will connect.

So you define your components with their interfaces, and now the Node Graph editor 
can understand what are valid connections;
it can do highlighting and filter the node lists so you only see the compatible nodes, 
which makes it a lot easier to work with.
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You can also use components from within other components.

This is a transform that combines two transforms, applying first A then B.

It declares two sub-components that can be connected to c_transform nodes.

And this now lets you start building trees of nodes…
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We can drag out the connection point, the editor shows a list of all matching 
transforms, and here is our combine node.

It has the two sub-components we expect, which we can now connect to other 
transforms.

Nothing crazy really, but the cool thing to me is that these nodes are defined entirely 
in content, which means, say, if an artist needs some new functionality, we can go in 
LIVE, at their machine, and start making new nodes for them; no need to kick new 
builds or send them new executables.

(video3)
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Going back to the component definition, we are calling component member 
functions, just as we would call functions on a class instance in C++.

But, this is not valid HLSL!   HLSL doesn’t support function names with . In them.  How 
does this work?
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For members of a component, we don’t just copy/paste when we are splicing – we 
find and translate all of the member names to something unique.

This lets us instantiate the same component multiple times without collisions, as well 
as resolve the names of functions on sub-components appropriately.
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So it will translate your parameters and member functions something like this.

We try to keep the names readable, they are prefixed with the names of their parents 
in the hierarchy, 
and if we run into any name collisions, or the names get too long, we start appending 
hashes to keep them unique.
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We also found it useful to allow our techniques to override components.

For example, here we are overriding that transform to be a rotation.

We have a little metadata tagged to the component to tell the node graph interface 
to ignore it, because we’re going to stomp on whatever you select anyways.

Now this is a little bit of a contrived example, overriding the transform, generally we 
would use it for swapping base functionality,
turning on debug modes in debug techniques, or things like that.
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We also added a very simple inheritance mechanism –
And by simple, I mean it basically is just copy/pastes in all of the text from the 
component you inherit from.
If there are name collisions for members, whichever came first will win.

This is pretty simple, but it saves us in a ton of places where we would otherwise 
have to copy/paste that code around manually, duplicating work and increasing the 
cost of changing that code in the future.
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We made extensive use of components in Destiny.

Our standard opaque shader defines almost 1000 components and parameters.
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Our transparent shader uses slightly more than that,
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And our particle system uses a good bit more, around 1300 components and almost 
1800 parameters.

139



A lot of these components are all of the node graph nodes, like texture transforms, 
generic RGBA values, as well as higher level options, like enabling alpha test, 
emissive, and things like that.
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But a large number of them are also functional components that generally aren’t 
nodes – they’re just functionality we’ve wrapped up so it can be reused in many 
locations.

These are things like texture sampler states, render target encode & decode for our 
passes, and our core material model implementation..

141



Now that we know how to create parameters and components, we want to talk 
about an important element of the TFX shader system – namely the mechanisms we 
have for optimizing parameter computation and for connecting parameters together
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Artist want to have semantically intuitive parameters
- Degrees instead of radians
- Position and angle instead of transform matrices
- Etc..
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These may not match most performant representations: GPU or CPU

144



Keep the intuitive interface but optimize parameters under the hood: Pull out shared 
operations to happen before shader or drawcall
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We built a system in TFX that provides a mechanism for managing that automatically
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Take a look at the operation highlighted here – it is doing math on purely uniform 
values – that is: every pixel will be computing the same value over and over again.

Ideally we want to do this computation once per draw call, instead of once per pixel.
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But we also want to keep the sensible and intuitive artist parameters we had exposed 
before; 

the artists wouldn’t like having to edit the raw float4 xform directly
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Well, what if we could just move the xform statement outside of the HLSL block?

This is now defining a new parameter, called ‘xform’, with a hard ASSIGNMENT.

Assigned parameters are NOT presented in the shader node graph interface, instead 
they use the value of the expression that is assigned to them.
These expressions can make use of other parameters we have defined, like center.
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In other shader systems we’ve worked with, optimizations like this, that pack or pre-
compute values, had to be manually added to either the shader baking code, or the 
runtime submit code.

But here it is as easy as modifying the parameter assignments in the file.
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This is really neat because… in moving that one line of code, we’ve effectively moved 
the operation from the GPU …
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to the CPU, yielding better GPU performance. FTW!
Alternatively – you could force the artist to precompute these values ahead of time 
but that’s painful (and they won’t like you for it!)
This mechanism allows us to do dynamic values at runtime efficiently in artist friendly 
user interface. 
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The way this works is that TFX understands a fairly good subset of HLSL expression 
syntax, and can evaluate these expressions at bake time, or at runtime if necessary.

This is really neat, because we can use this mechanism not only do to parameter 
optimizations like these, but also as a flexible mechanism to link various data sources 
together..
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And there a lot of expressions we support such as for example here
But this leads us to …
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Now let’s talk about how we actually put data into our shader engine: what data 
sources we use for generating values for our GPU state

155



There are a number of different data sources we want to use for GPU state.

First we have data that is provided by content.
This is constants, animation curves, expressions, and textures that are specified in the 
TFX source directly or by artists in a node graph.
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Then we have the ‘dynamic’ sources, that are only available at runtime.
For example, render target textures, or engine values like game_time, or object 
values like ‘health’ or ‘velocity’.
TFX gives you the power to combine all of these arbitrarily controlled from content or 
code, which is really powerful!.
…
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Let’s take a look at how the data flows through the TFX system all the way from 
content generation to runtime. 
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In content we specify data via source code (turning it into literals), …
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…then in the node graph editor, artists author parameter data which turns into 
curves, textures, and expressions, along with parameter values.
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At bake process, we convert these into runtime ready representations – generate 
texture slot descriptors, fill out constant buffers, and anything else necessary for a 
given platform to store the state. 
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Finally, at the last stage at runtime, we convert this state to GPU-ready format filling 
out the registers, binding resource slots and so forth. 
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So the flow is always from content to runtime like so. 
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Dynamic data sources are computed entirely at runtime and submitted by the engine 
to the corresponding GPU state through TFX mechanisms. Let’s look those.
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TFX has three ways to access dynamic data from the engine.  
The three methods are:
- Externs
- Object Channels
- and Global Channels
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Externs are used for engine-provided runtime data; these are tightly bound to the C 
code, any change requires a recompile of the engine and rebake of the affected 
shaders.

…
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The recent armor sets made use of the time_of_day externs provided by the engine 
at runtime to animate glowing sections on the armor at night.

Here is what the armor looks like during the day
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And when it’s night time. Note that we automatically generate glow in pre-specified 
regions (based on a mask) based on the time of day extern.
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Object channels are a system that provides generalized per-object values, that can be 
controlled by content, script, or C code.
There are a lot of object systems that will write data to channels, making it easy to 
source data about the object for driving GPU state.
In addition, artists can define new channels on objects from within content.  For 
example, they can create an animated channel that synchronizes an effect across 
different shaders or different render systems.

…
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Chroma armor makes use of object channels that control the color tint which can 
change based on the specific object’s property, for example, glowing blue in the 
armor here. 
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Global channels are a similar system, but they aren’t tied to an object, they are 
effectively ‘global’ data that can be content controlled. You can think of it as channels 
that are driving by global systems  (for example, atmosphere). 
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Global channels were often used for global effects: 

• Autoexposure controls

• Sun direction / color / halo

• Global ambient lighting controls

• Atmospheric fog controls

They were most often used by sky / time-of-day artists but can be also used in any 
shaders. Here you see an example, where the sky shaders were tied to time of day 
and sun direction global channels for Mars sky rendering.
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All of these data sources can be linked together using expressions. These expressions 
can use externs and/or channels – for example here we have an expression that’s 
dependent on a game time extern, and another expression which allows us to link 
this object’s velocity channel to a shader parameter. 
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Linking expressions to these data sources makes them dynamic because the data 
sources themselves are dynamic. This means that they must be evaluated at runtime.
Naturally, we want this operation to be performant. 
How do we do it? 
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The answer is Bytecode!
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Why bytecode?

It’s the standard way to solve the problem of having your ‘code’ defined in content, 
which is exactly what we have.

The other option is JIT, which we considered, but would be much more complex to 
build, and potentially runs into code signing issues on console platforms.

So we keep it simple and compile our expressions to bytecode, and interpret it at 
runtime, writing the output to the GPU.
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TFX bytecode uses a simple stack-based interpreter, where each operation modifies 
the top of the stack.

The stack contains 128-bit elements, which are generally SIMD 4 float values.

And most of the operations use SIMD vectorization on each platform.

It is a fairly lean implementation of bytecode –
the ops are between 1 and 3 bytes, we separate the constant data into separate 
buffers,
And it doesn’t support any flow control or branches, the idea being we could 
parallelize execution for things like particle systems, where we may want to go wide 
across the particles.
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Input to the bytecode compiler is quite simple. It consists of 
1. A set of expressions (string or expression-tree form):

value= “lerp(0.0, 0.4, 
saturate(cos(game_time*1.0+0.0))*0.5+0.5))”

2. A description of the target output layout(s):
1. “value” should be put at cbuffer offset 8
2. “my_texture” should be set to pixel shader register 3
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When TFX compiles this to bytecode, here is the output byte stream, and it’s 
translation.

Currently all the commands are either one or two bytes.

We do a quick optimization pass, but it’s not great.  Luckily the bytecode eval has 
never been a huge bottleneck,
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We did add a handful of optimizations while compiling bytecode.

We pre-evaluate all of the static sub-expressions, and any purely static outputs are 
handled in native code.

We also save & reuse common sub-expressions to a scratch buffer, if it reduces 
overall bytecode cost.
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We actually have a few different bytecode interpreters:

- We have SIMD CPU interpreters for each platform, making use of the native SIMD 
instructions.
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- We also have a GPU interpreter. This is a fairly expensive path (the shader that 
implements this is over 4000 ALUs), but is useful for doing quick iteration on GPU 
particles in editor, by simply updating bytecode on the fly.  Then, in released builds, 
we..
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…convert that bytecode into HLSL, for native evaluation to the GPU.
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The only runtime optimization we did for the CPU interpreter was stack caching –
which is where we keep the top of the stack in a register, and there’s a link to a paper 
on that.
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So, now that we know what to put into GPU state, let’s organize it. 
let’s say we want to render a scene – at the lowest level, we are issuing a number of 
draw calls to the GPU, and we want to make sure that for each draw call, the GPU is 
in the desired state for that draw.
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When we look at any given draw or dispatch that our engine needs to execute, we 
see that the GPU state consists of:
- The shaders themselves (vertex, pixel, compute, etc.)
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- Any GPU resources namely
- Mesh data
Constant Buffers
Textures 
Samplers
UAVs / Buffers
Render States
Render Targets (output)
Blend Modes
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Render Targets, Viewports and Scissor Rects are 100% controlled by C++ engine
runtime, TFX does not encapsulate control for that. 
TFX provides encapsulation for constant buffers, textures / general buffers or UAVs 
and sampler setup, and render / blend states
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For controlling GPU state, we use the following scheme of three-layer priority: 
- Our C++ supplies default states. This is typically set before any technique is to be 

rendered to ensure there aren’t any missing states (and avoid tripping up low-level 
API validation layers). 

- Each technique can optionally override the default states with encapsulated states. 
Note that we can specify state in the TFX components or in the technique itself

- Lastly, even after the technique is activated, we can still override the state in C++ in 
the runtime engine. This is particularly useful when forcing some behavior or when 
implementing debug or validation modes
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We are going to organize this GPU state using the concept of Scopes.

A scope is a set of related GPU state – it encapsulates the description of resources as 
well as their destination. We specify which constant buffer location we bind each 
constants to, for example, or which texture slots to bind textures to. This is used to 
both build the underlying resources under the hood by TFX at runtime, as well as 
ensure that we don’t stomp on the state (more on that later). 
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Note that we actually can describe resources in the scope separately for each shader 
stage and platform. This is needed so that we can manage the slots independently –
we might not have identical texture slots free, for example, on Xbox 360 as we might 
on PlayStation 4. 
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Let’s take decals as an example, and look at the GPU state when we go to draw a 
decal.
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The GPU state consists of a number of float constants, like the material texture 
transforms, projection matrices, and perhaps an animation parameter like 
game_time.

It also includes textures, like the decal material textures, as well as render target 
textures from the gbuffer pass, like depth and normal buffers.

And we’ll need a few sampler states used to read those textures.
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First let’s separate this into ‘unique’ state, specific to this decal, and ‘shared’ state, 
that may be used by a number of draws in the decal pass.
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The unique state will be stored by the technique assigned to the decal,
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Whereas the shared state we will move into scopes.
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Generally we will want to define the scopes based on similar lifetimes and frequency 
of submission.
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For example, ‘game_time’, and the common sampler states, are applicable to the 
entire frame, so let’s put them in a ‘frame’ scope.
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The projection matrix is valid for the entire view, so assign it to the view scope.
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Then we can put the state specific to the decal pass into it’s own scope.
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The mesh_to_world transform matrix is really a special case here, in that it may be 
changed MORE frequently than the technique.

If we have multiple instances of the same decal, we can setup the technique once, 
then change only the mesh_to_world matrix and issue another draw call to draw the 
same decal in a different location.

So we’ll put this in it’s own scope, the mesh instance scope.
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If we want to optimize the submission of this high frequency submitted state in tight 
inner loops, we have an option to supply C++ scope submission path instead of going 
through the bytecode submit for faster CPU.
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Then, all of the unique state belongs to the technique.
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Sharing state this way is good!
- Less CPU perf
- Less GPU perf (less context rolls)
- Less command buffer memory
- Less technique memory
- Less bandwidth
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There are a few differences between scopes and techniques:

1) Scopes never contain shaders (scopes plug into shaders)
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The scope layout, that is the set of state that it handles, is explicitly declared, 
whereas techniques will just grab everything else, so we often let the shader 
compiler decide where to put the state.
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As we said before, scopes will bind all of the state that they declare, whereas 
techniques get ‘everything else’.
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And a final difference – techniques always run our TFX submit path (which may 
execute bytecode for dynamic values), whereas scopes have the option to use custom 
C++ code to directly submit their state. 
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This is useful for frequently changed state, like the mesh instance scope in the 
example earlier. In cases like that, if we want to optimize the submission of that state 
for high frequency inner loops, this lets us move the submission to native code.
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The scopes are declared in the TFX language, So effectively, they can be changed 
easily since just are treated just like content
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This is declaring the ‘decal_pass’ scope.
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First it declares all of the state that it wants to claim:

on all platforms,
in both the vertex and pixel shader, 
we are reserving:
- texture registers 0 through 1, and also cbuffer 11
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then, it declares what that state consists of:
- the first texture will be called ‘depth_buffer’
- the second texture will be called ‘normal_buffer’
- the first element of the cbuffer will be a 4x4 matrix called 
‘screen_texcoord_to_world’
- and so on and so forth
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These expressions on the right hand side of each declaration here will be run through 
our expression/bytecode system, just like for regular shaders.  
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There is an important consideration – since scopes manage GPU state locations, they 
can easily write to the same destination.  This can be ok, if that’s what you intended, 
but if not, bad things can happen. 

How do we ensure that there are no conflicts?
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To solve this problem, we built the GPU state validation system
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Why would you want to validate GPU state?

State errors can be very difficult to detect and debug.

They generally fall into two categories:   state that is missing, if no one ever set it,
or state that WAS set, but then someone came along and stomped on it, because of 
register collisions.

Both of these result in rendering artifacts, which may not even be noticed for a long 
time
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or in some cases, especially with some of the lower-level graphics APIs on consoles, 
they can result in GPU crashes,
.. which are even more ‘fun’ to debug.

So some kind of validation to automatically catch these errors would be great.

We could track every active register, but that would be pretty expensive…
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But hey, if all of our state is already organized into scopes, why don’t we just track 
those scopes?

We only ended up with around 23 scopes total in Destiny, so we can track a bit-vector 
of them in a single DWORD.
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Basically, the way it works is we track each ACTIVE scope in a bit-vector in the 
runtime submit context.
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Then in each scope, we can store a bit-vector of the compatible scopes.
That is, other scopes that have no overlapping state.

This lets us quickly validate that activating a new scope won’t stomp any of the 
existing active scopes.
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Then, in each technique, we can do the same thing, make sure everything is 
compatible..
and we can also store a bit-vector of the scopes that the technique directly USES.

This lets us quickly validate that none of the required state is missing.

This kind of validation is extremely low overhead, and helped tremendously in 
catching errors in development.
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Now that we have the shader code and the shader state sorted, how do we integrate 
it with the rest of the renderer?
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In our system the shader node graph is the material definition. 

228



Materials can be assigned to any element in a scene - Meshes / mesh parts; Whole 
objects; Particle systems; Screen passes (postprocessing, screen FX)
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Assignment is actually entirely defined by the client system – TFX shader pipeline 
does not control or limit this in any way. 
Assignment starts with a node graph TFX shader
At bake time, client system just requests a technique from the node graph
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A shader node graph can generate one or more passes, where each pass corresponds 
to a technique which is defined in the source TFX shader
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For example, in this scene, each opaque material generates custom Gbuffer, Depth-
only, Shadow passes
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Another example are these multi-layer decals which also can generate multiple
render passes
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GPU particle systems can have many passes (spawn / update / render layers)

Now that we’ve figured out how to assign materials, lets take a look at runtime 
submission…
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If we look at breakdown of a frame, you’ll quickly see that we build the frame from <a 
number of passes> (as you see in this list on the right). Note that these passes are 
different depending on the state of the game and the content visible. 
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At high level in pseudocode, each frame can be roughly broken down like so – we set 
global frame-specific GPU state, then for each view (for example, the main view, 
shadows views, reflection views, etc.) we setup that view’s render state, then render 
passes in that view. 
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For all the operations above we use only a few TFX entry points to control the 
runtime submission. 
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We setup CPU-side data sources via push and pop operation for the externs. 
Pushing creates space in the corresponding resource for CPU to upload the data; 
popping just notifies that we no longer need that particular state. 

238



For channels we simply set them using the corresponding set entry points (for global 
or object channels). Set is used purely for copying resource data. 
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GPU state is controlled via activation and deactivation of scopes, which executes 
bytecode for any dynamic expressions and copies resultant data into appropriate GPU 
resources (like constant buffers), …
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…and we activate the technique to set its shaders and setup its local state (and also 
execute any local state’s dynamic expressions using the bytecode interpreter)
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We setup the externs and activate scopes at these phases. Note that we want to 
move any shared state as high up the chain as possible to avoid submitting it multiple 
times per frame 
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We pop externs and deactivate scopes to notify our GPU state tracking that the 
respective state is no longer needed after each loop is finished
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One aspect we’ll touch on briefly is how we had to extend our shader pipeline to 
support fully multi-threaded submission. 
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As mentioned in the GDC 2015’s talk 
(http://www.gdcvault.com/play/1021926/Destiny-s-Multithreaded-Rendering), 
Destiny renderer is run entirely from jobs. Each job submits to a flavor of deferred 
context. However, on some platforms, each job had to  have the entirely of the full 
previously set state setup in the job itself to run correctly. But remember that we 
were controlling state submission frequency at higher level. To ensure that we did 
this correctly, we relied on the main TFX tracking for GPU state using the scope and 
extern tracking. Each job would enter and setup all the missing scope based on the 
required globally set scopes and externs and copied state from the parent job. 
The encapsulation of GPU state in tracked TFX scopes helps a great deal with ensuring 
correct multi-threading state setup for render jobs
On each render jobs, we check which scopes the system expects to be set and reset 
for that deferred context.
This keeps render jobs always in sync automatically (another nice advantage of the 
scope tracking).
Even though the state was originally controlled from a previous job or even serialized 
code
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Next let’s touch base on a mechanism for extending our TFX system for variety of 
useful subsystems 
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Anything in TFX that started with @ sign is treated as metadata markup. We use it 
extensively for a number of markup: 
• UI controls
• Default value specification
• Render stage markup
• Preprocessor definitions / labels
• Optional splicing or compilation directives
• Client directives
One of the advantages of TFX metadata was that it was a highly extensible system, 
and we basically added new use cases as we found them. 
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We provided a number of metadata to markup shader parameters to specify UI 
behavior, which drove the automatic generation of node graph UI.  We supported the 
basics (UI name, description, and semantic UI controls: color, slider, min / max values) 
but also UI organization (hiding parameters from artist interfaces, allow grouping 
shader parameters into UI groups and sorting them in arbitrary order within each 
group, we also support markup for marking groups as collapsed or open for better UI 
organization)
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This allowed us to decouple shader parameters in code and the UI for the artist (i.e. 
component organization from UI exposure), which gave us power to further fine-tune 
artist interface to make the node graph interfaces more intuitive to the artists 

Another use of TFX meta data was our render stage management…
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Render stage is our mechanism for filtering runtime submission for passes and views. 
We actually cover the deep details of the render stage mechanism in the GDC 2015 
but we’ll touch on a couple elements here related to TFX language…
At its core it is about shader management (selecting the right techniques at the right
time) and filtering the visible list in a given view (which comes down to mesh filtering 
for actual drawcall generation using the right shader we’ve just selected). Of course 
we want it to be automatic and transparent to leaf feature writers. 
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This is a Data-driven mechanism on the shader side; the runtime engine declares the 
render stages that it supports (corresponding to render passes), and then 
render stage is specified in the TFX shader source, tagged to each technique. 

At bake time, we query the metadata from the technique to determine the render 
stage, and assign the corresponding mesh to that render stage automatically.
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Shader metadata specifies render stage in shader code on the technique level
Here is the example of the render stage markup in our original simple shader – we 
simply add the render stage metadata to our technique. 
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We can also specify multiple render stages for each technique in the material. In fact 
each of our standard opaque materials support these stages by default.

Next, let’s touch on another use of metadata for TFX labels…
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TFX Labels provide a generic mechanism for querying material properties at bake 
time.

Each component can supply any number of labels, and the client systems can query 
those labels to make local bake-time decisions in a data-driven manner, dependent 
on the content of the components in the shader.

We used labels for a bunch of different applications.. 
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Our visibility solution was based on Umbra, which required bake-time specification of 
visibility occluders. However, certain materials should always be excluded from 
occluders …
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For example, this alpha tested environment geometry should never be marked as 
occluders
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Or the water geometry shouldn’t occlude
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Same for the transparents
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Here is an example of adding a label to our alpha test component, with the goal of 
being able to query at bake time whether a shader can be used as a visibility occluder 
or not. The alpha test:from_texture component specifies that it should not be used 
for visibility occlusion by providing VISIBILITY_OCCLUDER_DISABLED label, ….
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whereas the c_alpha_test:none component does not have the label metadata, so a 
query for the VISIBILITY_OCCLUDER_DISABLED label would return false and an object 
with this shader can be used as visibility occluder safely. 

This mechanism gave us a simple way for components to drive which materials 
should be excluded from visibility occluders automatically, without any manual artists 
markup. 

Another use case for labels was to help us fit into memory and get better GPU 
performance….
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… By using shader labels to help us optimize geometry at bake time.
We had to keep geometry footprint as tight as possible on last generation consoles to 
fit into memory. 
Aside from keeping the memory footprint lean, this also helped us avoid generating 
garbage data when source geometry elements were missing (for example, when 
artists forgot to setup vertex color data in content). And by reducing the number of 
streams we had to setup, we slimmed down our CPU setup and increased GPU 
performance.
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At object bake time, we verify that source geometry has vertex channels that the 
shader requests. This allowed us to strip out vertex channels that shaders do not 
require for that geometry (which was used, for example, to strip out tangent space 
from depth prepass or shadow shaders for faster GPU processing for those stages). 
We also could provide dummy – safe- data when we found that a shader required a 
particular channel but the source geometry did not provide it due to incorrect 
content setup. This allowed us both to avoid GPU crashes (due to missing vertex data 
when shader wanted to sample it) and avoid rendering errors. 
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We also used labels for a number of other systems – to figure out physics and audio 
materials from shaders automatically, for example..
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… We also use metadata to help drive the shader bake process…
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The splice_if metadata marks up components with an expression that we can use to 
enable or disable the splicing of that component.

These expressions can query labels, or other preprocessor variables, as defined by 
client code, or techniques or components elsewhere in the shader.
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We also can enable or disable the compilation of entire entry points
using the compile_if metadata.
This is applied to the shader compile commands within a technique declaration.

This lets us conditionally compile shader stages, again, depending on shader options 
or client requests.
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For example, here, we can toggle tessellation, based on a declared label by tagging 
the hull and domain shaders with @compile_if like so.

This is saying, if someone defined TESSELLATION_ENABLED, then compile the hull and 
domain shaders; otherwise, don’t.

Here you can see we might have been able to build some language constructs to do 
the same thing – put first class if statements in the technique -- and maybe you would 
get a bit better result out of that -- but it was just easier to throw on some metadata 
for it.   This IS laziness on our part.  
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Next, we want to take a deep look at how we dealt with the wide variety of shaders 
for our game
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We want a system that allows us to build variety of shaders quickly and easily, yet we 
want to minimize the repeated, tedious setup work and all of the maintenance that 
comes with it. 
We also want a system that allows us to create the building blocks once and then 
reuse them in many other shaders, and reduce the manual copy/paste by using 
references and instantiation whenever possible. 

272



The first mechanism for composability is, of course, our TFX components. This is a 
great tool for managing permutations of shader functionality, but their boundaries 
are defined in code, which is not flexible enough for artist-centric workflow
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We wanted to create a mechanism for artists to own that sharing and reuse.

The two main mechanisms we developed for this purpose were shader subgraph 
templates and shader variants. 
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(video4) Subsgraph templates allow artists to reference other node graphs as 
subgraphs in their node graph files.
So we can just take any node graph file, and drag it in and drop it into OUR node 
graph file.

And you can see that other node graph.  Now you can’t change any of these nodes, 
but you can connect your nodes to them, so we can use their combined transform as 
our transform, by connecting it up like so.

And, you can also make overrides, like say we don’t want a sphere warp, we want 
some other transform, like a radial shear.   We can just override that connection in 
the template with a local node.

So you can connect to, and override any part of the graph; they can use ‘just the 
middle’ if they want.

This is a very simple example, but the artists used this to be able to create reference 
shaders, containing pieces of node graphs they wanted to share, or even things like 
libraries of reference colors and shared parameter animations.  If every shader is 
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looking at the same file for those things, then you can change all of them in one 
place.
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Another thing we found, was that artists frequently wanted to vary minor elements 
of their materials.
For example, they might have some peeling paint in their shader, and they wanted to 
have a variety of paint colors available for different areas in the game.
Or they might have material parameters such as metalness that they want to vary, or 
they want to create dust overlays on Mars.

This was a very frequent desire from our palette artists for handling different 
destinations or enemy factions.
And, they wanted to have multiple axes of these variations.

Which quickly results in a combinatorial growth of the possibilities !

If you were to copy/paste your shader and modify those values manually, this is a 
huge amount of files & data to manage, and changing anything later becomes a 
nightmare.
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What if we instead define all shader variants from a single node graph file, where we 
encode rules about how to modify the shader in a set of layers, conditioned on some 
logic. Each layer can override any node connections in the node graph and change 
parameter values. This lets the artists define variants of the shader within a single file
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(video5) This is a concrete shader, where the artists have set up a worn painted 
section.

But they want to have a variety of different colors of paint.  And rather than make a 
different shader for each possibility,
they’ve instead made use of variant layers.

Each of these connections here is a connection to one of these different color nodes, 
and the connection belongs to a variant layer.

The way it works is they have defined a number layers, each one is active only when 
the conditions are met:  color is blue, color is cyan, etc.

When you activate a layer, it’s connections become active, defining the color to be 
the appropriate value.

This is a very simple example of overriding just a color, but you can make any number 
of connections in a layer, and potentially produce very different graphs if you wish.
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In this way, the artists can define a great variety of looks within a single node graph 
file.
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PROS:  This allows the artists to set up a huge variety of shaders easily and manage 
this complex set of choices in an easy UI. Such a large diversity of shaders would be a 
huge management pain without a variant system.
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The cons however – is you have just enabled them to make 4000 variants in a single 
file; which, by itself, is not really a problem if you don’t build all the variants. Keep 
this in mind just in case, because the artists should be aware of their choices. 
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Of course, no system is ever perfect, and we had a number of challenges along the 
way, and we found a lot that we want to improve in the future.
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The HLSL language, and all of the similar shader languages, use C-style declarations; 
which means you must declare something before you can use it.

This means that every HLSL fragment must be spliced in correct order, or else the 
compilation of the shader will fail.
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Initially, we did the simple thing and spliced in whatever order things were declared 
in TFX.

This quickly broke, so we added metadata to control splice order explicitly.

You could tag components or parameters with @splice_order, giving it a sort key, and 
it would splice in sorted order.

And this worked for a while…
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But, as complexity grew, and we added more permutations to our shaders, the
custom splice ordering became increasingly complex to maintain and challenging to 
debug.

A much better solution, we found, was to splice on demand,
in dependency order.

This just solves the problem automatically, no maintenance necessary.
and it also trims down your generated HLSL, removing all the unnecessary 
declarations.

We have a working prototype of this, but we haven’t gotten around to implementing 
it in our pipeline due to ship schedules and other priorities.
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Another issue we ran into was concepts like per-vertex data options – that is, options 
that want to modify several different locations in the generated HLSL code.

For example, adding a vertex_color to your vertices requires modifying the vertex 
stream declarations and fetch code, the interpolator definitions, and pixel shader 
access functions.

This doesn’t fit well in a simple component.
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Our solution was basically to just fallback to the old-school solution:
- use preprocessor definitions to enable and disable sections of code,
- and stuff the whole thing inside a giant component that manages everything.

While this let us address this problem during ship, it was very fragile and a pain to 
maintain as we scaled up.
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A better solution, I think, is to add the ability to splice into a named fragment, 
allowing us to splice together options from various different components, and then 
splice THAT fragment into the generated code on demand.

In this way we could build up definitions of streams, interpolators and structs, from a 
bunch of pieces coming from different components.

Another option is to write a higher level, more intelligent system to do packing of 
things like this and generate the HLSL for it.

<transition>
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… so to conclude…
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We designed TFX to be a heavily data driven system, which enabled fast iteration but 
at the same time it can also yield performant rendering from the deep encapsulation 
of data and control of frequency of submission.
The flexibility of our system allowed us to give the power to the artists and unleashed 
their creativity which was crucial to achieve the variety of destinations and material 
types for Destiny.
TFX was one of the key components for tackling multiplatform development for 
Destiny, allowing to write shaders once and quickly create platform-specific resources 
using optimal representations for each destination. 
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Of course, we are never done, and there are a number of future work that we hope 
to see TFX evolve to, such as improvements to the shader template system to do 
black boxing of templates, or parameter-only templates; we want to support on-
demand splicing to reduce GPU state and improve our splice order issues. And 
although bytecode was a tremendous advantage to our ability to drive GPU state 
dynamically, inspecting was challenging, and we want to extend the system to 
support a better bytecode decompiler to make it easier to debug.
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