
1 | P a g e

Light Propagation Volumes in

CryEngine 3

Anton Kaplanyan1

1
 antonk@crytek.de

mailto:antonk@crytek.de

2 | P a g e

Figure 1. Examples of current technique in CryEngine

®
 3. Top: Cornell box-like environment, middle left:

indoor environment without global illumination, middle right indoor environment with global

illumination, bottom: outdoor environment with foliage. Note the indirect lighting in shadow areas.

3 | P a g e

1 Abstract
This chapter introduces a new technique for approximating the first bounce of diffuse global illumination

in real-time. As diffuse global illumination is very computationally intensive, it is usually implemented

only as static precomputed solutions thus negatively affecting game production time. In this chapter we

present a completely dynamic solution using spherical harmonics (SH) radiance volumes for light field

finite-element approximation, point-based injective volumetric rendering and a new iterative radiance

propagation approach. Our implementation proves that it is possible to use this solution efficiently even

with current generation of console hardware (Microsoft Xbox® 360, Sony PlayStation® 3). Because this

technique does not require any preprocessing stages and fully supports dynamic lighting, objects,

materials and view points, it is possible to harmoniously integrate it into an engine as complex as the

cross-platform engine CryEngine® 3 with a large set of graphics technologies without requiring additional

production time. Additional applications and combinations with existing techniques are dicussed in

details in this chapter.

2 Introduction

Some details on rendering pipeline of CryEngine 2 and CryEngine 3

could be found in [MITTRING07], [MITTRING09]. However this paper

is dedicated to diffuse global illumination solution in the engine.

As the Crytek team has already approached the limit of existing real-

time direct lighting techniques, we realize the importance and

atmospheric influence of indirect illumination to the game scene

(see Figure 1. Examples of current technique in CryEngine® 3. Top:

Cornell box-like environment, middle left: indoor environment

without global illumination, middle right indoor environment with

global illumination, bottom: outdoor environment with foliage. Note

the indirect lighting in shadow areas.). Hard production time

constraints and limited hardware were the challenging parts of the

indirect lighting research. Since we position ourselves as cross-

platform engine, it was decided to allocate 10% of frame as the

budget for the global illumination solution, which is around 3.3 ms

per frame for 30 frames per second on current generation of

consoles (see Figure 2.). This budget is achievable even on NVIDIA

7-series and Microsoft Xbox 360 GPUs with current approach.

Forward

pass 7

Deferre

d

lighting

4

Shadows

5

GI 3,3

SSAO

2,5

G-Buffer

4

Figure 2. Average budget (in ms)

for rendering one frame of content

on current-generation consoles

such as Microsoft Xbox 360 or Sony

Playstation 3

4 | P a g e

As shown in [TABELLIONLAMORLITTE04], it is sufficient to have only one bounce of indirect lighting to

introduce the visual veracity even for movie production quality. Thereby, our research also does not take

into account multiple bounces because of their unjustified computational complexity.

In this chapter, we introduce a new solution to the single-bounce diffuse global illumination problem for

real-time applications. The chapter is structured as follows: first, we partially classify the previous

research on this topic. We will describe some of our techniques attempted during the search for the best

solution for this problem, outlining the inadequacies of the existing approaches within our constraints, in

order to provide a better perspective for our current solution. A brief description of the technology is

followed by detailed introduction into the algorithm and existing implementation challenges. We provide

solutions to majority of problems and discuss how to combine our method with other lighting

techniques. Finally, performance and quality results are analyzed.

3 Previous Work

Nowadays a lot of interactive, real-time and semi-dynamic techniques for diffuse global illumination

exist. It should be emphasized that most techniques differs in a way of construction and reconstruction

of different kind of global illumination data. These techniques can be partially classified as follows:

Precomputed light transport

The main idea of this class of techniques also known as precomputed radiance transfer (as described

in [SKS02], [TATARCHUK04], [CHENLIU08]) is to precompute the light transport at every point in the

static scene with arbitrary granularity and store this information with one of approximated forms

(e.g. spherical harmonics, spherical wavelets etc.). Obviously the main limitations of this class of

methods are the heavy constraints on scene dynamics and increased complexity of game

production. This class is one of the most popular and widely used in games because of its relatively

good run-time performance, which is provided by the fact that all the computationally heavy parts

are done offline during the preprocess stage and a simple relighting can be done in a few shader

instructions.

Instant radiosity based methods

This class of approaches (such as in [DACHSBACHERSTAMMINGER05], [DACHSBACHERSTAMMINGER07],

[LSKLA07], [RGKSDK08]) is based on the idea of representing indirect lighting as a cloud set of

virtual point light sources (VPL) [KELLER97]. Consequently, this technique has a great potential to

speed up with GPU. Its main advantages are good veracity and absence of any

5 | P a g e

scene/lighting/camera constraints. Unfortunately, the main disadvantage of these methods is

inadequate performance primarily because of the necessity to render at least 300-400 shadow-

casting VPLs for an arbitrary scene to represent the precise solution without artifacts and flickering.

This technique will be discussed in details in the next subchapter.

Photon-mapping based methods

These methods (such as in [STAMATE08] , [SHISHKOVTSOV05], [MCGUIRELUEBKE09])are less popular

than the others in real-time graphics because of their performance issues. Usually this class of

techniques is based on classical photon-mapping approach [JENSEN00]. These methods usually use

GPU texture fetching and rendering units to accelerate the photon map evaluation. The usual

optimizations for these techniques are irradiance caching, importance sampling and the incremental

approach. One drawback of these methods is that the scene needs to be preprocessed to get the

unique representation for the photon map. Another problem is photon map updates caused by

scene and lighting changes, which leads to highly inconsistent performance and intermittent stalls.

Geometry approximation methods

This is a novel class of techniques based on the idea of fast superpositioning of light transports of

atomic precomputed occluders, usually with discs (such as in [BUNNELL05]), spheres (such as in

[SGNS07], [GJW08]) or surfels (such as in [DSDD07], [EVANS06]) being taken as atomic

elements. As the processing power of commodity GPUs increases, these methods start becoming

more popular. However, approximating an arbitrary scene with these building blocks can present

quite a number of practical challenges. Furthermore, it is necessary to have this additional

information in the scene representation (e.g. colors, lighting etc.) to take proper indirect lighting into

account. The need to generate the additional information can place undue constraints on game

production, as well as require complex implementation, and, thus, are rarely used in games at this

time.

There are a number of other real-time approaches to diffuse global illumination, for instance, screen-

space global illumination [RGS09] (the extension for screen-space ambient occlusion), which in turn

takes only screen-space information into account and thus has single view 2D locality as a disadvantage.

It will be demonstrated that this technology is a good supplement to our approach, because it allows

achieving the first-bounce diffuse global illumination for both small and far geometry casters.

6 | P a g e

4 The Path to Our Solution

From CryEngine® 2 onwards, we have dynamic lighting, including real-time time of day change support

(as described in [WENZEL06]) and a breakable and highly dynamic world. For these reasons we chose to

avoid precomputed approaches to the global illumination solution.

A splatting indirect illumination approach [DACHSBACHERSTAMMINGER07] was considered as a promising

solution for our purposes. The main reasons are: this is the most generalized approach (i.e. it does not

have any precomputations or hard limitations), and it is based on a movie production method (“Instant

radiosity” [KELLER97]). Moreover, this is the most efficient GPU technique for generation of secondary

light sources. However, rendering of huge number of secondary light sources is a challnge for real-time

applications.

Several attempts were made by us to solve this problem. Deferred techniques were used to decouple

lighting and geometry complexity.

The first idea was to use grouped [WFABDG05] and tile-based [BALESTRA08] deferred rendering of

light sources. Unfortunately, this did not provide the required speed-up since these solutions provide

only some small bandwidth optimizations.

Afterwards it became clear that there were a huge number of redundant calculations for indirect

lighting. Thus there should be good optimization opportunities for a lot of dull light sources with huge

coverage.

This led to the idea of half-resolution rendering followed by bilateral upsampling, similar to the trick used

in [SGNS07]. However this introduced significant quality degradation in the case of a scene with high-

frequency depth changes (e.g. foliage, forest etc.).

The third idea is to use the interleaved deferred light accumulation buffer [SIMP06] to reduce the GPU

fill-rate and bandwidth impact. This technique is more accurate than the bilateral upsampling. Despite

this giving a good speed-up, there are still some unavoidable artifacts at the edges that comes from the

initial interleaved samples.

None of these techniques reduces the complexity by order of magnitude. Thus the rendering

performance in all these cases was still unacceptable for modern games with complex scenes and high-

definition display resolution.

There are several different solutions proposed addressing this issue, such as [NICHOLSWYMAN09],

[NSW09], which still yielded only a partial solution to the performance problem. Moreover, these

techniques have almost no benefit in case of arbitrary scene with highly discontinuous geometry, like

7 | P a g e

foliage, and high depth complexity, which is usual scene for games. Although we did not implement

these solutions because of time constraints.

Initially, the number of secondary light sources is 𝑂(𝑛 ∙ 𝑝) to 𝑂(𝑛 ∙ log(𝑝)) in solutions described

above, where 𝑛 is a number of light sources and 𝑝 is a number of rendered pixels, and the performance

overhead for drawing this many lights is not acceptable for current generation of hardware. Therefore

we reached the conclusion that the brute force rendering of a large number of secondary light sources is

too heavy for with current generation of hardware. However, if the number of lights could be decreased

to 𝑂(𝑛 + 𝑝), then the approach becomes more palatable.

In addition, there is another problem: lack of occlusion information for secondary light sources. It has

been recently addressed in [RGKSDK08] within imperfect shadow maps. This is a useful idea that

allows avoidance of scene rasterization for each secondary VPL. But there is still one significant

production complication: additional computation step is necessary to create and manage point-based

geometry representation of dynamic scene. This requirement becomes especially nasty in massive,

complex scenes with high depth complexity.

It is possible to use imperfect shadow maps for occlusion generation in our technique as well. But this

technique was not implemented because of research time constraints. Also we wanted to avoid storing

another point-based scene representation because of precomputations and additional memory

overhead and assets production complication.

5 Light propagation volumes

Firstly, we define a list of terms used in this chapter. Note that all vector terms are lower-case bold,
operators are upper-case bold.

𝐼 transport intensity

𝐺 visibility operator, to be defined below

𝐾 local reflection operator, to be defined below

𝑒0 emission distribution of primary light sources

𝒄 vector of spherical harmonics coefficients

𝒏𝒔 normal to surface

𝑠 area of surface element

𝑡 number of texels or cells

𝒍 unit vector towards a light source

8 | P a g e

5.1 Overview

We start with considering the Neumann series of the rendering equation for particular point on the

surface [KAJIYA86] in operational form with notation from [ATS94]:

𝐼 = (1 − 𝐾𝐺)−1𝐺𝑒0 = 𝐺(𝐾𝐺)𝑛∞
𝑛=0 𝑒0 (1)

where:

I - transport intensity;

G - linear visibility operator2:

 𝐺ℎ (𝑥,𝑤) ≡ ℎ(𝑥′ 𝑤, 𝑥 ,𝑤)

K – linear local reflection operator:

 𝐾ℎ (𝑥,𝑤) ≡ 𝑘 𝑥,𝑤 ′ → 𝑤 ℎ 𝑥,𝑤 ′ 𝑑𝜇(𝑤 ′)

S2

𝑒0 - emission distribution of primary light sources.

The dependency on the surface point is omitted for clarity.

The series could be reduced to three summands in the case of finite bouncing limited by the second

bounce:

𝐼 = 𝐼0 + 𝐼1 + 𝐼2 (2)

where:

𝐼0 ≡ 𝐺0𝑒0 - light source visibility from viewer position, which usually represents some emissive

object;

𝐼1 ≡ 𝐺0𝐾1𝐺1𝑒0 - scene direct lighting term with shadows;

𝐼2 ≡ 𝐺0𝐾1𝐺1𝐾2𝐺2𝑒0 - the second bounce of lighting (the first bounce of indirect lighting).

Now we consider each term of this equation in details.

The first term 𝐼0 ≡ 𝐺0𝑒0represents direct visibility of the light source and is commonly solved in real-

time graphics by rendering an emissive object representing the light source shape. The term G is usually

resolved with regular depth buffering.

The term 𝐼1 ≡ 𝐺0𝐾1𝐺1𝑒0 represents direct lighting from all light sources in the scene, where:

 the 𝐺0 term is resolved using a classical depth buffer

2
 See [ATS94] for more details on the notation

𝐿 radiance of indirect illumination

𝐴𝑠 albedo of point on surface (spectral vector of R, G and B coefficients)

Table 1. Symbols used in this chapter

9 | P a g e

 the 𝐾1 operator which is given by the convolution over a hemisphere reduces to some particular

function for each simple light source and a simple illumination model with analytical or

precomputed or BRDF.

 the 𝐺1 term is usually solved by one of many shadowing approaches. One of the most common

techniques is shadow maps, which could be treated as another indirection of depth buffer in turn

(it should be noted that shadow mapping technique proved itself as a very efficient solution).

Now we discuss in details the last term 𝐼2 ≡ 𝐺0𝐾1𝐺1𝐾2𝐺2𝑒0, which represents the first bounce of

indirect lighting:

 the 𝐺0 term is resolved using classical depth buffering approach as well as in the previous terms

 the last two operators 𝐾2𝐺2 are efficiently resolved for pure diffuse surfaces with reflective

shadow maps technique [DACHSBACHERSTAMMINGER05] as can be shown by this equality:

𝐼2 ≡ 𝐺0𝐾1𝐺1𝐾2𝐺2𝑒0 = 𝐺0𝐾1𝐺1𝐼1
′

where 𝐼1
′ ≡ 𝐾2𝐺2𝑒0 - is a direct lighting term without visibility operator from viewer position.

Thus we have a scene representation lit by pure direct lighting as an output of 𝐼1
′ term.

It should be noted that the term 𝐾2𝐺2𝑒0 in 𝐼1
′ can be successfully solved within current lighting and

shadowing methods for each simple light source.

Thus, it becomes clear that the reflective shadow map technique is a natural and efficient solution for

this term within modern GPUs.

The equation (2) can be regrouped in following manner:

𝐼 = 𝐺0(𝑒0 + 𝐾1𝐺1(𝑒0 + 𝐾2𝐺2𝑒0)) (3)

So, the regrouping in the latter equation shows how the rendering equation could be modified to be

more rasterization-friendly. The equation transforms to the more iterative and layered one. That is the

way to solve it efficiently in parallel with current rasterization hardware.

In the case of instant radiosity proposed by [KELLER97] we have a huge set of secondary light sources as

an output of 𝐼1
′ ≡ 𝐾2𝐺2𝑒0 term. The naive solution is to solve the term 𝐾1𝐺1 for each light source in this

set:

𝐾1𝐺1𝐾2𝐺2𝑒0 ≈ 𝐾1[𝐺1](𝐾2𝐺2𝑒0)𝑖𝑖∈Ω (4)

where (𝐾2𝐺2𝑒0)𝑖 is the i-th secondary light source from the set.

As listed before, there are many techniques based on this technique. All of them suffer from a huge

performance penalty from rendering such a large number of light sources, because the number of

members in this sum is usually several hundred per pixel.

Another challenging part of this operator is occlusion detection, which is hidden in the outer 𝐺 term.

Most of mentioned techniques ignore the secondary occlusion because of the rapidly increasing number

10 | P a g e

of visibility tests that need to be done for each VPL. However it is still possible to take it into account

with imperfect shadow maps [RGKSDK08] with good performance characteristics because of

stochastic sampling utilization for visibility queries. But as mentioned before this chapter does not cover

the secondary occlusion problem.

The usual pipeline of 𝐼2 ≡ 𝐺0𝐾1𝐺1𝐾2𝐺2𝑒0 term is:

As it could be noticed from this scheme, the term 𝐾1𝐺1 is usually the most expensive gathering step. It

consist of processing generated set of VPLs (such as importance sampling

[DACHSBACHERSTAMMINGER07], Lightcuts [WFABDG05]), which is optional; and gathering step, which

is usually a deferred shading or deferred lighting pass with some optimizations or hierarchical

representations mentioned in sub-section 4.

We reformulate the term 𝐾1𝐺1 as a scattering operation rather than gathering one. Moreover, we

provide a batched scattering for massive amount of light sources, where each particular light source

brings a small contribution to the final picture. This is the exact case we have for indirect lighting

rendering with VPLs.

Now we briefly describe our algorithm and propose the solution to the last term in the radiance

propagation section.

VLPs generation

(e.g. reflective

shadow map)

Scene

VPL

VPL

VPL

Gathering

K2G2 K1[G1]

Depth buffer

G0

Lighting

11 | P a g e

The algorithm consists of four parts as shown at Figure 3:

Generation of radiance point set scene representation

This stage consist of generation of set of secondary light sources

by rendering the scene into the reflective shadow map.

Injection of point cloud of virtual light sources into radiance

volume

Given a point cloud set of virtual light sources from previous

stage, inject it into the radiance field which is represented by a

volume texture of spherical harmonics coefficients.

Volumetric radiance propagation

Within the initial radiance distribution, propagate radiance by iteratively solving differential

scheme inside the volumetric grid. Store the results in the radiance volume.

Scene lighting with final light propagation volume

Apply resulting radiance volume to the scene lighting. Besides the classic way to apply light

propagation volumes in the way of SH irradiance volume to scene lighting [TATARCHUK04]

[OAT06], there are a lot of other applications to the resulting radiance volumes.

The integration over a hemisphere of the normals with a cosine lobe could be done in the SH

basis on the fly in the shader to convert incident radiance to irradiance for diffuse surface

(CHENLIU08]).

All these methods are described in detail in the corresponding sub-sections below.

Also it should be noted that this approach is similar to [EVANS06] in general. The main contributions of

our approach is higher precision, along with no precomputation requirements and physically based light

propagation.

Figure 3. Algorithm

overview

Reflective shadow

map generation

Radiance injection

Radiance

propagation

Scene lighting

12 | P a g e

There are still some challenges like spatial locality because of grid approximation and SH low-frequency

approximation problems. We discuss all these problems, their importance and solutions in the

“Improvements and optimization” sub-section.

5.2 Scene point cloud generation

We use reflective shadow maps (RSM) technique [DACHSBACHERSTAMMINGER05] to create a point cloud

set of secondary light sources of the surrounding scene objects. The idea of RSM is fairly simple and

applicable to our case: it allows sampling of only lit points of the scene with uniform sampling density in

an acceptable time. It is one of the most efficient and highly parallel current methods for the GPU to

sample the secondary light sources of a scene as mentioned before. Thus the input set of secondary light

sources for the equation (4) can be easily generated.

We use the classical RSM layout [DACHSBACHERSTAMMINGER05]. This makes it possible to manipulate

the final intensity of a clustered secondary VPLs during subsequent down-sampling pass. Moreover, this

also facilitates injection of each VPL into the light propagation volume.

To reduce the number of resulting light sources, we use a smart filter to make an importance down-

sampling of the resulting RSM, using an intensity-aware clustering. The metric of this filter is similar to

[WFABDG05] and consist in clustering key VPLs by its intensities. This step lightens the follow injection

stage. The implementation could be found in Appendix B of this chapter.

5.3 Injection

The idea of this stage is to transform a given point cloud set of VPLs into initial radiance distribution

represented in SH coefficients similarly to [CHRISTENSEN08] and inject it into a light propagation volume.

Light propagation volume (also used as a “radiance volume” term in this chapter) is a volumetric texture,

which stores radiance field approximated by spherical harmonics at each texel. Thus, we have regular

finite-element spatial approximation instead of dynamic data structures. We will operate with "surfels"

from point-based rendering (PBR). In terms of PBR, this stage consists of rendering a lot of surfels into a

volume texture. Therefore, it becomes not only a SH projection stage, but also creates an initial radiance

field in the radiance volume. As the input of the injection stage, we have a set of secondary light sources

stored as texels of the downsampled reflective shadow map. The goal of this stage is to inject the

existing initial distribution of reflected radiance into the SH radiance volume using point-based rendering

[BHZK05] into volume texture. The major problem of PBR is discontinuities between surfels. Since the

size of individual texel in the RSM is guaranteed to be much less than the size of one grid cell of the

13 | P a g e

destination volume texture in our case, there is no need to compute the exact size and orientation of

each surfel. Instead, we need to take into account the weight of the final contribution. Thus it becomes

just an additive accumulation step.

Note that the computations in this sub-chapter are performed only for a directional light like the sun,

which is the most important and complex light source for diffuse global illumination problem. The

computations for other types of light sources could be easily done in a similar way, but with care about a

perspective transformation.

Additionally, an attention should be drawn to the fact that this is the last stage, which needs to be

repeated for each additional primary light source in the scene. That means that only the RSM generation

stage and the injection stage should be done for each primary light source, but the injection could be

done into the same shared radiance volume that could be shared for multiple light sources. This is an

important advantage because these first two stages are relatively cheap and could be easily afforded for

many primary light sources with current generation of graphics hardware.

We use spherical harmonics coefficients up to the second band (which amounts to four coefficients) to

represent the hemispherical secondary light sources in angular space. As it will be shown below, the

approximation with the second band spherical harmonics is sufficient to represent indirect lighting in the

radiance volume because of its low frequency nature. We convert the radiosity of each surfel into a

hemispherical lobe projected to SH basis. Firstly, we evaluate the normal vector represented by its

coordinates 𝒏 = (𝑥,𝑦, 𝑧) of VPL into a direction represented by vector of SH coefficients on the fly in the

shader. The polynomial form of the SH basis 𝒄 = (𝑐0,𝑐1,𝑐2,𝑐3) is [SLOAN08]:

𝑐0 =
1

2 𝜋

𝑐1 = −
 3𝑦

2 𝜋

𝑐2 =
 3𝑧

2 𝜋

𝑐3 = −
 3𝑥

2 𝜋

These coefficients should be renormalized afterwards to form a hemispherical lobe. The normalization

coefficients for hemispherical light source are shown in Appendix A. This vector also needs to be scaled

by the contribution of the VPL surfel, which are initial direct light source colored intensity 𝑰𝑳, albedo

color 𝑨𝑺 multiplied by intensity𝐼𝑆, and the weight of the surfel 𝑊𝑠 to get the final spectral coefficients of

the considered VPL:

14 | P a g e

𝒄𝒓
𝒄𝒈
𝒄𝒃

 = 𝒄𝑻 𝑰𝑳𝑨𝑺𝐼𝑆𝑊𝑠

The intensity 𝐼𝑆 of each surfel for diffuse surfaces can be calculated as usual:

𝐼𝑆 = 𝒏𝒔, 𝒍 +

Term 𝒏𝒔, 𝒍 + means that the dot product 𝒏𝒔, 𝒍 is clamped to the range of non-negative values.

Note that term 𝑨𝑺𝐼𝑆 represents the radiosity of the considered surfel.

Also, the RSM texel area and the projected radiance volume cell area should be taken into account. As

mentioned before, RSM surfels are guaranteed to be much less than one texel of destination volume

texture, thus we do not need to care about discontinuities. However we still need to weight the

contribution of each surfel.

Thus we calculate the weight term 𝑤𝑠 for each surfel. Firstly, the area of each texel in an isometric RSM

can be calculated as follows:

𝑠𝑠𝑝𝑙𝑎𝑡 =
𝑠𝑅𝑆𝑀
𝑡

=
𝑠𝑎𝑟𝑒𝑎
𝑡

Where:

𝑠𝑅𝑆𝑀 - is the area covered by reflective shadow map

𝑠𝑎𝑟𝑒𝑎 - is the whole area covered by the considered approach (the area of the cut of the radiance

volume which is perpendicular to the direction of light source being injected)

𝑡 - is the number of texels in the reflective shadow map

Here we choose the coverage of the RSM 𝑠𝑅𝑆𝑀 completely to match the coverage of the radiance

volume 𝑠𝑎𝑟𝑒𝑎 . That assumption will simplify following calculations.

The area of one cell can be approximated as an area of the cut of the radiance volume. Note that the

area of this cut is named as 𝑠𝑎𝑟𝑒𝑎 . Thus we have:

𝑠𝑐𝑒𝑙𝑙 =
𝑠𝑎𝑟𝑒𝑎
𝑡𝑐𝑒𝑙𝑙𝑠

So we can approximate the weight for each surfel as:

𝑤𝑠 =
𝑠𝑠𝑝𝑙𝑎𝑡

𝑠𝑐𝑒𝑙𝑙
=
𝑡𝑐𝑒𝑙𝑙𝑠
𝑡

The resulting weight of each surfel does not depend both on the size of the radiance volume and on the

size of the RSM. That is due to the choice of the RSM area which always tightly fits the coverage of the

radiance volume.

15 | P a g e

5.4 Propagation

There are several approaches to solution of the rendering equation (1) as described in [KAJIYA86]. Most

of them are split into two main groups: forward

solutions and backward solutions. The most

common examples are forward and backward ray-

tracing. The latter group is the most popular in

computer graphics because it is possible to

efficiently get partial solution to the rendering

equation without redundant computations.

The propagation stage belongs to the group of

forward solutions. This method has some

analogies to SH solutions of scattering equation

proposed in [KAJIYAVONHERREN86] and could be

deduced from it by assuming the absence of

participating media in the scene.

Because of the low-frequent nature of indirect

lighting, we can represent an outgoing indirect

radiance distribution by a few bands of SH. Also

the initial distribution from the injection stage is

guaranteed to have at least hemispherical distribution or smoother. In one of his papers Ravi

Ramamoorthi says that you need 3 bands for the diffuse convoluted environment map

[RAMAMOORTHIHANRAHAN01]. Although we use 2 bands of SH coefficients, which is enough to represent

hemispherical cosine lobe outgoing indirect radiance distribution in our case.

The propagation stage consists of several sequential iterations. Each iteration represents one discrete

step of light propagation in the radiance volume’s grid space.

Suppose 𝐿 𝑥 is an initial indirect radiance distribution in cell 𝑥. During the injection process we add

radiance contribution of each VPL into the closest cell regardless of its position inside of this cell. Since

the exact distribution of VPLs is unknown inside of this cell after the injection process, we have to treat it

as a cube with edge length equal to the distance between cells. The radiance of collected VPLs is

uncertainly distributed inside of this cube. Note that we can have an average distribution of the radiance

on faces of this cube.

Figure 4. Radiance propagation iteration

16 | P a g e

We will propagate the directional energy between adjacent faces to neighboring cubes. In Figure 4.

Radiance propagation you can see the single propagation iteration for the central cell from adjacent

cells. Each propagation step for one cell consists of two stages:

 Compute the flux through each face by computing the integral of the outgoing radiance from the

adjacent cube through this face.

 Add the contribution of collected incident energy to the radiance representation of the current

cube. We assume that all the energy collected at this face moves only orthogonally to the face.

That means that we particularly lose incident

radiance direction for this individual face. But

the overall directional distribution of energy

remains the same after each propagation step

for all cubes, since eventually we propagate

radiance over the complete solid angle for

each source cube and redistribute it onto a

closed surface, which represents a wave front

approximation.

Thus, equation for single cell for n-th iteration could

be described as follows:

𝐿𝑛+1 𝑥 = 𝑃𝑛(𝐿𝑛(𝑥 + 𝑑𝑖))6
𝑖=1 (5)

Operator P in this equation is a propagation operator. This operator extracts incident radiance from

adjacent cell and collects it to the current cell.

Proposed scheme consists of an axial stencil on Cartesian Cubic grid, which is widely used for solving

scattering equation on a uniform grid.

We use gathering scheme because it is GPU friendly.

Here is a short pseudo code of the gathering propagation algorithm:
for_each cell

 for i from directions

 incoming_radiance_dir = get_radiance_over_face(cell.adjacent_cell[i], directions[i])

 cell.radiance += incoming_radiance_dir

The example result of radiance propagation algorithm is shown in Figure 5. Example of 6 slices of

radiance volume and results of 4 sequential propagation iterations. The detailed implementation is

provided in Appendix C of this chapter.

5.5 Light propagation volume rendering

This stage consists of lighting the scene with the radiance from the resulting SH volume texture. This can

be done by directly fetching radiance distribution from this volume texture using world space pixel

Figure 5. Example of 6 slices of radiance

volume and results of 4 sequential propagation

iterations

17 | P a g e

position in the regular rendering pass like in any usual forward renderer. However that can be also done

by any other scene lighting method, for instance by rendering this texture completely into the deferred

diffuse light accumulation buffer as a deferred volume primitive. We use the latter way due to the

deferred lighting approach and complex layered ambient lighting model used in CryEngine 3.

Assuming it is usually very expensive pass (see the timing table in the “Results” sub-section), it is very

important to optimally utilize hardware during rendering.

It is important to note here that hardware capability to render into a volume texture tremendously

improves performance of this technology in general. This dramatically simplifies shader workload since

we do not need to emulate a trilinear filtering in the pixel shader. Instead the hardware unit is utilized

and cache efficiency is highly improved due to the optimized memory layout of 3D texture. So it is

possible to copy the final radiance information to volume texture on consoles or with the Microsoft

DirectX® 10 API, but is not possible with the Microsoft DirectX® 9.0c API.

Additionally the main issue of simple trilinear interpolation of an SH representation is undesired light

bleeding (e.g. at thin double-sided geometry; see Figure 8. Light bleeding through a thin double-sided

object caused by sparse spatial approximation, Figure 9. Light bleeding through a thin roof caused by the

sparse spatial approximation and trilinear filtering of the 3D texture(left). Shifting of radiance injection

and anisotropic filtering as a solution (right)). There are several solutions to this problem that will be

discussed in the next section.

5.5.1 Deferred lighting

Since we use deferred lighting approach in CryEngine 3 [MITTRING09] the radiance volume is rendered

directly into the diffuse light accumulation buffer in addition to multiple ambient passes. This allows us

to use all available deferred optimizations like stencil pre-pass and depth bound test for this pass as well.

Moreover, it is also possible to compose complex layered lighting, as discussed in sub-section 6.4.

5.6 Other applications

Finally two results could be extracted from radiance propagation and injection passes:

 initial secondary radiance distribution as a result of injection stage

 propagated radiance distribution

Each of them could be used for different lighting and visualization effects.

18 | P a g e

5.6.1 Light sources

Another interesting application is to inject already propagated radiance. For simple light types we can do
this analytically in the shader. Since the hemispherical lobe can be precisely approximated by the second
band of SH [SLOAN08], it is enough to represent the analytical solution in this space. Thus, the radiance
volume becomes an efficient radiance cache for large dynamic lights. For example, to represent the
analytical solution for a point light source, it is sufficient to know the intensity or attenuation radius and
represent the radiance in a cell by projecting the direction of the radiance onto SH basis (see Appendix A
and Figure 6. Massive rendering of point light sources by injecting analytically pre-propagated radiance

into the radiance volume. From left to right top down: rendering with usual deferred lighting, rendering

of radiance volume with injected radiance, placement of light sources, error introduced by radiance

volume. The error does not exceed 25% for this particular frame and depends on the light radii/grid

density

ratio. There are 417 light sources in this example. The radiance injection and radiance volume rendering

takes around 2 ms in total on Xbox 360 and PlayStation 3.). Notice that the error mostly comes from
linear interpolation between cells instead of quadratic one (because all light sources here has a quadratic
attenuation).

Figure 6. Massive rendering of point light sources by injecting analytically pre-propagated radiance into

the radiance volume. From left to right top down: rendering with usual deferred lighting, rendering of

radiance volume with injected radiance, placement of light sources, error introduced by radiance volume.

The error does not exceed 25% for this particular frame and depends on the light radii/grid density

ratio. There are 417 light sources in this example. The radiance injection and radiance volume rendering

takes around 2 ms in total on Xbox 360 and PlayStation 3.

19 | P a g e

We use light source radius threshold to make a decision to render the light source into radiance volume

or not. This threshold depends on the resolution of the radiance volume.

Specular reflection could be done as described in the next sub-chapter.

5.6.2 Glossy reflections

As we have the initial distribution of secondary radiance after the injection stage, it becomes possible to

compute the radiance 𝐿 x, w at a surface point x towards an individual reflected direction w by solving

the sum (5) for 𝐿n x, w for the first few iterations by means of tracing the source volume texture with

regular step. Thus, we can fetch several cells towards considered direction and apply integration over a

cone with angle, which is the angle of view to current cell from a point x. The glossiness of the resulting

specular reflection directly depends on the initial cone angle of the outgoing reflected ray (see Figure 7.

Glossy reflections on the metallic container from a red teapot and other surrounding.

Left: final picture, right row: corresponding specular lighting buffer.).

In turn, the minimum cone angle directly depends on the spatial resolution of the source radiance

volume texture.

Glossy reflections are demonstrated more evidently in accompanying video.

Figure 7. Glossy reflections on the metallic container from a red teapot and other surrounding.

Left: final picture, right row: corresponding specular lighting buffer.

6 Improvements and optimizations

Proposed solution still has some undesirable bleeding because of spatial approximation (see Figure 8.

Light bleeding through a thin double-sided object caused by sparse spatial approximation below as an

example).

20 | P a g e

Additionally temporal flickering occurs during camera movements, because we use camera-attached

approach. The temporal flickering mostly occurs because of limited resolution of RSM.

These issues are discussed here in details and solutions are proposed.

Moreover, different combinations and compatibility with other technologies as well as improvements

are discussed in more details in this subchapter.

6.1 Solution stabilization

A lot of attention has been paid making the solution stable temporally and on scene changes. This is a

very important aspect, owing to the fact that there are a few secondary light sources that are major

participants in the final radiance distribution.

Thus, we should provide a stable, consistent image even if we have noticeable camera/direct

lighting/scene changes. Multiple methods are employed to obtain this consistency:

 2D texel snapping for RSM movement

This increases rasterization consistency under camera movement in the case of a directional light

source. This approach is well-known for orthogonal shadow maps and provides consistent

rasterization during camera movements. Thus it brings a consistent scene representation with

surfels independent on RSM movements.

 High redundancy of secondary light sources

By using excessive number of secondary light source we avoid flickering and other sudden

radiance changes during movements of light source, camera and scene objects. That means that

number of surfels in RSM should be enough per cell of light propagation volume to provide a

stable solution during any changes.

 Smart down-sampling of RSM

This method not only improves the initial radiance distribution stability, but accelerates the

injection stage as well.

 One-cell 3D grid snapping for radiance volume movement

With discrete integer stepping we can maintain consistent point cloud set injection during

camera movement.

Thus, the radiance distribution solution remains smooth and stable in time and space even during

significant changes of scene conditions.

6.2 Geometry-aware light injection and shifting

21 | P a g e

Because of the sparse spatial approximation, it becomes

necessary to shift the injection of the radiance contribution of

each VPL p to avoid self-illumination (see Figure 9. Light

bleeding through a thin roof caused by the sparse spatial

approximation and trilinear filtering of the 3D texture(left).

Shifting of radiance injection and anisotropic filtering as a

solution (right)). We propose to shift initial radiance towards

direction of normal and towards light direction by half cell in

sum at maximum. Thus, a minimal error is introduced and the

self-illumination is avoided in most cases. For more

implementation details see Appendix C. Nevertheless shifting of

injecting radiance is not sufficient to completely avoid self-

illumination and undesired radiance bleeding.

6.3 Anisotropic upsampling of radiance volume

As mentioned previously in sub-section 5.5, SH trilinear interpolation of spatially approximated radiance

may cause serious artifacts during the final rendering of radiance volume, such as unwanted self-

illumination and bleeding (see Figure 9. Light bleeding through a thin roof caused by the sparse spatial

approximation and trilinear filtering of the 3D texture(left). Shifting of radiance injection and anisotropic

filtering as a solution (right)). There are at least three possible solutions to this problem.

The first one is naive approach which consists of shifting each injected VPL within an offset in such a way

that the self-illumination is excluded. Since this offset is usually more than one cell long, it would

introduce significant shifting of the whole radiance distribution, thus giving bad results for closely

located objects in the scene. Thereby we do not use this approach.

Figure 8. Light bleeding through

a thin double-sided object caused

by sparse spatial approximation

22 | P a g e

Figure 9. Light bleeding through a thin roof caused by the sparse spatial approximation and trilinear

filtering of the 3D texture(left). Shifting of radiance injection and anisotropic filtering as a solution

(right)

The second approach consists of adding so-called

“antiradiance” [DSDD07] of the back sides at the injection

stage. This makes the radiance distribution have higher

“contrast” at places with close opposite-oriented geometry,

thus solving the trilinear interpolation softness issue. The main

disadvantage of this solution is that we need to render the

reflective shadow map twice: firstly, a usual front-facing scene

rendering (bounced lighting); and secondly, a back- facing

scene rendering for negative lights. This increases the

complexity of the technique. Furthermore, the injection stage itself should be repeated for the injection

of this negative radiance set after the propagation stage. Also the incorrect darkening at dense locations

of opposite-oriented geometry is another unavoidable issue here. Owing to these issues, we do not use

this approach either.

Finally, we developed a solution for direction-dependent upsampling of the resulting radiance volume.
The main idea of this solution is to detect bad interpolation of the radiance by traversing along the

direction of the normal to the surface and calculating the radiance directional derivative in this direction.

We use the central difference scheme for SH coefficients (see Figure 10. Spherical harmonics central

difference). The central difference towards direction n is [TATARCHUK04], [AKDS04] to calculate the

radiance gradient:

∇𝒏𝒄(𝒙) =
𝒄(𝒙 +

𝒏
𝟐) − 𝒄(𝒙 −

𝒏
𝟐)

 𝒏

Thus, by comparing the radiance directional derivative with the actual radiance direction, it can be

calculated whether the radiance distribution starts further than its trilinear interpolation for this point.

Figure 10. Spherical harmonics

central difference

23 | P a g e

The results of this method are shown in Figure 9. Light bleeding through a thin roof caused by the sparse

spatial approximation and trilinear filtering of the 3D texture(left). Shifting of radiance injection and

anisotropic filtering as a solution (right).

6.4 Cascaded light propagation volumes

(multiresolution approach)

The regular grid is not efficient in the case of representing

lighting details in different resolutions and for large area

coverage because of sparse spatial locality and an 𝑂(𝑛3)

memory storage characteristics, where 𝑛 is a dimensionality of

the grid. The density of the spatial approximation mainly

depends on the size of some particular object and the distance

to the viewer in case of diffuse global illumination.

One solution for this problem could be an adaptive irregular

grid, but this solution is somewhat inefficient as well due to the heavy density computation and the

quickly growing complexity of the shader program.

Our approach is to use hierarchical cascaded light propagation volumes, which are similar to cascaded

shadow maps [STAMMINGERDRETTAKIS02] , [DIMITROV07]. The difference here is that light propagation

volumes are nested inside each other, because unlike direct lighting we need to preserve the solution

around the camera (see Figure 11. Cascades of radiance volumes). Thus our solution allows emulating a

discrete multiresolution representation of the indirect radiance of the scene and solving it with a low and

predictable performance cost.

During injection in overlapping regions radiance is injected into the appropriate finer grid and vice versa.

Light propagation is computed on all grids independently, and during rendering we simply add the

contributions from all grids.

Since separate RSM needs to be rendered for each cascade, we have a full control over the objects which

could be injected in what cascade. Thereby, each cascade contains radiance from bleeders with strictly

defined range of size. Thus it could be treated as a fractional analysis for bleeders over these cascades.

The cascaded approach is an efficient hierarchical solution, which is similar to some VPL preprocessing

(like Lightcuts or RSM importance sampling).

Figure 11. Cascades of radiance

volumes

24 | P a g e

Thus we have adaptive resolution for objects at different distances (see Figure 12. Cascaded approach

takes into account small objects near the viewer position. Left: one Light Propagation Volume. Right:

three nested cascades of Light Propagation Volumes used.).

Figure 12. Cascaded approach takes into account small objects near the viewer position. Left: one Light

Propagation Volume. Right: three nested cascades of Light Propagation Volumes used.

6.5 Combination with SSAO technology

We use the screen-space ambient occlusion (SSAO) technique in CryEngine 3 [MITTRING07], [KAJALIN09]

for ambient occlusion calculations.

Ambient occlusion is related to accessibility shading, which determines occlusion based on how easy it is

for a surface to be touched by arbitrary lighting. Since the indirect lighting mainly consist of some

constant or precomputed ambient term and the first bounce contribution from light propagation

volumes, it is possible to accurately treat the ambient occlusion term as a secondary occlusion term for

this model. It is also possible to improve the SSAO algorithm in this case by taking into account the major

radiance direction which could be extracted from the light propagation volume to compute the

directional component for secondary occlusion. Unfortunately, this improvement was not implemented

because of hard time constrains of the research.

Thus, since the secondary occlusion is not taken into account during the propagation phase, SSAO is used

as a multiplicative factor during light propagation volume rendering (see Figure 13. Combination of SSAO

and our technique. Left to right: only SSAO, only global illumination, combined approach. The bottom

line shows indirect lighting buffer.).

25 | P a g e

Figure 13. Combination of SSAO and our technique. Left to right: only SSAO, only global illumination,

combined approach. The bottom line shows indirect lighting buffer.

6.6 Combination with SSGI technology

In contrast with SSAO, the screen-space global illumination (SSGI) technique supplements the current

solution.

For distant areas that are not covered by light propagation volumes, the SSGI approach needs to be

completely enabled to add color bleeding to the rest of the scene.

Also we blend in SSGI for places with micro-bleeding, which are not properly covered by light

propagation volumes due to the sparse spatial approximation. Thus it allows us to keep SSGI kernel

radius relatively small compared to the pure SSGI approach for such kinds of effects.

Thus the SSGI technique becomes an orthogonal solution for light propagation volumes having good

performance characteristics. Moreover the kernel radius could be kept relatively small since we need

either local or distant indirect lighting information which is local in screen space in turn.

Since the kernel radius 𝑅𝑆𝑆𝐺𝐼 for SSGI might generally vary in world space and also might depend on the

distance to the viewer, we need to take into account only the color bleeding information that is not

counted by the radiance volume. Also we need to take into account that the radiance volume resolution

𝑅𝐺𝑟𝑖𝑑 might change depending on different cascades. Thus we can define the weight for the SSGI factor

as:

𝑘𝑆𝑆𝐺𝐼 =
1 −

𝑅𝑆𝑆𝐺𝐼
𝑅𝐺𝑟𝑖𝑑

, 𝑅𝑆𝑆𝐺𝐼 < 𝑅𝐺𝑟𝑖𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

26 | P a g e

This term means that SSGI supplements micro bleeding only in places where the granularity of the

radiance volume’s cells is not sufficient.

Thus, SSGI is an orthogonal supplement to the current technique (see Figure 14. Combination with SSGI.

From left to right: pure direct lighting with constant ambient term, light propagation volumes without

SSGI, light propagation volumes with SSGI. Diffuse lighting accumulation buffer is shown at the bottom

respectively.).

Figure 14. Combination with SSGI. From left to right: pure direct lighting with constant ambient term,

light propagation volumes without SSGI, light propagation volumes with SSGI. Diffuse lighting

accumulation buffer is shown at the bottom respectively.

6.7 Combination with deferred light probes

We use a custom adjustable ambient term in CryEngine 3. More correct and complex lighting could be

achieved with deferred light probes without introducing a significant performance impact in areas

without direct lighting [MITTRING09]. Complex ambient term is a very important and powerful tool of the

real-time indirect lighting.

The idea behind deferred light probes is to

locally improve the indirect ambient term by

using local cubemaps with preconvoluted

irradiance for ambient term computations

[ISIDORO05]. Thus, it is possible to have

precomputed distant diffuse indirect lighting

with a diffuse-preconvoluted cubemap. This

Figure 15. Left: GI on, deferred light probes off.

Right: GI on, deferred light probes on. The

contribution of deferred light probe was intentionally

increased.

27 | P a g e

solution is not designed to bring a fine approximation of diffuse global illumination, because of sparse

locations of light probes and quickly increasing memory consumption. However this solution is widely

used as an acceptable trade-off for real-time graphics.

It is also possible to naturally combine deferred light probes as a precomputed indirect lighting solution

with current technology. By having precomputed distant indirect diffuse irradiance from the cubemap

we can add local color bleeding effects from the light propagation volume thus defining the whole

solution more precisely.

Thus the current technology could be applied additionally to the convolved diffuse term of the deferred

light probe by using GPU blending (see Figure 15. Left: GI on, deferred light probes off. Right: GI on,

deferred light probes on). Note how deferred light probes could be combined with current technique to

improve indirect lighting and approximate multiple bounces. Additionally note a more complex ambient

term which introduces the contribution of the bright sky above.

6.8 Consoles optimizations

On both consoles (Xbox 360 and PlayStation 3) we utilize MRT pipeline to render into three render

targets, 4 channels each. 3D texture look-ups with trilinear interpolation are utilized for final light

propagation volume rendering on both consoles as well. Also the framebuffer blending precision on 8 bit

rendertargets turned out to be not sufficient and needs to be improved. So, we implemented that as a

simple range scaling in shaders. We use temporary 64-bits per pixel target for RSM injection because of

blending precision.

6.8.1 Xbox 360

Despites Xbox 360 API allows to resolve into some particular slice of 3D texture directly from the EDRAM,

it has an issue with that related to the offsets calculations for the proper destination memory location.

The work-around for this issue could be found in Appendix D.

Additionally we use vertex texture fetching for RSM injection into light propagation volume.

Using 3D texture look-ups during rendering stage is crucial for the GPU performance on this console

since it offloads cycles from the GPU math unit.

We use signed ARGB16 format as a target format in EDRAM, however we resolve into signed ARGB8

format after each render pass.

6.8.2 PlayStation 3

We use 32 bits per pixel unsigned ARGB8 render targets for light propagation volumes. All three targets

are cleaned with middle grey color, which represents 0. The reason is we need to have signed render

targets. The sampled result can be easily shifted and expanded in the shader. During rendering into such

render target we use signed additive blending and custom blending with read-back of destination in pixel

shader. Both of these modes are supported and have good performance characteristics.

28 | P a g e

For RSM injection on this platform we use render to vertex buffer. This works well and is implemented as

a memory remapping from render target to vertex buffer.

Memory remapping is also used to treat unwrapped 2D texture as a 3D texture with slices. Note that in

both cases the texture cannot be tiled or swizzled.

7 Results

We provide timings for this technique for console hardware and show the scalability on PC hardware.

All light propagation volumes in this sub-chapter have the same dimensions of 323 texels.

The first table shows timings in milliseconds for Xbox 360 and for PlayStation 3 for one light propagation

volume and one 1282 reflective shadow map.

Sponza scene has 300 draw calls and 1,41 million triangles.

Island scene has 2100 draw calls and 2,32 million triangles.

Apartment has 620 draw calls and 1,14 million triangles.

The scene rendered at resolution 1280x720 without MSAA. Images of the measured scene are provided

at Figure 16. Results of gloabl illumination on consoles (XBox 360 and PlayStation 3)..

Pass Xbox 360, ms PlayStation 3, ms

RSM generation 0,5 0,8

Injection 0,2 0,4

Propagation 0,8 0,7

LPV rendering 2,0 1,5

Total 3,5 3,4

Complete frame time 30,3 32,1

29 | P a g e

Figure 16. Results of gloabl illumination on consoles (XBox 360 and PlayStation 3).Left: constant

ambient term, right: global illumination enabled. Diffuse light accumulation buffer is on the bottom.

The injection and propagation stages are pretty similar in performance on both platforms. And the final

LPV rendering stage is much faster on PlayStation 3 because we use half-resolution rendering mode with

MSAA remapping trick.

The second table provides timings in milliseconds with for different numbers of cascades for hierarchical

nested light propagation volumes solution. Note that the time is provided for the Sponza scene.

Number of cascades Sponza atrium, ms

1 cascade 0,72

2 cascades 1,3

4 cascades 2,6

6 cascades 4,0

The hardware used is an NVIDIA GeForceTM GTX 280 GPU and Intel Core 2 Quad CPU @ 2.66 GHz. Testing

settings: DirectX 9.0c API, HDR rendering, resolution: 1280x720, MSAA off.

Images are provided at Figure 17. Global illumination results for Sponza scene with two cascades and

Figure 18. Global illumination results for Apartment scene with two cascades @ 120 frames per second..

30 | P a g e

Figure 17. Global illumination results for Sponza scene with two cascades @ 140 fps.

Figure 18. Global illumination results for Apartment scene with two cascades @ 120 frames per second.

31 | P a g e

Additionally, the performance of deferred lighting and our approach is compared for the scene with

arbitrary overlapped point light sources:

Number of light sources Deferred lighting, ms Light propagation volumes, ms

100 0,62 0,29

200 1,2 0,52

300 1,9 0,65

400 2,5 0,81

500 3,1 0,85

3000 16,5 2,9

3000500400300200100
0

2

4

6

8

10

12

14

16

18

Deferred lighting, ms Light propagation volumes, ms

Chart 1. Performance trends for deferred light sources and for light sources rendered with radiance

volume (for 100, 200, 400, 500 and 3000 light sources respectively).

Light sources are injected into radiance volume without instancing technique, which is a great potential

optimization. All light sources have equal radius of 4 meters. Images of results and light overlapping are

provided in Figure 19. Massive diffuse light sources. Left to right, top down: overdraw for 200 light

sources, 200 point light sources, 500 point light sources, 3000 point light sources.. As it could be noticed

from chart, the performance cost is drastically lower for huge amount of light sources rendered with

radiance volume, which could be explained by decreased bandwidth and lowered by order of magnitude

computations necessary for each single light source. Injecting light sources using instancing could also

impressively decrease the slope and injection overhead.

32 | P a g e

Figure 19. Massive diffuse light sources. Left to right, top down: overdraw for 200 light sources, 200

point light sources, 500 point light sources, 3000 point light sources.

8 Discussion and further work

This technique has many good characteristics for games production and since it is partially based on

existing technologies, it was possible to implement it in relatively short time.

It should be noted the theoretical proof of this approximation is not provided as well as the

approximation error is not measured in this paper as the emphasis is on practical applications rather that

theory.

8.1 Participating media lighting

It is possible to approximate a scattered lighting of arbitrary participating media by traversing a radiance

volume and collecting a radiance along the ray. The participating media could be defined analytically like

"fog volumes" in [WENZEL06] as well as by volumetric representation (e.g. volume texture). This

technique is not considered in this chapter because of time constraints, however we have a debug mode

in the engine that shows all the radiance in radiance volume as a homogeneous participating media (see

33 | P a g e

Figure 20. Example of homogenous participating media lighting by sun with propagated radiance by

traversing radiance volume texture.).

Figure 20. Example of homogenous participating media lighting by sun with propagated radiance by

traversing radiance volume texture. Lighting takes 0,88 ms on nVidia GeForce GTX 280 with 32 samples

per pixel from unwrapped volume texture (a 2D texture which emulates 3D texture).

9 Conclusion

In this paper we present the first highly parallel iterative diffuse global illumination method for real-time

applications without precomputations already in use in a commercial game engine. Additionally, it is the

first technique that involves a light propagation for diffuse global illumination. Consequently it has a very

consistent and scalable performance which is crucial for real-time applications like games. Furthermore

we describe how to achieve glossy reflections and use radiance volumes to cache the radiance from

analytical light sources to speed up rendering and drastically increase the number of light sources. Also

many improvements and combinations with other techniques was proposed.

9.1 Acknowledgments

34 | P a g e

Thanks to Carsten Dachsbacher for his inestimable and deep discussions and feedback, to Martin

Mittring for careful content reviews, to Tiago Sousa for deferred pipeline implementation and good

suggestions, to Natalya Tatarchuk for useful hints and course organization, to Mark Atkinson and Evgeny

Adamenkov for stylistic review of this chapter, to Ury Zhilinsky for the SSGI implementation. And of

course the whole Crytek R&D team as well as all others who helped and discussed the real-time graphics

with me!

10 References

1. [AKDS04] ANNEN T., KAUTZ J., DURAND F., SEIDEL H.-P. 2004. Spherical Harmonic

Gradients for Mid-Range Illumination. Eurographics'04, http://www.mpi-

inf.mpg.de/~tannen/papers/egsr_04.pdf

2. [ATS94] ARVO J., TORRANCE K., SMITS B. 1994. A Framework for the Analysis of Error in

Global Illumination Algorithms. Cornell University course,

http://eprints.kfupm.edu.sa/18022/1/18022.pdf

3. [BALESTRA08] BALESTRA, C. 2008. The Technology of Uncharted Drake’s Fortune. GDC'08,

http://www.naughtydog.com/corporate/press/GDC%202008/UnchartedTechGDC2008.pdf

4. [BHZK05] BOTSCH, M., HORNUNG, A., ZWICKER, M., KOBBELT, L. 2005. High-Quality Surface

Splatting on Today’s GPUs. EuroGraphics Symposium on Point-based graphics, 2005,

http://graphics.ucsd.edu/~matthias/Papers/HighQualitySplattingOnGPUs.pdf

5. [BUNNELL05] BUNNELL, M. 2005. Dynamic Ambient Occlusion and Indirect Lighting. GPU

Gems 2, http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch14.pdf

6. [CHENLIU08] CHEN, H., LIU, X. 2008. Lighting and Material in Halo 3. ACM SIGGRAPH

2008: Proceedings of the conference course notes, Advances in Real-Time Rendering in

3D Graphics and Games, Chapter 1, pp. 1-22, Los Angeles, CA, August 2008.

http://ati.amd.com/developer/SIGGRAPH08/Chapter01-Chen-

Lighting_and_Material_of_Halo3.pdf

http://www.mpi-inf.mpg.de/~tannen/papers/egsr_04.pdf
http://www.mpi-inf.mpg.de/~tannen/papers/egsr_04.pdf
http://eprints.kfupm.edu.sa/18022/1/18022.pdf
http://www.naughtydog.com/corporate/press/GDC%202008/UnchartedTechGDC2008.pdf
http://graphics.ucsd.edu/~matthias/Papers/HighQualitySplattingOnGPUs.pdf
http://http.download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch14.pdf
http://ati.amd.com/developer/SIGGRAPH08/Chapter01-Chen-Lighting_and_Material_of_Halo3.pdf
http://ati.amd.com/developer/SIGGRAPH08/Chapter01-Chen-Lighting_and_Material_of_Halo3.pdf

35 | P a g e

7. [CHRISTENSEN08] CHRISTENSEN, P. 2008. Point-Based Approximate Color Bleeding. Pixar

Technical Memo #08-01,

http://graphics.pixar.com/library/PointBasedColorBleeding/paper.pdf

8. [DACHSBACHERSTAMMINGER05] DACHSBACHER, C., STAMMINGER, M. 2005. Reflective Shadow

Maps. University of Erlangen-Nuremberg, http://www.vis.uni-

stuttgart.de/~dachsbcn/download/rsm.pdf

9. [DACHSBACHERSTAMMINGER07] DACHSBACHER, C., STAMMINGER, M. 2007. Splatting Indirect

Illumination. University of Erlangen-Nuremberg, http://www.vis.uni-

stuttgart.de/~dachsbcn/download/sii.pdf

10. [DIMITROV07] DIMITROV R. 2007. Cascaded Shadow Maps. NVIDIA Corporation'07,

http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/

cascaded_shadow_maps.pdf

11. [DSDD07] DACHSBACHER, C., STAMMINGER M., DRETTAKIS G., DURAND F. 2007. Implicit

Visibility and Antiradiance for Interactive Global Illumination. SIGGraph '07, http://www-

sop.inria.fr/reves/Basilic/2007/DSDD07/ImplicitVisibilityAndAntiradiance.pdf

12. [EVANS06] EVANS, A. 2006. Fast Approximations for Global Illumination on Dynamic

Scenes. Course 26: Advanced Real-Time Rendering in 3D Graphics and Games.

SIGGraph, Boston, MA. August 2006,

http://ati.amd.com/developer/techreports/2006/SIGGRAPH2006/Course_26_SIGGRAPH_

2006.pdf

13. [GJW08] GUERRERO, P., JESCHKE, S., WIMMER, M. 2008. Real-time Indirect Illumination

and Soft Shadows in Dynamic Scenes Using Spherical Lights. Computer Graphics

Forum'08, http://www.cg.tuwien.ac.at/research/publications/2008/guerrero-2008-

sli/guerrero-2008-sli-paper.pdf

14. [GSHG97] GREGER, G., SHIRLEY, P., HUBBARD, P., GREENBERG, D. 1997. The Irradiance

Volume. Cornell University, http://www.gene.greger-

weltin.org/professional/publications/thesis.pdf

http://graphics.pixar.com/library/PointBasedColorBleeding/paper.pdf
http://www.vis.uni-stuttgart.de/~dachsbcn/download/rsm.pdf
http://www.vis.uni-stuttgart.de/~dachsbcn/download/rsm.pdf
http://www.vis.uni-stuttgart.de/~dachsbcn/download/sii.pdf
http://www.vis.uni-stuttgart.de/~dachsbcn/download/sii.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://www-sop.inria.fr/reves/Basilic/2007/DSDD07/ImplicitVisibilityAndAntiradiance.pdf
http://www-sop.inria.fr/reves/Basilic/2007/DSDD07/ImplicitVisibilityAndAntiradiance.pdf
http://ati.amd.com/developer/techreports/2006/SIGGRAPH2006/Course_26_SIGGRAPH_2006.pdf
http://ati.amd.com/developer/techreports/2006/SIGGRAPH2006/Course_26_SIGGRAPH_2006.pdf
http://www.cg.tuwien.ac.at/research/publications/2008/guerrero-2008-sli/guerrero-2008-sli-paper.pdf
http://www.cg.tuwien.ac.at/research/publications/2008/guerrero-2008-sli/guerrero-2008-sli-paper.pdf
http://www.gene.greger-weltin.org/professional/publications/thesis.pdf
http://www.gene.greger-weltin.org/professional/publications/thesis.pdf

36 | P a g e

15. [ISIDORO05] ISIDORO J. 2005. Filtering Cubemaps: Angular Extent Filtering and Edge Seam

Fixup Methods. SIGGraph'05, http://ati.amd.com/developer/SIGGRAPH05/Isidoro-

CubeMapFiltering.pdf

16. [JENSEN00] JENSEN, H. 2000. A Practical Guide to Global Illumination using Photon Maps.

SIGGraph '00, http://graphics.stanford.edu/courses/cs348b-01/course8.pdf

17. [KAJALIN09] KAJALIN, V. 2009. Screen-space ambient occlusion. Shader X7, Wolfgang

Engel, Ed., Charles River Media

18. [KAJIYA86] KAJIYA J.T. 1986. The rendering equation. SIGGraph’86,

http://portal.acm.org/citation.cfm?id=15902

19. [KELLER97] KELLER, A. 1997. Instant radiosity. In Proceedings of SIGGraph 97, Computer

Graphics Proceedings, Annual Conference Series, 49–56,

http://portal.acm.org/citation.cfm?id=258769

20. [KAJIYAVONHERREN86] KAJIYA J., VON HERREN B. 1986. Ray tracing volume densities.

Computer Graphics Volume 18, Number 3 July 1984,

http://portal.acm.org/citation.cfm?id=808594

21. [LSKLA07] LAINE, S., SARANSAARI, H., KONTKANEN, J., LEHTINEN, J., AILA, T. 2007.

Incremental Instant Radiosity for Real-Time Indirect Illumination. Eurographics’07,

http://www.tml.tkk.fi/~samuli/publications/laine2007egsr_paper.pdf

22. [MCGUIRELUEBKE09] MCGUIRE, M., LUEBKE, D. 2009. Hardware-Accelerated Global

Illumination by Image Space Photon Mapping. Eurographics’09,

http://graphics.cs.williams.edu/papers/PhotonHPG09/ISPM-HPG09.pdf

23. [MITTRING07] MITTRING, M. 2007. Finding Next Gen – CryEngine 2. ACM SIGGRAPH

2007: Proceedings of the conference on SIGGRAPH 2007 course notes, course 28,

Advanced Real-Time Rendering in 3D Graphics and Games, pp. 97-121. 2007,

http://portal.acm.org/citation.cfm?id=1281671

24. [MITTRING09] MITTRING, M. 2009. A bit more Deferred – CryEngine3. Triangle Game

Conference'09,

http://ati.amd.com/developer/SIGGRAPH05/Isidoro-CubeMapFiltering.pdf
http://ati.amd.com/developer/SIGGRAPH05/Isidoro-CubeMapFiltering.pdf
http://graphics.stanford.edu/courses/cs348b-01/course8.pdf
http://portal.acm.org/citation.cfm?id=15902
http://portal.acm.org/citation.cfm?id=258769
http://portal.acm.org/citation.cfm?id=808594
http://www.tml.tkk.fi/~samuli/publications/laine2007egsr_paper.pdf
http://graphics.cs.williams.edu/papers/PhotonHPG09/ISPM-HPG09.pdf
http://portal.acm.org/citation.cfm?id=1281671

37 | P a g e

http://www.crytek.com/fileadmin/user_upload/inside/presentations/2009/A_bit_more_defer

red_-_CryEngine3.ppt

25. [NICHOLSWYMAN09] NICHOLS, G., WYMAN, C. 2009. Multiresolution Splatting for Indirect

Illumination. I3D’09,

http://www.cs.uiowa.edu/~cwyman/publications/files/techreports/UICS-TR-08-04.pdf

26. [NSW09] NICHOLS, G., SHOPF, J., WYMAN, C. 2009. Hierarchical Image-Space Radiosity for

Interactive Global Illumination. Eurographics Symposium on Rendering’09,

http://www.cs.uiowa.edu/~cwyman/publications/files/imgSpRadiosity/egsr09_imgSpRadio

sity.small.pdf

27. [OAT06] OAT, C., 2006 Irradiance Volumes for Real-Time Rendering,

ShaderX 5: Advanced Rendering Techniques, Wolfgang Engel, Ed., Charles River Media.

28. [RAMAMOORTHIHANRAHAN01] RAMAMOORTHI R., HANRAHAN P. 2001. An Efficient

Representation for Irradiance Environment Maps. SIGGraph'01,

http://www.cs.berkeley.edu/~ravir/papers/envmap/envmap.pdf

29. [RGKSDK08] RITSCHEL T., GROSCH T., KIM M., SEIDEL H.-P., DACHSBACHER C., KAUTZ J.

2008. Imperfect Shadow Maps for Efficient Computation of Indirect Illumination.

SIGGraph Asia'08, http://www.uni-koblenz.de/~ritschel/dokumente/ISM.pdf

30. [RGS09] RITSCHEL, T., GROSCH, T., SEIDEL, H.-P. 2009. Approximating Dynamic Global

Illumination in Image Space. Proceedings of ACM SIGGRAPH Symposium on Interactive

3D Graphics and Games (I3D) 2009, http://www.mpi-

inf.mpg.de/~ritschel/Papers/SSDO.pdf

31. [SGNS07] SLOAN, P.-P., GOVINDARAJU, N., NOWROUZEZAHRAI, D., SNYDER, J. 2007. Image-

Based Proxy Accumulation for Real-Time Soft Global Illumination. Pacific Graphics

2007,October, http://www.ppsloan.org/publications/ProxyPG.pdf

32. [SHISHKOVTSOV05] SHISHKOVTSOV, O. 2005. Deferred shading in S.T.A.L.K.E.R. GPU Gems

3, Chapter 9. http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html

http://www.crytek.com/fileadmin/user_upload/inside/presentations/2009/A_bit_more_deferred_-_CryEngine3.ppt
http://www.crytek.com/fileadmin/user_upload/inside/presentations/2009/A_bit_more_deferred_-_CryEngine3.ppt
http://www.cs.uiowa.edu/~cwyman/publications/files/techreports/UICS-TR-08-04.pdf
http://www.cs.uiowa.edu/~cwyman/publications/files/imgSpRadiosity/egsr09_imgSpRadiosity.small.pdf
http://www.cs.uiowa.edu/~cwyman/publications/files/imgSpRadiosity/egsr09_imgSpRadiosity.small.pdf
http://www.cs.berkeley.edu/~ravir/papers/envmap/envmap.pdf
http://www.uni-koblenz.de/~ritschel/dokumente/ISM.pdf
http://www.mpi-inf.mpg.de/~ritschel/Papers/SSDO.pdf
http://www.mpi-inf.mpg.de/~ritschel/Papers/SSDO.pdf
http://www.ppsloan.org/publications/ProxyPG.pdf
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html

38 | P a g e

33. [SIMP06] SEGOVIA, B., IEHL, J. C., MITANCHEY, R., PEROCHE, B. 2006. Non-interleaved

Deferred Shading of Interleaved Sample Patterns. Graphics Hardware‘06,

http://liris.cnrs.fr/Documents/Liris-2476.pdf

34. [SKS02] SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed Radiance Transfer

for Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments. ACM Trans.

Graph. 21, 3, 527–536, http://research.microsoft.com/en-

us/um/people/johnsny/papers/prt.pdf

35. [SLOAN08] SLOAN, P.-P. 2008. Stupid Spherical Harmonics (SH) Tricks. GDC’08,

http://www.ppsloan.org/publications/StupidSH36.pdf

36. [STAMATE08] STAMATE, V. 2008. Real-time photon mapping approximation on the GPU.

Shader X6, Wolfgang Engel, Ed., Charles River Media

37. [STAMMINGERDRETTAKIS02] STAMMINGER, M., DRETTAKIS, G. 2008. Perspective shadow

maps. Proceedings of the 29th annual conference on Computer graphics and interactive

techniques (Siggraph 2002), July 23-26, 2002, San Antonio, Texas,

http://portal.acm.org/citation.cfm?id=566616

38. [TABELLIONLAMORLITTE04] TABELLION, E., LAMORLITTE, A. 2004. An Approximate Global

Illumination System for Computer Generated Films. SIGGraph’04,

http://www.tabellion.org/et/paper/siggraph_2004_gi_for_films.pdf

39. [TATARCHUK04] TATARCHUK, N. 2004. Irradiance Volumes for Games. ATI Research, Inc,

http://ati.amd.com/developer/gdc/Tatarchuk_Irradiance_Volumes.pdf

40. [WENZEL06] WENZEL, C. 2006. Real-time atmospheric effects in Games. Course 26:

Advanced Real-Time Rendering in 3D Graphics and Games. SIGGraph, Boston, MA.

August 2006, http://ati.amd.com/developer/siggraph06/Wenzel-Real-

time_Atmospheric_Effects_in_Games.pdf

41. [WFABDG05] WALTER, B., FERNANDEZ, S., ARBREE, A., BALDA, K., DONKIKIAN, M.,

GREENBERG, D. 2005. Lightcuts: A Scalable Approach to Illumination. SIGGraph’05,

http://www.cs.cornell.edu/~kb/projects/lightcuts/lightcuts.pdf

http://liris.cnrs.fr/Documents/Liris-2476.pdf
http://research.microsoft.com/en-us/um/people/johnsny/papers/prt.pdf
http://research.microsoft.com/en-us/um/people/johnsny/papers/prt.pdf
http://www.ppsloan.org/publications/StupidSH36.pdf
http://portal.acm.org/citation.cfm?id=566616
http://www.tabellion.org/et/paper/siggraph_2004_gi_for_films.pdf
http://ati.amd.com/developer/gdc/Tatarchuk_Irradiance_Volumes.pdf
http://ati.amd.com/developer/siggraph06/Wenzel-Real-time_Atmospheric_Effects_in_Games.pdf
http://ati.amd.com/developer/siggraph06/Wenzel-Real-time_Atmospheric_Effects_in_Games.pdf
http://www.cs.cornell.edu/~kb/projects/lightcuts/lightcuts.pdf

39 | P a g e

11 Appendix A. Spherical harmonics projections

11.1 Arbitrary Rotation of function with circularly symmetry around Z

Here is a listing of method that takes a direction and zonal harmonics coefficients as an input and returns

SH coefficients of this function rotated towards given direction:

half4 SHRotate(const in half3 vcDir, const in half2 vZHCoeffs)

{

 // compute sine and cosine of thetta angle

 // beware of singularity when both x and y are 0 (no need to rotate at all)

 half2 theta12_cs = normalize(vcDir.xy);

 // compute sine and cosine of phi angle

 half2 phi12_cs;

 phi12_cs.x = sqrt(1.h - vcDir.z * vcDir.z);

 phi12_cs.y = vcDir.z;

 half4 vResult;

 // The first band is rotation-independent

 vResult.x = vZHCoeffs.x;

 // rotating the second band of SH

 vResult.y = vZHCoeffs.y * phi12_cs.x * theta12_cs.y;

 vResult.z = -vZHCoeffs.y * phi12_cs.y;

 vResult.w = vZHCoeffs.y * phi12_cs.x * theta12_cs.x;

 return vResult;

}

11.2 Analytical generation of cone and cosine lobes

Here is a listing of method that takes a direction and a cone angle as an input and returns SH coefficients

of this cone of given angle rotated towards given direction:

half4 SHProjectCone(const in half3 vcDir, uniform half angle)

{

 static const half2 vZHCoeffs = half2(

 .5h * (1.h - cos(angle)), // 1/2 (1 - Cos[\[Alpha]])

 0.75h * sin(angle) * sin(angle)); // 3/4 Sin[\[Alpha]]^2

 return SHRotate(vcDir, vZHCoeffs);

}

Here is a listing of method that takes a direction as an input and returns SH coefficients of hemispherical

cosine lobe rotated towards given direction:

40 | P a g e

half4 SHProjectCone(const in half3 vcDir)

{

 static const half2 vZHCoeffs = half2(.25h, // 1/4

 .5h); // 1/2

 return SHRotate(vcDir, vZHCoeffs);

}

12 Appendix B. Reflective shadow map down-sampling filter

Here is a listing of shader that down-samples a reflective shadow map to one quarter (four times in each

dimension) and makes clustering of 16 VLPs with respect to fluxes and directions of virtual point light

sources:

41 | P a g e

half3 GetGridCell(const in half2 texCoord, const in float fDepth)

{

 // calc grid cell pos

 float4 texelPos = float4(texCoord * half2(2.h, -2.h) - half2(1.h, -1.h), fDepth, 1.f);

 float4 homogWorldPos = mul(g_invRSMMatrix, texelPos);

 return GetGridPos(homogWorldPos);

}

half GetTexelLum(const in RSMTexel texel)

{

 return Luminance(texel.vColor) * max(0.h, dot(texel.vNormal, g_lightDir.xyz));

}

RSMTexelOut IVDownsampleRSMPS(in IVDownsampleRSMPsIn In)

{

 // choose the brightest texel

 half3 vChosenGridCell = 0;

 {

 half fMaxLum = 0;

 for(int i=0;i<2;i++)

 {

 for(int j=0;j<2;j++)

 {

 half2 vTexCoords = In.texCoord + half2(i, j) * g_vSrcRSMSize.zw;

 RSMTexel texel = FetchRSM(vTexCoords);

 half fCurTexLum = GetTexelLum(texel);

 if(fCurTexLum > fMaxLum)

 {

 vChosenGridCell = GetGridCell(vTexCoords, texel.fDepth);

 fMaxLum = fCurTexLum;

 }

 }

 }

 }

 // fliter

 RSMTexel cRes = (RSMTexel)0;

 half nSamples = 0;

 for(int i=0;i<2;i++)

 {

 for(int j=0;j<2;j++)

 {

 half2 vTexCoords = In.texCoord + half2(i, j) * g_vSrcRSMSize.zw;

 RSMTexel texel = FetchRSM(vTexCoords);

 half3 vTexelGridCell = GetGridCell(vTexCoords, texel.fDepth);

 half3 dGrid = vTexelGridCell - vChosenGridCell;

 if(dot(dGrid, dGrid) < 3)

 {

 cRes.fDepth += texel.fDepth;

 cRes.vColor += texel.vColor;

 cRes.vNormal += texel.vNormal;

 nSamples++;

 }

 }

 }

 // normalize

 if(nSamples > 0)

 {

 cRes.fDepth /= nSamples;

 cRes.vColor /= 4;

 cRes.vNormal /= nSamples;

 }

 // output

 return cRes;

}

42 | P a g e

13 Appendix C. Propagation scheme

void IVPropagateDir(inout SHSpectralCoeffs pixelCoeffs,

 const in IVSimulationPsIn In,

 const in half3 nOffset)

{

 // get adjacent cell's SH coeffs

 SHSpectralCoeffs sampleCoeffs = SHSampleGridWithoutFiltering(In.gridPos, nOffset);

 // generate function for incoming direction from adjacent cell

 SHCoeffs shIncomingDirFunction = Cone90Degree(-nOffset);

 // integrate incoming radiance with this function

 half3 incidentLuminance = max(0, SHDot(sampleCoeffs, shIncomingDirFunction));

 // add it to the result

 pixelCoeffs = SHAdd(pixelCoeffs, SHScale(shIncomingDirFunction, incidentLuminance));

}

SHSpectralCoeffs IVSimulatePS(const in IVSimulationPsIn In)

{

 SHSpectralCoeffs pixelCoeffs = (SHSpectralCoeffs)0;

 // 6-point axial gathering stencil "cross"

 IVPropagateDir(pixelCoeffs, In, half3(1, 0, 0));

 IVPropagateDir(pixelCoeffs, In, half3(-1, 0, 0));

 IVPropagateDir(pixelCoeffs, In, half3(0, 1, 0));

 IVPropagateDir(pixelCoeffs, In, half3(0, -1, 0));

 IVPropagateDir(pixelCoeffs, In, half3(0, 0, 1));

 IVPropagateDir(pixelCoeffs, In, half3(0, 0, -1));

 return pixelCoeffs;

}

14 Appendix C. Radiance injection shader

43 | P a g e

#define NORMAL_DEPTH_BIAS 0.25

#define LIGHT_DEPTH_BIAS 0.25

IVColorMapPsIn IVColorMapInjectionVS(const in IVColorMapVsIn In)

{

 IVColorMapPsIn Out;

 // get texture coords by vertex ID

 float2 texelPos = In.texelPos;

 Out.texCoord = texelPos;

 half2 screenPos = texelPos * float2(2, -2) - float2(1, -1);

 // sample depth and normal data with vertex shader texture look-up

 float depth = tex2Dlod(DepthVertexSampler, float4(Out.texCoord, 0, 0)).r;

 Out.normal = tex2Dlod(NormalVertexSampler, float4(Out.texCoord, 0, 0)).rgb * 2 - 1;

 // get world space position of the texel in the colored shadow map

 float4 homogGridPos = mul(g_injectionMatrix, float4(screenPos, depth, 1));

 float3 gridPos = homogGridPos.xyz/homogGridPos.w;

 // calc dir from original placement of pixel to this cell

 half3 gridSpaceNormal = normalize(TransformToGridSpace(Out.normal)) / g_GridSize.xyz;

 half3 alignedGridPos = gridPos;

 // shift injecting radiance towards the normal direction of the surfel

 alignedGridPos += gridSpaceNormal * NORMAL_DEPTH_BIAS;

 // shift injecting radiance toward the light direction

 alignedGridPos += g_dirToLightGridSpace.xyz * LIGHT_DEPTH_BIAS;

 // align depth of the texel to integer slice value

 alignedGridPos.z = floor(alignedGridPos.z * g_gridSize.z) / g_gridSize.z;

 Out.position = IVScreenPos(alignedGridPos);

 if(!IsPointInGrid(alignedGridPos))

 Out.position.xy = -2;

 return Out;

}

14 Appendix D. Work-around to resolve into a slice of volume texture on

Xbox 360
Here is two code examples of how to create and resolve into the volume texture with dimensions

32x32x32. The first part denotes the creation of volume texture and some additional headers:

hr = m_pd3dDevice->CreateVolumeTexture(32, 32, 32, 1, 0, D3DFMT_A8B8G8R8,

 D3DPOOL_DEFAULT, &m_pVolumeTex[0], NULL);

DWORD dwBaseAddress = m_pVolumeTex[0]->Format.BaseAddress<<GPU_TEXTURE_ADDRESS_SHIFT;

for (UINT i = 1; i < 32; ++i)

{

 m_pVolumeTex[i] = new D3DVolumeTexture;

 XGSetVolumeTextureHeader(32, 32, 32, 1, 0, D3DFMT_A8B8G8R8, D3DPOOL_DEFAULT, 0, 0,

 m_pVolumeTex[i], NULL, NULL);

 XGOffsetBaseTextureAddress(m_pVolumeTex[i], (VOID*)(dwBaseAddress - i * 4096), NULL);

}

The second part should be placed where the resolve happens:

44 | P a g e

for (UINT iSlice = 0; iSlice < 32; ++iSlice)

{

 D3DRECT SourceRect = { 32 * iSlice, 0, 32 * iSlice + 32, 32 };

 m_pd3dDevice->Resolve(D3DRESOLVE_RENDERTARGET0, &SourceRect, m_pVolumeTex[iSlice],

 NULL, 0, iSlice, NULL, 1.0f, 0, NULL);

}

m_pd3dDevice->SetTexture(0, m_pVolumeTex[0]);

The source render target is a horizontally unwrapped volume texture with dimensions 1024x32 in this

case.

	Light Propagation Volumes in CryEngine 3
	1 Abstract
	2 Introduction
	3 Previous Work
	4 The Path to Our Solution
	5 Light propagation volumes
	5.1 Overview
	5.2 Scene point cloud generation
	5.3 Injection
	5.4 Propagation
	5.5 Light propagation volume rendering
	5.5.1 Deferred lighting

	5.6 Other applications
	5.6.1 Light sources
	5.6.2 Glossy reflections

	6 Improvements and optimizations
	6.2 Geometry-aware light injection and shifting
	6.3 Anisotropic upsampling of radiance volume
	/6.4 Cascaded light propagation volumes (multiresolution approach)
	6.5 Combination with SSAO technology
	6.6 Combination with SSGI technology
	6.7 Combination with deferred light probes
	6.8 Consoles optimizations
	6.8.1 Xbox 360
	6.8.2 PlayStation 3

	7 Results
	8 Discussion and further work
	8.1 Participating media lighting

	9 Conclusion
	9.1 Acknowledgments

	10 References
	11 Appendix A. Spherical harmonics projections
	11.1 Arbitrary Rotation of function with circularly symmetry around Z
	11.2 Analytical generation of cone and cosine lobes

	12 Appendix B. Reflective shadow map down-sampling filter
	13 Appendix C. Propagation scheme
	14 Appendix C. Radiance injection shader
	14 Appendix D. Work-around to resolve into a slice of volume texture on Xbox 360

