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Figure 1. Examples of current technique in CryEngine

È
 3. Top: Cornell box-like environment, middle left: 

indoor environment without global illumination, middle right indoor environment with global 

illumination, bottom: outdoor environment with foliage. Note the indirect lighting in shadow areas. 
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1 Abstract 
This chapter introduces a new technique for approximating the first bounce of diffuse global illumination 

in real-time. As diffuse global illumination is very computationally intensive, it is usually implemented 

only as static precomputed solutions thus negatively affecting game production time.  In this chapter we 

present a completely dynamic solution using spherical harmonics (SH) radiance volumes for light field 

finite-element approximation, point-based injective volumetric rendering and a new iterative radiance 

propagation approach. Our implementation proves that it is possible to use this solution efficiently even 

with current generation of console hardware (aƛŎǊƻǎƻŦǘ ·ōƻȄϯ ослΣ {ƻƴȅ tƭŀȅ{ǘŀǘƛƻƴϯ о). Because this 

technique does not require any preprocessing stages and fully supports dynamic lighting, objects, 

materials and view points, it is possible to harmoniously integrate it into an engine as complex as the 

cross-platform engine CryEngineϯ 3 with a large set of graphics technologies without requiring additional 

production time. Additional applications and combinations with existing techniques are dicussed in 

details in this chapter. 

 

2 Introduction 
 

Some details on rendering pipeline of CryEngine 2 and CryEngine 3 

could be found in [MITTRING07], [MITTRING09]. However this paper 

is dedicated to diffuse global illumination solution in the engine. 

As the Crytek team has already approached the limit of existing real-

time direct lighting techniques, we realize the importance and 

atmospheric influence of indirect illumination to the game scene 

(see Figure 1. Examples of current technique in CryEngineϯ 3. Top: 

Cornell box-like environment, middle left: indoor environment 

without global illumination, middle right indoor environment with 

global illumination, bottom: outdoor environment with foliage. Note 

the indirect lighting in shadow areas.). Hard production time 

constraints and limited hardware were the challenging parts of the 

indirect lighting research. Since we position ourselves as cross-

platform engine, it was decided to allocate 10% of frame as the 

budget for the global illumination solution, which is around 3.3 ms 

per frame for 30 frames per second on current generation of 

consoles (see Figure 2. ). This budget is achievable even on NVIDIA 

7-series and Microsoft Xbox 360 GPUs with current approach. 
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Figure 2. Average budget (in ms) 

for rendering one frame of content 

on current-generation consoles 

such as Microsoft Xbox 360 or Sony 

Playstation 3 
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As shown in [TABELLIONLAMORLITTE04], it is sufficient to have only one bounce of indirect lighting to 

introduce the visual veracity even for movie production quality. Thereby, our research also does not take 

into account multiple bounces because of their unjustified computational complexity. 

In this chapter, we introduce a new solution to the single-bounce diffuse global illumination problem for 

real-time applications. The chapter is structured as follows: first, we partially classify the previous 

research on this topic. We will describe some of our techniques attempted during the search for the best 

solution for this problem, outlining the inadequacies of the existing approaches within our constraints, in 

order to provide a better perspective for our current solution. A brief description of the technology is 

followed by detailed introduction into the algorithm and existing implementation challenges. We provide 

solutions to majority of problems and discuss how to combine our method with other lighting 

techniques. Finally, performance and quality results are analyzed. 

3 Previous Work 
 

Nowadays a lot of interactive, real-time and semi-dynamic techniques for diffuse global illumination 

exist. It should be emphasized that most techniques differs in a way of construction and reconstruction  

of different kind of global illumination data. These techniques can be partially classified as follows: 

 

Precomputed light transport 

 

The main idea of this class of techniques also known as precomputed radiance transfer (as described 

in [SKS02], [TATARCHUK04], [CHENLIU08]) is to precompute the light transport at every point in the 

static scene with arbitrary granularity and store this information with one of approximated forms 

(e.g. spherical harmonics, spherical wavelets etc.).  Obviously the main limitations of this class of 

methods are the heavy constraints on scene dynamics and increased complexity of game 

production. This class is one of the most popular and widely used in games because of its relatively 

good run-time performance, which is provided by the fact that all the computationally heavy parts 

are done offline during the preprocess stage and a simple relighting can be done in a few shader 

instructions.  

 

Instant radiosity based methods  

 

This class of approaches (such as in [DACHSBACHERSTAMMINGER05], [DACHSBACHERSTAMMINGER07], 

[LSKLA07], [RGKSDK08]) is based on the idea of representing indirect lighting as a cloud set of  

virtual point light sources (VPL) [KELLER97]. Consequently, this technique has a great potential to 

speed up with GPU. Its main advantages are good veracity and absence of any 
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scene/lighting/camera constraints. Unfortunately, the main disadvantage of these methods is 

inadequate performance primarily because of the necessity to render at least 300-400 shadow-

casting VPLs for an arbitrary scene to represent the precise solution without artifacts and flickering. 

This technique will be discussed in details in the next subchapter. 

 

Photon-mapping based methods 

 

These methods (such as in [STAMATE08] , [SHISHKOVTSOV05], [MCGUIRELUEBKE09])are less popular 

than the others in real-time graphics because of their performance issues. Usually this class of 

techniques is based on classical photon-mapping approach [JENSEN00]. These methods usually use 

GPU texture fetching and rendering units to accelerate the photon map evaluation. The usual 

optimizations for these techniques are irradiance caching, importance sampling and the incremental 

approach. One drawback of these methods is that the scene needs to be preprocessed to get the 

unique representation for the photon map. Another problem is photon map updates caused by 

scene and lighting changes, which leads to highly inconsistent performance and intermittent stalls. 

 

Geometry approximation methods 

 

This is a novel class of techniques based on the idea of fast superpositioning of light transports of 

atomic precomputed occluders, usually with discs (such as in [BUNNELL05]), spheres (such as in 

[SGNS07], [GJW08]) or surfels (such as in [DSDD07], [EVANS06]) being taken as atomic 

elements. As the processing power of commodity GPUs increases, these methods start becoming 

more popular. However, approximating an arbitrary scene with these building blocks can present 

quite a number of practical challenges. Furthermore, it is necessary to have this additional 

information in the scene representation (e.g. colors, lighting etc.) to take proper indirect lighting into 

account. The need to generate the additional information can place undue constraints on game 

production, as well as require complex implementation, and, thus, are rarely used in games at this 

time. 

There are a number of other real-time approaches to diffuse global illumination, for instance, screen-

space global illumination [RGS09] (the extension for screen-space ambient occlusion), which in turn 

takes only screen-space information into account and thus has single view 2D locality as a disadvantage. 

It will be demonstrated that this technology is a good supplement to our approach, because it allows 

achieving the first-bounce diffuse global illumination for both small and far geometry casters. 
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4 The Path to Our Solution 
 

From CryEngineϯ 2 onwards, we have dynamic lighting, including real-time time of day change support 

(as described in [WENZEL06]) and a breakable and highly dynamic world. For these reasons we chose to 

avoid precomputed approaches to the global illumination solution. 

A splatting indirect illumination approach [DACHSBACHERSTAMMINGER07] was considered as a promising 

solution for our purposes. The main reasons are: this is the most generalized approach (i.e. it does not 

have any precomputations or hard limitations), and it is based on a movie prodǳŎǘƛƻƴ ƳŜǘƘƻŘ όάLƴǎǘŀƴǘ 

radiosityέ [KELLER97]). Moreover, this is the most efficient GPU technique for generation of secondary 

light sources. However, rendering of huge number of secondary light sources is a challnge for real-time 

applications. 

 

Several attempts were made by us to solve this problem. Deferred techniques were used to decouple 

lighting and geometry complexity. 

The first idea was to use grouped [WFABDG05] and tile-based [BALESTRA08] deferred rendering of 

light sources. Unfortunately, this did not provide the required speed-up since these solutions provide 

only some small bandwidth optimizations.  

Afterwards it became clear that there were a huge number of redundant calculations for indirect 

lighting. Thus there should be good optimization opportunities for a lot of dull light sources with huge 

coverage. 

This led to the idea of half-resolution rendering followed by bilateral upsampling, similar to the trick used 

in [SGNS07]. However this introduced significant quality degradation in the case of a scene with high-

frequency depth changes (e.g. foliage, forest etc.). 

The third idea is to use the interleaved deferred light accumulation buffer [SIMP06] to reduce the GPU 

fill-rate and bandwidth impact. This technique is more accurate than the bilateral upsampling. Despite 

this giving a good speed-up, there are still some unavoidable artifacts at the edges that comes from the 

initial interleaved samples.  

None of these techniques reduces the complexity by order of magnitude. Thus the rendering 

performance in all these cases was still unacceptable for modern games with complex scenes and high-

definition display resolution.  

 

There are several different solutions proposed addressing this issue, such as [NICHOLSWYMAN09], 

[NSW09], which still yielded only a partial solution to the performance problem. Moreover, these 

techniques have almost no benefit in case of arbitrary scene with highly discontinuous geometry, like 
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foliage, and high depth complexity, which is usual scene for games. Although we did not implement 

these solutions because of time constraints. 

Initially, the number of secondary light sources is ὕ(ὲɇὴ)  to ὕ(ὲɇlog (ὴ))  in solutions described 

above, where ὲ is a number of light sources and ὴ is a number of rendered pixels, and the performance 

overhead for drawing this many lights is not acceptable for current generation of hardware. Therefore 

we reached the conclusion that the brute force rendering of  a large number of secondary light sources is 

too heavy for with current generation of hardware. However, if the number of lights could be decreased 

to ὕ(ὲ+ ὴ), then the approach becomes more palatable. 

 

In addition, there is another problem: lack of occlusion information for secondary light sources. It has 

been recently addressed in [RGKSDK08] within imperfect shadow maps. This is a useful idea that 

allows avoidance of scene rasterization for each secondary VPL. But there is still one significant 

production complication: additional computation step is necessary to create and manage point-based 

geometry representation of dynamic scene. This requirement becomes especially nasty in massive, 

complex scenes with high depth complexity.  

 

It is possible to use imperfect shadow maps for occlusion generation in our technique as well. But this 

technique was not implemented because of research time constraints. Also we wanted to avoid storing 

another point-based scene representation because of precomputations and additional memory 

overhead and assets production complication. 

 

5 Light propagation volumes 
 

Firstly, we define a list of terms used in this chapter. Note that all vector terms are lower-case bold, 
operators are upper-case bold. 
 

Ὅ transport intensity 

Ὃ visibility operator, to be defined below 

ὑ local reflection operator, to be defined below 

Ὡ0 emission distribution of primary light sources 

╬ vector of spherical harmonics coefficients 

▪▼ normal to surface 

ί area of surface element 

ὸ number  of texels or cells 

■ unit vector towards a light source 
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5.1 Overview 

 

We start with considering the Neumann series of the rendering equation for particular point on the 

surface [KAJIYA86] in operational form with notation from [ATS94]: 

Ὅ= (1 ὑὋ) 1ὋὩ0 = В Ὃ(ὑὋ)ὲЊ
ὲ= 0 Ὡ0  (1) 

where: 

I  - transport intensity; 

G - linear visibility operator2: 

ὋὬ(ὼ,ύ) ḳὬ(ὼᴂύ,ὼ,ύ) 

K ς linear local reflection operator: 

ὑὬ(ὼ,ύ) ḳ Ὧὼ,ύᴂᴼύὬὼ,ύᴂὨ‘(ύᴂ)

S2

 

Ὡ0 - emission distribution of primary light sources. 

The dependency on the surface point is omitted for clarity. 

The series could be reduced to three summands in the case of finite bouncing limited by the second 

bounce: 

Ὅ= Ὅ0 + Ὅ1 + Ὅ2  (2) 

where: 

Ὅ0 ḳὋ0Ὡ0 - light source visibility from viewer position, which usually represents some emissive 

object; 

Ὅ1 ḳὋ0ὑ1Ὃ1Ὡ0 - scene direct lighting term with shadows; 

Ὅ2 ḳὋ0ὑ1Ὃ1ὑ2Ὃ2Ὡ0 - the second bounce of lighting (the first bounce of indirect lighting). 

 

Now we consider each term of this equation in details.  

The first term Ὅ0 ḳὋ0Ὡ0represents direct visibility of the light source and is commonly solved in real-

time graphics by rendering an emissive object representing the light source shape. The term G is usually 

resolved with regular depth buffering. 

The term Ὅ1 ḳὋ0ὑ1Ὃ1Ὡ0 represents direct lighting from all light sources in the scene, where: 

¶ the Ὃ0 term is resolved using a classical depth buffer 

                                                      
2
 See [ATS94] for more details on the notation 

ὒ radiance of indirect illumination 

ὃί albedo of point on surface (spectral vector of R, G and B coefficients) 

Table 1. Symbols used in this chapter 
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¶ the ὑ1 operator which is given by the convolution over a hemisphere reduces to some particular 

function for each simple light source and a simple illumination model with analytical or 

precomputed or BRDF. 

¶ the Ὃ1 term is usually solved by one of many shadowing approaches. One of the most common 

techniques is shadow maps, which could be treated as another indirection of depth buffer in turn 

(it should be noted that shadow mapping technique proved itself as a very efficient solution). 

Now we discuss in details the last term Ὅ2 ḳὋ0ὑ1Ὃ1ὑ2Ὃ2Ὡ0, which represents the first bounce of 

indirect lighting: 

¶ the Ὃ0 term is resolved using classical depth buffering approach as well as in the previous terms 

¶ the last two operators ὑ2Ὃ2 are efficiently resolved for pure diffuse surfaces with reflective 

shadow maps technique [DACHSBACHERSTAMMINGER05] as can be shown by this equality: 

Ὅ2 ḳὋ0ὑ1Ὃ1ὑ2Ὃ2Ὡ0 = Ὃ0ὑ1Ὃ1Ὅ1
ᴂ 

where Ὅ1
ᴂḳὑ2Ὃ2Ὡ0  - is a direct lighting term without visibility operator from viewer position. 

Thus we have a scene representation lit by pure direct lighting as an output of Ὅ1
ᴂ term. 

It should be noted that the term ὑ2Ὃ2Ὡ0 in Ὅ1
ᴂ can be successfully solved within current lighting and 

shadowing methods for each simple light source.  

Thus, it becomes clear that the reflective shadow map technique is a natural and efficient solution for 

this term within modern GPUs. 

 

The equation (2) can be regrouped in following manner: 

Ὅ= Ὃ0(Ὡ0 + ὑ1Ὃ1(Ὡ0 + ὑ2Ὃ2Ὡ0))   (3) 

So, the regrouping in the latter equation shows how the rendering equation could be modified to be 

more rasterization-friendly. The equation transforms to the more iterative and layered one. That is the 

way to solve it efficiently in parallel with current rasterization hardware.  

 

In the case of instant radiosity proposed by [KELLER97] we have a huge set of secondary light sources as 

an output of Ὅ1
ᴂḳὑ2Ὃ2Ὡ0 term. The naive solution is to solve the term ὑ1Ὃ1 for each light source in this 

set: 

ὑ1Ὃ1ὑ2Ὃ2Ὡ0 В ὑ1[Ὃ1](ὑ2Ὃ2Ὡ0)ὭὭɴЏ   (4) 

where (ὑ2Ὃ2Ὡ0)Ὥ is the i-th secondary light source from the set.  

As listed before, there are many techniques based on this technique. All of them suffer from a huge 

performance penalty from rendering such a large number of light sources, because the number of 

members in this sum is usually several hundred per pixel. 

Another challenging part of this operator is occlusion detection, which is hidden in the outer Ὃ term. 

Most of mentioned techniques ignore the secondary occlusion because of the rapidly increasing number 
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of visibility tests that need to be done for each VPL. However it is still possible to take it into account 

with imperfect shadow maps [RGKSDK08] with good performance characteristics because of 

stochastic sampling utilization for visibility queries. But as mentioned before this chapter does not cover 

the secondary occlusion problem. 

 

The usual pipeline of Ὅ2 ḳὋ0ὑ1Ὃ1ὑ2Ὃ2Ὡ0 term is: 

 

As it could be noticed from this scheme, the term ὑ1Ὃ1 is usually the most expensive gathering step. It 

consist of processing generated set of VPLs (such as importance sampling 

[DACHSBACHERSTAMMINGER07], Lightcuts [WFABDG05]), which is optional; and gathering step, which 

is usually a deferred shading or deferred lighting pass with some optimizations or hierarchical 

representations mentioned in sub-section 4. 

 

We reformulate the term ὑ1Ὃ1 as a scattering operation rather than gathering one. Moreover, we 

provide a batched scattering for massive amount of light sources, where each particular light source 

brings a small contribution to the final picture. This is the exact case we have for indirect lighting 

rendering with VPLs. 

 

Now we briefly describe our algorithm and propose the solution to the last term in the radiance 

propagation section. 

VLPs generation 

(e.g. reflective 

shadow map)

Scene

VPL

VPL

VPL

Gathering

K2G2 K1[G1]

Depth buffer

G0

Lighting
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The algorithm consists of four parts as shown at Figure 3: 

 

Generation of radiance point set scene representation 

 

This stage consist of generation of set of secondary light sources 

by rendering the scene into the reflective shadow map.  

 

Injection of point cloud of virtual light sources into radiance 

volume 

 

Given a point cloud set of virtual light sources from previous 

stage, inject it into the radiance field which is represented by a 

volume texture of spherical harmonics coefficients. 

 

Volumetric radiance propagation 

 

Within the initial radiance distribution, propagate radiance by iteratively solving differential 

scheme inside the volumetric grid. Store the results in the radiance volume. 

 

Scene lighting with final light propagation volume 

 

Apply resulting radiance volume to the scene lighting. Besides the classic way to apply light 

propagation volumes in the way of SH irradiance volume to scene lighting [TATARCHUK04] 

[OAT06], there are a lot of other applications to the resulting radiance volumes. 

The integration over a hemisphere of the normals with a cosine lobe could be done in the SH 

basis on the fly in the shader to convert incident radiance to irradiance for diffuse surface 

(CHENLIU08]).  

 

All these methods are described in detail in the corresponding sub-sections below. 

 

Also it should be noted that this approach is similar to [EVANS06] in general. The main contributions of 

our approach is higher precision, along with no precomputation requirements and physically based light 

propagation. 

 

Figure 3. Algorithm 

overview 

Reflective shadow 

map generation

Radiance injection

Radiance 

propagation

Scene lighting
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There are still some challenges like spatial locality because of grid approximation and SH low-frequency 

approximation problems. We discuss all these problems, their importance and solutions in the 

άLƳǇǊƻǾŜƳŜƴǘǎ ŀƴŘ ƻǇǘƛƳƛȊŀǘƛƻƴέ sub-section. 

 

5.2 Scene point cloud generation 

 

We use reflective shadow maps (RSM) technique [DACHSBACHERSTAMMINGER05] to create a point cloud 

set of secondary light sources of the surrounding scene objects. The idea of RSM is fairly simple and 

applicable to our case: it allows sampling of only lit points of the scene with uniform sampling density in 

an acceptable time. It is one of the most efficient and highly parallel current methods for the GPU to 

sample the secondary light sources of a scene as mentioned before. Thus the input set of secondary light 

sources for the equation (4) can be easily generated. 

We use the classical RSM layout [DACHSBACHERSTAMMINGER05]. This makes it possible to manipulate 

the final intensity of a clustered secondary VPLs during subsequent down-sampling pass. Moreover, this 

also facilitates injection of each VPL into the light propagation volume. 

To reduce the number of resulting light sources, we use a smart filter to make an importance down-

sampling of the resulting RSM, using an intensity-aware clustering. The metric of this filter is similar to 

[WFABDG05] and consist in clustering key VPLs by its intensities. This step lightens the follow injection 

stage. The implementation could be found in Appendix B of this chapter.  

 

5.3 Injection 

 

The idea of this stage is to transform a given point cloud set of VPLs into initial radiance distribution 

represented in SH coefficients similarly to [CHRISTENSEN08] and inject it into a light propagation volume. 

[ƛƎƘǘ ǇǊƻǇŀƎŀǘƛƻƴ ǾƻƭǳƳŜ όŀƭǎƻ ǳǎŜŘ ŀǎ ŀ άradiance volumeέ term in this chapter) is a volumetric texture, 

which stores radiance field  approximated by spherical harmonics at each texel. Thus, we have regular 

finite-element spatial approximation instead of dynamic data structures. We will operate with "surfels" 

from point-based rendering (PBR). In terms of PBR, this stage consists of rendering a lot of surfels into a 

volume texture. Therefore, it becomes not only a SH projection stage, but also creates an initial radiance 

field in the radiance volume. As the input of the injection stage, we have a set of secondary light sources 

stored as texels of the downsampled reflective shadow map. The goal of this stage is to inject the 

existing initial distribution of reflected radiance into the SH radiance volume using point-based rendering 

[BHZK05] into volume texture. The major problem of PBR is discontinuities between surfels. Since the 

size of individual texel in the RSM is guaranteed to be much less than the size of one grid cell of the 
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destination volume texture in our case, there is no need to compute the exact size and orientation of 

each surfel. Instead, we need to take into account the weight of the final contribution. Thus it becomes 

just an additive accumulation step. 

 

Note that the computations in this sub-chapter are performed only for a directional light like the sun, 

which is the most important and complex light source for diffuse global illumination problem. The 

computations for other types of light sources could be easily done in a similar way, but with care about a 

perspective transformation. 

 

Additionally, an attention should be drawn to the fact that this is the last stage, which needs to be 

repeated for each additional primary light source in the scene. That means that only the RSM generation 

stage and the injection stage should be done for each primary light source, but the injection could be 

done into the same shared radiance volume that could be shared for multiple light sources. This is an 

important advantage because these first two stages are relatively cheap and could be easily afforded for 

many primary light sources with current generation of graphics hardware. 

 

We use spherical harmonics coefficients up to the second band (which amounts to four coefficients) to 

represent the hemispherical secondary light sources in angular space. As it will be shown below, the 

approximation with the second band spherical harmonics is sufficient to represent indirect lighting in the 

radiance volume because of its low frequency nature. We convert the radiosity of each surfel into a 

hemispherical lobe projected to SH basis. Firstly, we evaluate the normal vector represented by its 

coordinates ▪= (ὼ,ώ,ᾀ)  of VPL into a direction represented by vector of SH coefficients on the fly in the 

shader. The polynomial form of the SH basis ╬= (ὧ0,ὧ1,ὧ2,ὧ3) is [SLOAN08]: 

ὧ0 =
1

2Ѝ“
 

ὧ1 =
Ѝ3ώ

2Ѝ“
 

ὧ2 =
Ѝ3ᾀ

2Ѝ“
 

ὧ3 =
Ѝ3ὼ

2Ѝ“
 

These coefficients should be renormalized afterwards to form a hemispherical lobe. The normalization 

coefficients for hemispherical light source are shown in Appendix A. This vector also needs to be scaled 

by the contribution of the VPL surfel, which are initial direct light source colored intensity ╘╛, albedo 

color ═╢ multiplied by intensityὍὛ, and the weight of the surfel ὡί to get the final spectral coefficients of 

the considered VPL: 
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╬►
╬▌
╬╫

= ╬╣╘╛═╢ὍὛὡί  

The intensity ὍὛ of each surfel for diffuse surfaces can be calculated as usual: 

ὍὛ= ▪▼,■+  

Term ▪▼,■+  means that the dot product ▪▼,■ is clamped to the range of non-negative values. 

Note that term ═╢ὍὛ represents the radiosity of the considered surfel.  

 

Also, the RSM texel area and the projected radiance volume cell area should be taken into account. As 

mentioned before, RSM surfels are guaranteed to be much less than one texel of destination volume 

texture, thus we do not need to care about discontinuities. However we still need to weight the 

contribution of each surfel.  

 

Thus we calculate the weight term ύί for each surfel. Firstly, the area of each texel in an isometric RSM 

can be calculated as follows: 

ίίὴὰὥὸ=
ίὙὛὓ
ὸ

=
ίὥὶὩὥ
ὸ

 

Where: 

ίὙὛὓ - is the area covered by reflective shadow map 

ίὥὶὩὥ - is the whole area covered by the considered approach (the area of the cut of the radiance 

volume which is perpendicular to the direction of light source being injected) 

ὸ - is the number of texels in the reflective shadow map 

 

Here we choose the coverage of the RSM  ίὙὛὓ  completely to match the coverage of the radiance 

volume ίὥὶὩὥ. That assumption will simplify following calculations. 

 

The area of one cell can be approximated as an area of the cut of the radiance volume. Note that the 

area of this cut is named as ίὥὶὩὥ. Thus we have: 

ίὧὩὰὰ=
ίὥὶὩὥ
ὸὧὩὰὰί

 

So we can approximate the weight for each surfel as:  

ύί=
ίίὴὰὥὸ

ίὧὩὰὰ
=
ὸὧὩὰὰί
ὸ

 

The resulting weight of each surfel does not depend both on the size of the radiance volume and on the 

size of the RSM. That is due to the choice of the RSM area which always tightly fits the coverage of the 

radiance volume. 
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5.4 Propagation 

 

There are several approaches to solution of the rendering equation (1) as described in [KAJIYA86]. Most 

of them are split into two main groups: forward 

solutions and backward solutions. The most 

common examples are forward and backward ray-

tracing. The latter group is the most popular in 

computer graphics because it is possible to 

efficiently get partial solution to the rendering 

equation without redundant computations.  

The propagation stage belongs to the group of 

forward solutions. This method has some 

analogies to SH solutions of scattering equation 

proposed in [KAJIYAVONHERREN86] and could be 

deduced from it by assuming the absence of 

participating media in the scene. 

Because of the low-frequent nature of indirect 

lighting, we can represent an outgoing indirect 

radiance distribution by a few bands of SH. Also 

the initial distribution from the injection stage is 

guaranteed to have at least hemispherical distribution or smoother. In one of his papers Ravi 

Ramamoorthi says that you need 3 bands for the diffuse convoluted environment map 

[RAMAMOORTHIHANRAHAN01]. Although we use 2 bands of SH coefficients, which is enough to represent 

hemispherical cosine lobe outgoing indirect radiance distribution in our case. 

 

The propagation stage consists of several sequential iterations. Each iteration represents one discrete 

ǎǘŜǇ ƻŦ ƭƛƎƘǘ ǇǊƻǇŀƎŀǘƛƻƴ ƛƴ ǘƘŜ ǊŀŘƛŀƴŎŜ ǾƻƭǳƳŜΩǎ ƎǊƛŘ ǎǇŀŎŜΦ 

 

Suppose ὒὼ is an initial indirect radiance distribution in cell ὼ. During the injection process we add 

radiance contribution of each VPL into the closest cell regardless of its position inside of this cell. Since 

the exact distribution of VPLs is unknown inside of this cell after the injection process, we have to treat it 

as a cube with edge length equal to the distance between cells. The radiance of collected VPLs is 

uncertainly distributed inside of this cube. Note that we can have an average distribution of the radiance 

on faces of this cube.  

 

Figure 4. Radiance propagation iteration 
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We will propagate the directional energy between adjacent faces to neighboring cubes. In Figure 4. 

Radiance propagation  you can see the single propagation iteration for the central cell from adjacent 

cells. Each propagation step for one cell consists of two stages: 

¶ Compute the flux through each face by computing the integral of the outgoing radiance from the 

adjacent cube through this face. 

¶ Add the contribution of collected incident energy to the radiance representation of the current 

cube. We assume that all the energy collected at this face moves only orthogonally to the face. 

That means that we particularly lose incident 

radiance direction for this individual face. But 

the overall directional distribution of energy 

remains the same after each propagation step 

for all cubes, since eventually we propagate 

radiance over the complete solid angle for 

each source cube and redistribute it onto a 

closed surface, which represents a wave front 

approximation. 

Thus, equation for single cell for n-th iteration could 

be described as follows: 

ὒὲ+ 1 ὼ = В ὖὲ(ὒὲ(ὼ+ ὨὭ))6
Ὥ= 1   (5)  

Operator P in this equation is a propagation operator. This operator extracts incident radiance from 

adjacent cell and collects it to the current cell.  

Proposed scheme consists of an axial stencil on Cartesian Cubic grid, which is widely used for solving 

scattering equation on a uniform grid. 

We use gathering scheme because it is GPU friendly.  

Here is a short pseudo code of the gathering propagation algorithm: 
for_each cell  

  for i  from directions  

    incoming_radiance_dir  = get_radiance_over_face( cell . adjacent_cell [ i ], directions [ i ] )  

    cell . radiance  += incoming_radiance_dir  

The example result of radiance propagation algorithm is shown in Figure 5. Example of 6 slices of 

radiance volume and results of 4 sequential propagation iterations. The detailed implementation is 

provided in Appendix C of this chapter. 

 

5.5 Light propagation volume rendering 

 

This stage consists of lighting the scene with the radiance from the resulting SH volume texture. This can 

be done by directly fetching radiance distribution from this volume texture using world space pixel 

Figure 5. Example of 6 slices of radiance 

volume and results of 4 sequential propagation 

iterations 
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position in the regular rendering pass like in any usual forward renderer. However that can be also done 

by any other scene lighting method, for instance by rendering this texture completely into the deferred 

diffuse light accumulation buffer as a deferred volume primitive. We use the latter way due to the 

deferred lighting approach and complex layered ambient lighting model used in CryEngine 3. 

 

Assuming it is usually very expensive pass (see the timing table in the άwŜǎǳƭǘǎέ ǎǳō-section), it is very 

important to optimally utilize hardware during rendering.  

 

It is important to note here that hardware capability to render into a volume texture tremendously 

improves performance of this technology in general. This dramatically simplifies shader workload since 

we do not need to emulate a trilinear filtering in the pixel shader. Instead the hardware unit is utilized 

and cache efficiency is highly improved due to the optimized memory layout of 3D texture. So it is 

possible to copy the final radiance information to volume texture on consoles or with the Microsoft 

5ƛǊŜŎǘ·ϯ 10 API, but is not possible with the aƛŎǊƻǎƻŦǘ 5ƛǊŜŎǘ·ϯ фΦлŎ !tL.  

Additionally the main issue of simple trilinear interpolation of an SH representation is undesired light 

bleeding (e.g. at thin double-sided geometry; see Figure 8. Light bleeding through a thin double-sided 

object caused by sparse spatial approximation, Figure 9. Light bleeding through a thin roof caused by the 

sparse spatial approximation and trilinear filtering of  the 3D texture(left). Shifting of radiance injection 

and anisotropic filtering as a solution (right)). There are several solutions to this problem that will be 

discussed in the next section. 

 

5.5.1 Deferred lighting 

 

Since we use deferred lighting approach in CryEngine 3 [MITTRING09] the radiance volume is rendered 

directly into the diffuse light accumulation buffer in addition to multiple ambient passes. This allows us 

to use all available deferred optimizations like stencil pre-pass and depth bound test for this pass as well. 

Moreover, it is also possible to compose complex layered lighting, as discussed in sub-section 6.4. 

 

5.6 Other applications 

 

Finally two results could be extracted from radiance propagation and injection passes: 

¶ initial secondary radiance distribution as a result of injection stage 

¶ propagated radiance distribution 

Each of them could be used for different lighting and visualization effects. 
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5.6.1 Light sources 

 

Another interesting application is to inject already propagated radiance. For simple light types we can do 
this analytically in the shader. Since the hemispherical lobe can be precisely approximated by the second 
band of SH [SLOAN08], it is enough to represent the analytical solution in this space. Thus, the radiance 
volume becomes an efficient radiance cache for large dynamic lights. For example, to represent the 
analytical solution for a point light source, it is sufficient to know the intensity or attenuation radius and 
represent the radiance in a cell by projecting the direction of the radiance onto SH basis (see Appendix A 
and Figure 6. Massive rendering of point light sources by injecting analytically pre-propagated radiance 

into the radiance volume. From left to right top down: rendering with usual deferred lighting, rendering 

of radiance volume with injected radiance, placement of light sources, error introduced by radiance 

volume. The error does not exceed 25% for this particular frame and depends on the light radii/grid 

density 

ratio. There are 417 light sources in this example. The radiance injection and radiance volume rendering 

takes around 2 ms in total on Xbox 360 and PlayStation 3.). Notice that the error mostly comes from 
linear interpolation between cells instead of quadratic one (because all light sources here has a quadratic 
attenuation). 
 

 
Figure 6. Massive rendering of point light sources by injecting analytically pre-propagated radiance into 

the radiance volume. From left to right top down: rendering with usual deferred lighting, rendering of 

radiance volume with injected radiance, placement of light sources, error introduced by radiance volume. 

The error does not exceed 25% for this particular frame and depends on the light radii/grid density 

ratio. There are 417 light sources in this example. The radiance injection and radiance volume rendering 

takes around 2 ms in total on Xbox 360 and PlayStation 3. 
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We use light source radius threshold to make a decision to render the light source into radiance volume 

or not. This threshold depends on the resolution of the radiance volume. 

Specular reflection could be done as described in the next sub-chapter.  

 

5.6.2 Glossy reflections 

 

As we have the initial distribution of secondary radiance after the injection stage, it becomes possible to 

compute the radiance ὒx,w  at a surface point x towards an individual reflected direction w by solving 

the sum (5) for ὒn x,w  for the first few iterations by means of tracing the source volume texture with 

regular step. Thus, we can fetch several cells towards considered direction and apply integration over a 

cone with angle, which is the angle of view to current cell from a point x. The glossiness of the resulting 

specular reflection directly depends on the initial cone angle of the outgoing reflected ray (see Figure 7. 

Glossy reflections on the metallic container from a red teapot and other surrounding.  

Left: final picture, right row: corresponding specular lighting buffer.). 

In turn, the minimum cone angle directly depends on the spatial resolution of the source radiance 

volume texture.  

 

Glossy reflections are demonstrated more evidently in accompanying video. 

 
Figure 7. Glossy reflections on the metallic container from a red teapot and other surrounding.  

Left: final picture, right row: corresponding specular lighting buffer. 

 

6 Improvements and optimizations 
 

Proposed solution still has some undesirable bleeding because of spatial approximation (see Figure 8. 

Light bleeding through a thin double-sided object caused by sparse spatial approximation below as an 

example). 
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Additionally temporal flickering occurs during camera movements, because we use camera-attached 

approach. The temporal flickering mostly occurs because of limited resolution of RSM. 

These issues are discussed here in details and solutions are proposed. 

 

Moreover, different combinations and compatibility with other technologies as well as improvements 

are discussed in more details in this subchapter. 

 

6.1 Solution stabilization 

 

A lot of attention has been paid making the solution stable temporally and on scene changes. This is a 

very important aspect, owing to the fact that there are a few secondary light sources that are major 

participants in the final radiance distribution. 

Thus, we should provide a stable, consistent image even if we have noticeable camera/direct 

lighting/scene changes. Multiple methods are employed to obtain this consistency: 

 

¶ 2D texel snapping for RSM movement 

This increases rasterization consistency under camera movement in the case of a directional light 

source. This approach is well-known for orthogonal shadow maps and provides consistent 

rasterization during camera movements. Thus it brings a consistent scene representation with 

surfels independent on RSM movements. 

¶ High redundancy of secondary light sources 

By using excessive number of secondary light source we avoid flickering and other sudden 

radiance changes during movements of light source, camera and scene objects. That means that 

number of surfels in RSM should be enough per cell of light propagation volume to provide a 

stable solution during any changes. 

¶ Smart down-sampling of RSM 

This method not only improves the initial radiance distribution stability, but accelerates the 

injection stage as well. 

¶ One-cell 3D grid snapping for radiance volume movement 

With discrete integer stepping we can maintain consistent point cloud set injection during 

camera movement. 

 

Thus, the radiance distribution solution remains smooth and stable in time and space even during 

significant changes of scene conditions. 

 

6.2 Geometry-aware light injection and shifting 
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Because of the sparse spatial approximation, it becomes 

necessary to shift the injection of the radiance contribution of 

each VPL p to avoid self-illumination (see Figure 9. Light 

bleeding through a thin roof caused by the sparse spatial 

approximation and trilinear filtering of  the 3D texture(left). 

Shifting of radiance injection and anisotropic filtering as a 

solution (right)). We propose to shift initial radiance towards 

direction of normal and towards light direction by half cell in 

sum at maximum. Thus, a minimal error is introduced and the 

self-illumination is avoided in most cases. For more 

implementation details see Appendix C. Nevertheless shifting of 

injecting radiance is not sufficient to completely avoid self-

illumination and undesired radiance bleeding. 

 

6.3 Anisotropic upsampling of radiance volume 

 

As mentioned previously in sub-section 5.5, SH trilinear interpolation of spatially approximated radiance 

may cause serious artifacts during the final rendering of radiance volume, such as unwanted self-

illumination and bleeding (see Figure 9. Light bleeding through a thin roof caused by the sparse spatial 

approximation and trilinear filtering of  the 3D texture(left). Shifting of radiance injection and anisotropic 

filtering as a solution (right)). There are at least three possible solutions to this problem. 

The first one is naive approach which consists of shifting each injected VPL within an offset in such a way 

that the self-illumination is excluded. Since this offset is usually more than one cell long, it would 

introduce significant shifting of the whole radiance distribution, thus giving bad results for closely 

located objects in the scene. Thereby we do not use this approach.  

 

Figure 8. Light bleeding through 

a thin double-sided object caused 

by sparse spatial approximation 



22 | P a g e 
 

 
Figure 9. Light bleeding through a thin roof caused by the sparse spatial approximation and trilinear 

filtering of  the 3D texture(left). Shifting of radiance injection and anisotropic filtering as a solution 

(right) 

 

The second approach consists of adding so-called 

άantiradianceέ [DSDD07] of the back sides at the injection 

stage. This makes the radiance distribution have higher 

άŎƻƴǘǊŀǎǘέ at places with close opposite-oriented geometry, 

thus solving the trilinear interpolation softness issue. The main 

disadvantage of this solution is that we need to render the 

reflective shadow map twice: firstly, a usual front-facing scene 

rendering (bounced lighting); and secondly, a back- facing 

scene rendering for negative lights. This increases the 

complexity of the technique. Furthermore, the injection stage itself should be repeated for the injection 

of this negative radiance set after the propagation stage. Also the incorrect darkening at dense locations 

of opposite-oriented geometry is another unavoidable issue here. Owing to these issues, we do not use 

this approach either. 

Finally, we developed a solution for direction-dependent upsampling of the resulting radiance volume. 
The main idea of this solution is to detect bad interpolation of the radiance by traversing along the 

direction of the normal to the surface and calculating the radiance directional derivative in this direction.  

 

We use the central difference scheme for SH coefficients (see Figure 10. Spherical harmonics central 

difference). The central difference towards direction n is [TATARCHUK04], [AKDS04] to calculate the 

radiance gradient: 

▪ɳ╬(●) =
╬(●+

▪
) ╬(●

▪
)

ᴁ▪ᴁ
 

Thus, by comparing the radiance directional derivative with the actual radiance direction, it can be 

calculated whether the radiance distribution starts further than its trilinear interpolation for this point. 

Figure 10. Spherical harmonics 

central difference 


