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This talk is mostly about improvements in texture compression and deferred lighting 
on consoles. 
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The talk consists of two major parts: texture compression and deferred lighting. Also 
several minor improvements will be mentioned. 
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There are two subparts of the texture compression part: compression of color/albedo 
textures and proposed improvements to normal maps compression. 
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Nowadays all color textures are mostly used as albedo textures in the lighting 
pipeline, despites of good old times of Doom and Quake.  

Despite there are still many engines with precomputed light maps and even complete 
prebaked lighting solutions (e.g. Rage from id software), majority of modern engines 
try hard to stick to the most robust dynamic lighting pipeline in order to provide the 
most convenient tools for artists, thus simplifying the game development process. 

So the color textures for the latter engines mostly represent the albedo of the surface 
it describe. 

Thus, the color depth and the color space of these textures become an important 
discussion topic in this talk. 

The very first and important step is to change the texture authoring pipeline to the 
higher precision in order to be able to manipulate with source texture with no 
precision loss after it’s been authored once. So we use a 16 bits/channel mode in 
Photoshop for texture authoring. This allows us to change the color space or 
histogram of the texture with no consequences both in the Photoshop and in our in-
house texture processing tools. 

This mode has mostly the same authoring options as the usual 8 bits/channel sRGB 
authoring mode. That means that the switch is mostly transparent for artists. 

The manipulations proposed on the following slides might make the quality worse if 
the source texure is 8 bits/channel! So it is very important to have a source texture  
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authored in 16bits/channel from the very beginning. 
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The first proposed manipulation is the color range renormalization. 

Usually artists do not care about the quantization artifacts produced by block 
compression and/or low-precision quantization (that happens e.g. in DXT block 
compression). The most important point in authoring process is to achieve a similar 
looking texture in a usual game lighting. However dark textures might show very 
noticeable and disturbing artifacts under strong HDR lighting conditions. 

Thus we decided to introduce a range renormalization for color textures behind the 
scenes. That significantly reduces the color banding and deviation introduced by 5:6:5 
quantization and block compression of DXT format.  

We store the original minimum and maximum limits into the resulting texture in 
order to be able to reconstruct the source texture created by the artist in the shader. 
That means that for each renormalized texture we set two additional shader 
constants in order to rescale the results of texture lookup. 
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Here is the result of renormalization and the corresponding histograms of the original 
and the renormalized textures. 

Note that the renormalization of 8b/ch source texture would produce a quantization 
in the renormalized histogram, thus leading to a larger color distortion during 5:6:5 
quantization stage of DXT compression. 
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The left most image shows the results for simple DXT-compressed texture under 
strong lighting conditions. On the right most one there are results for the 
renormalized and then DXT-compressed texture. Note that the blocky color artifacts 
are significantly reduced. 

The texture appearance is not changed due to reconstruction of original range in the 
shader. 
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The most of texture authoring software work in sRGB space. This is the native space 
of the display and it is perfectly represented in 8 bits.  

Also there is generally accepted opinion that the color textures should be stored in 
sRGB color space too. 

The interesting fact that there are two color spaces supported natively for free in the 
modern GPU. That means we can easily jump from one to another with no 
performance impact.  

That fact arises a very interesting question about the color density in each color 
space. The density of the color space shows the quantization interval for the 
considered color space for a particular color range. In order to answer this question 
we can solve the equation of densities deduced from comparing the derivatives of 
each color space transformation in linear space.  

The color transformation for linear space is obviously an identity transformation. The 
transformation from gamma space is a power function.  

By solving this equation we can acquire the resulting density median for these color 
spaces. It shows the point of equal density of both linear and gamma space. This 
point  is in the linear space. This means that the linear space has better precision 
above the value 116/255. And the gamma space is more precise below it. 

So, we use the more appropriate color space for each particular texture judging by 
the texture’s histogram. 

The rule of thumb that works for us is to switch to linear color space each time the 
number of texels above the median point in the texture is more than 75%. 
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It is also generally correct for Xbox 360. However we need to take into account a 
different gamma curve used by Xbox’s GPU. It is a piecewise linear approximation to 
the power function of gamma transformation. 

This shifts the choice of color space even more towards the linear space. The median 
is lower for piecewise linear gamma curve: 90/255 (in linear space). That means it is 
25/255 in gamma space! So, keeping the rule of thumb the same (if >75% texels are 
above the median) leads us to the conclusion that the majority of textures could be 
beneficially stored in linear space for this platform. 

On the other hand it solves another very important issue of the Xbox 360’s GPU 
related to gamma-space textures automatically. Every time the texture stored in 
gamma space is fetched in the shader, the GPU does the digamma and then stores 
the result back into 8 bits into the texture cache. This is a default behavior and it 
definitely introduces a great precision loss. In order to avoid the unwanted 
quantization, one could customize the texture format and specify the desired filtering 
precision by adding _AS16 suffix to the format (see the Xbox 360 documentation for 
more information). But that would definitely lead to much higher texture cache 
pollution and a consequent performance degradation.  

However storing the majority of textures in linear space for this platform definitely 
solves this issue and further improves the color precision. 

So as a conclusion we’d like to highly recommend using linear space textures for Xbox 
360. 

11 



This is an example bright gradient texture (all colors are above the median) stored in 
16 b/ch shown on the left most image. The middle image shows the same texture 
stored in gamma space and exaggerated in order to show the color banding on the 
usual display. The right most image shows the original texture stored in linear space 
with the same exaggeration.  

It clearly shows the benefit of storing the bright textures in linear space. Note that 
this exaggeration could easily happen under some strong and/or contrast lighting 
conditions and using contrast tone mapping operator, like a filmic tone mapping. 
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The rest slides of the texture compression part of the talk are devoted to the 
compression of normal maps. 

Historically, normal maps are being represented as a color maps. However the recent 
research in this area showed that the precision required to represent normals is much 
higher and heavily depends on the lighting conditions and the material properties. 

As normal maps are usually a result of the matching process of low-poly and high-
poly model, it is always possible to extract the normals of a very high precision. 

Thus we recommend to modify the exporting tool you use in order to produce a 
16bits/channel uncompressed normal map in order to be compressed further. This is 
a very important step, as the 8bits/channel normal maps introduce a huge error from 
the very beginning. 
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This is an example of quantization artifacts introduced by storing source normal maps 
in 8b/ch format. As you can see, even the 8b/texel 3Dc compression gives much 
better results with 16b/ch, as it introduces artifacts only at the compression stage. 
However with 8b/ch normal maps the quantization error is accumulated from both 
8b/ch quantization and the quantization introduced by the 3Dc compression. 
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Also we propose an improvement to the 3Dc encoder. The usual 3Dc encoder encodes the 
normal map into a block-compressed two-channeled format. Each block consists of two alpha 
channel blocks of DXT5 format leading to 8bit/texel compression. 

However the precision of data represented with 3Dc compressed block can exceed the 
precision of the ARGB8 format. The reason is that the majority of GPUs compute the 
interpolated values between two anchors in higher precision rather than 8 bits. E.g. The 
precision of interpolated values on Xbox 360 is 16 bits. This leads us to the point that the 
source uncompressed normal map should be stored definitely with the precision higher than 
8b/ch! However this change should be also reflected into the 3Dc encoder. 

Besides that, all existing 3Dc encoders perform the block compression of each of two 
channels separately, treating each block as a usual alpha block of DXT5 texture. 

However while compressing normals, the error should be computed differently from alpha 
compression. Besides that the correlation between x and y channel of 3Dc block should be 
reflected in that error. 

We propose to use a common error to measure directional deviations: ∆𝑁 =

𝐴𝑟𝑐𝐶𝑜𝑠
(𝑁𝑐∙𝑁)

𝑁𝑐 𝑁
. So, after two candidate pairs of 

anchors for a 3Dc block are chosen, the normals are 
decompressed, the z component is reconstructed and the 
error between the source and the compressed normals is 
measured. 
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However using this error we need to excess all the possible pairs of (x,y) anchors. 
That correlation complicates and slows down the compression process. The 
performance of 3Dc compression becomes production-unfriendly. 

But as it was noticed during the development, the solution found by a common 3Dc 
encoder during the compression of separate alpha-blocks, is very close to the 
solution with the best error. Besides that, the “common solution” is the best solution 
in many situations. 

So, we propose an adaptive approach for the 3Dc encoding:  

1. Compress the block with a usual 3Dc compression approach 

2. Measure the directional deviation with the proposed error 

3. If the error is higher than some threshold, initiate the improved compression 
stage. 

Note that we use an exhaustive search only around the “common solution”. We use 
[v-4/255;v+4/255] interval for the exhaustive search, which is proved to be enough. 

Thus the performance overhead introduced is minimal. 
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Here is a comparison of the 3Dc encoder (image b) and the improved 3Dc encoder 
(image c). As the differences are hardly visible in a narrow color space of display, we 
also provide a difference map (d). This map shows a pixel in green if our method has 
smaller error compared to usual 3Dc encoder. The intensity is the difference in errors, 
amplified by 5. Also it shows a pixel in red if our method provides a worse error for it. 
As you can see our method is mostly surpasses the usual 3Dc encoder. 

However this is a pure theoretical comparison. Let’s see how does it look in practice. 
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This is an image of the car rendered with the uncompressed normal map, stored in 
RGBA16F format. As we mentioned before, the ARGB8 format is not sufficient for the 
comparison with 3Dc format, as it introduces more quantization than 3Dc. 

18 



This is the image produced using a usual 3Dc encoder. You see the quantization on 
the hood leading to the banding of specular reflections. 
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And this image is rendered with the improved 3Dc encoder. As you can see, the 
specular reflections are much less banded.  

Note that the format remains the same (3Dc)! The improvements are done only on 
the encoder’s side.  
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We have a low-resolution software depth buffer since CryENGINE 2 and Crysis 1. 

This significantly reduces both CPU and GPU workload, as we skip the complete 
processing and preparation for rendering for culled objects. 

However a complete software culling is less efficient, as we are able to render only 
some very small and sparse part of the real scene on the CPU. 

However we improved this approach on consoles. 

Because of a thin GPU-CPU intercommunication layer (fast memory busses, no API 
limitations, no virtualization), we are able to retrieve the z buffer from GPU with only 
one frame delay.  

We downscale the z buffer on GPU using a max() filter in order to preserve a 
conservative visibility detection. On Xbox 360 we untile the downscaled depth buffer 
on CPU. 

Afterwards we construct mip levels with a minimum and maximum filter in order to 
construct a hierarchical representation of the scene depth. This is a rather important 
acceleration structure for culling. A similar algorithm is used in a vast majority of 
modern GPUs. 

Then during the visibility detection we project an AABB or OOBB of the object into 
the screen space and detect the necessary mip level.  

• If the object is completely occluded by the minimum level of this mip, we cull this  
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object out.  

• If the object is in front of the maximum bound of the mip, it’s definitely not 
occluded. 

• If the object’s depth bounds intersect the minimum-maximum interval of this mip, 
we intersect it with the depth information from the higher mip in order to detect a 
precise visibility.  

However on PC we use a complete software solution with some hand-placed low-
poly proxies made by level designers. This is due to the high latency in the GPU-CPU 
intercommunication, which leads us to a 3-frames delay. This is unacceptable for 
culling. 
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We use downscaled z-buffer. 

During downscaling, we encode the linear depth value into two channels of the 
ARGB8 texture. 

The rest channels we use for SSAO computation of current frame and the temporally 
accumulated results. 

We compute the SSAO in half resolution of the screen. Then we do a bilateral 
upscaling onto the screen. 

We use Volumetric Obscurrance[LS10], which allowed us to lower down the number 
of samples to 4! 

Of course this approach is supplemented by temporal accumulation in order to 
provide more samples over time. However we don’t use sophisticated cache rejection 
schemes, rather a simple reprojection from previous frame. 

Thus the performance achieved is around 1 ms on both consoles. 
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The color transformations are a very important tools for artists. 

However creating the whole infrastructure of sophisticated professional filters and 
other tools is usually an unaffordable task for the game engine. 

The vast majority of image-wide filters (like color correction, contrast, brightness, 
levels, selective colors etc.) can be represented as a mapping of an rgb cube into 
another rgb cube. 

This mapping can be represented as a 3D Look-Up Table [Selan07]. 

Taking into account the color-space consistency of all filters, the size of this LUT can 
be very small.  

After doing some experiments, we figured out that the size of 16x16x16 is more than 
enough for the majority of color transformations. 

Also it is possible to use the GPU-aided 3D textures, which speeds up the color 
correction on consoles, making it only one texture look up. 
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Another very important part of the color grading is to provide a convenient workflow. 

For that purposes we unwrap the 16x16x16 identity LUT into 16 slices and bake it 
into the source image (which is usually a game screenshot). 

This is a small chart, that consists of 16 slices, 16x16 each. This chart initially maps 
each rgb color to itself, which is an identity transformation for the source screenshot. 

After artist has finished working on the color correction of the image/screenshot, we 
read back the chart and save it as a texture LUT. 

Afterwards we load this LUT into the engine (2D or 3D texture, depending on 
platform and API limitations) and perform the full-screen color transformation with 
it. 

This was an artist has completely identical results to what he/she wanted to achieve 
in the image authoring tool. 
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This is an example of the image, which consists of several screenshots of the same 
location and one small color chart in the corner. 

This color chart serves as a probe for all color transformation and post processes an 
artist applies onto the image. 
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This part of the talk is devoted to the deferred pipeline in CryENGINE 3. 

Performance challenges will be discussed as well as some new solutions and 
techniques. 
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This is an example screenshot of a real level in Crysis 2. 
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This is the diffuse lighting buffer corresponding to the screenshot. 
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This is the specular lighting buffer corresponding to the screenshot. 
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The deferred approach is widely known for its good property of decomposing the 
lighting depth from the geometry granularity. 

That means that the geometry is rendered before the actual lighting is done.  

However, we have to store screen-space “fragments” for the deferred lighting into a 
Geometry buffer (G-Buffer). This leads to much higher bandwidth. 

32 



This is a schematic chart showing the trade-off between the number of attributes 
stored per fragment versus the shading flexibility and materials variety. 

The forward shading is here for reference, as it looks like a perfect solution (the 
highest materials variety vs the lowest bandwidth), however the forward lighting 
does not decouple the complexity. That is inappropriate for modern games with very 
complicated layered lighting, as shown before. 

Thus there are three widely-known types of deferred rendering pipeline: 

• Classic deferred shading (S.T.A.L.K.E.R. etc) [GPU Gems 2]. G-Buffer layout: depth, 
normal, glossiness, albedo, occlusion and material index – 112-144 bits/pixel  

• Full deferred lighting (aka Light Prepass) [Engel09]. G-Buffer layout: depth, normal, 
glossiness and albedo – 96 bits/pixel (best case) 

• Partial deferred lighting [Mittring09]. G-Buffer layout: depth, normal and glossiness 
– 64 bits/pixel. 

However, shortening the layout comes with cost: material variety becomes more and 
more limited. 
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There are also some fundamental limitations of the deferred pipeline on GPUs: 

1. The anti-aliasing becomes a super-sampling: need to store the G-Buffer 
information per sample. Dramatically increases the bandwidth. 

2. Arbitrary materials increase the amount of stored information per pixel 
significantly. That’s why the materials variety is usually very limited. 

3. The transparent objects should be rendered into a “deep G-Buffer” in order to 
store all transparent layers for deferred shading/lighting. This is a similar problem 
to anti-aliasing. 
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In CryENGINE 3 we have the following 
layers of lighting: 

 

• Indirect lighting 

• Ambient term 

• Tagged ambient areas 

• Local cubemaps 

• Local deferred lights 

• Diffuse Indirect Lighting from LPVs 

• SSAO 

• Direct lighting 
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• All direct light sources, with and without 

shadows 
 

These layers are applied in the order enlisted above. However some of these layers 
are optional depending on the area and lighting artist’s setup. 
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As it was described before, we use a minimal G-Buffer layout [Mittring09]. 

The layout consists of the depth (24bits), stencil (8bits), normal (24bits) and the 
glossiness (8bits). 

We use stencil to mark objects that lay in different areas.  

E.g. we mark objects that should receive different ambient in different indoor rooms 
with different stencil masks. 
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The very important lighting parameter is the glossiness. 

On one hand, it represents the specular power. Without this value the specular 
contribution from different lights cannot be accumulated together. 

But on the other hand the glossiness together with the normal define a complete 
lobe of the Phong BRDF. Note that without the glossiness, the BRDF is undefined, 
thus the lighting cannot be performed. 

However the consequent problem with this G-Buffer layout is the small variations of 
materials, limited by the Phong shading. 

 

Another very important problem is the representation of normals in the G-Buffer. We 
store normalized world-space normals into RGB channels of the RGBA8 render target. 

With this representation, the normals are stored with an insufficient precision.  
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This part it devoted to the new technique for storing normals in 24-bits G-Buffer 
efficiently. 
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As it described before, with a current representation, the normals are stored with an 
insufficient precision.  

That leads to banding artifacts with all sorts of normals-related shading, like diffuse 
lighting, environment reflection, specular lighting etc. 

 

However talking from the information theory perspective, 24bpp should be enough 
to represent a direction (essentially a point on the sphere) very precisely. 

Seems like we’re doing something wrong.  

If we count how many values we use out of these 24 bits, it turned out that we use 
only values on the unit sphere out of a 3d grid 256x256x256. That leads us to the 
usage of around 2%! 
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We propose the new method to utilize all values inside this unit cube. 

Having the original normal (=direction), we take each cell of the cube the normal ray 
intersects. 

We compute the quantization error for every such a cell. 

The quantization error tells us what would be the deviation of the center of the cell 
compared to the original normal direction. 

That shows the error if we store this direction into that cell.  

Using that, we find the cell with minimal deviation from the normal’s ray on the ray’s 
way.  

Thus we find the best cell for some particular direction. 

However finding this minimum is non-trivial brute-force search task, which cannot 
be done in real-time for each normal we want to store into G-Buffer. 

Thus we decided to prebake the result of the search into a huge cubemap of 
directions. Each texel of the cubemap stores the distance to the best cell for the 
normal with this direction. 

The cubemap’s face should be larger than 256x256 in order to provide fine-grained 
solutions for directions of normals. 

The larger the cubemap the more precise the normals representation. However even 
a cubemap of 2k x 2k is already problematic for performance and memory on  
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consoles. 
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However this cubemap has a lot of symmetry inside. The cubemap’s symmetry 
comes from the inherited symmetry of the task itself. Indeed, the best cell solution 
should be the same in all 8 octants. Also inside the octant there is a diagonal 
symmetry for the same reason. 

Using that fact, we extracted the unique part of the cubemap and saved it into a 
small 512x512 2D texture. The emulation of cubemap lookup is done in the pixel 
shader. The detailed shader code and the texture itself you can find in the appendix 
of these slides. 

The algorithm of outputting the normal into the G-Buffer is as follows: 

• Prepare the texture coordinates for 2D lookup and look up the distance to the best 
cell from the precomputed 2D texture 

• Scale the normalized normal by this value in order to fit it into the precomputed 
best cell 

• Output the scaled normal into the G-Buffer.  
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This method has a lot of advantages.  

• It supports alpha-blending, as it becomes a blending between two unnormalized 
vectors, which is still linear and correct. However in case of alpha blending, we 
lose the best fit solution in the end. But it is not that important for the production, 
as the blending is mostly used for decals, smooth transitions and detail normal 
mapping, where the smoothness of normals is not an issue. 

• The reconstruction is extremely cheap (even for free): it is only one normalization, 
which is done anyway in most of engines because of unnormalized results 
provided by alpha blending. 

• It is backwards-compatible with storing normalized normals solution. That means 
that the best fit can be applied selectively per object, based on the reflectance, 
smoothness, presence of detail normal maps etc. 

Also a small note on the performance: the mip maps for the 2D texture are essential, 
otherwise the texture cache thrashing becomes quickly apparent.  
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This is a small breakdown of the existing storage methods. 

It shows how many bits it uses out of total number of 24 bits. 

Both old techniques uses ~17 bits, which explains the low normals quality. 

However the proposed technique uses almost the whole range of 24 bits, beating the 
old ones with almost two orders of magnitude. 
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Here is a series of screenshots demonstrating the results of the new technique 
compared to old ones. 
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Here is a series of screenshots demonstrating the results of the new technique 
compared to old ones. 
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Here is a series of screenshots demonstrating the results of the new technique 
compared to old ones. 
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Here is a series of screenshots demonstrating the results of the new technique 
compared to old ones. 
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Here is a series of screenshots demonstrating the results of the new technique 
compared to old ones. 
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Here is a series of screenshots demonstrating the results of the new technique 
compared to old ones. 
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This part is devoted to the importance of BRDF normalization and energy 
conservation. 

50 



It turned out that the section of this talk highly overlaps with the Physically based 
shading model” course presented at the same time at the SIGGRAPH: 

http://renderwonk.com/publications/s2010-shading-
course/hoffman/s2010_physically_based_shading_hoffman_b.pdf 

I’d highly recommend to refer to this course in order to understand the advantages of 
BRDF normalization in more details and examples. 

Briefly speaking, here are the most important ones: 

• Energy preserving: very important for HDR post-processing 

• Consistent with non-analytical lighting, such as environment mapping 

• Simpler artistic control over specular 
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Here are the results for different glossiness values for Phong BRDF. The reflectance 
coefficient of the material remains the same in all images. 

However please notice the intensity of analytic reflection coming from the sun and 
how consistent it is with the precomputed environment lighting. 
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Here are some in-game examples of the consistency across the precomputed and 
analytical lighting. 
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Here are some in-game examples of the consistency across the precomputed and 
analytical lighting. 
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This part of the talk is devoted to the low-bandwidth, high-quality HDR pipeline on 
consoles. 

55 



The ideal goal for us is to achieve the complete HDR rendering pipeline with no 
additional bandwidth or performance overhead. 

 

Thus we came up with RGBK compression for all our HDR buffers on PS3. We use 
RGBA8 render targets for light accumulation buffers (both diffuse and specular) and 
for the final HDR shaded scene render target. 

We use custom blending with read-backs on PS3 in order to achieve proper blending 
operations with RGBK encoding. 

However it works unless you have some overlapped geometry to draw. This is the 
only case with transparent objects for us. So, as we draw transparent objects in the 
end, we decode the RGBK buffer into a fat ARGB16F render target before rendering 
any transparency. This provided a small overhead, as the decoding is conjoined with 
the full-screen global fog pass. 

 

On the other hand there is no read-back capability on Xbox 360’s GPU. Thus we 
render the whole scene into an ARGB16 render target in the EDRAM and resolve it 
into an R11G11B10 texture in the system memory. 

Thus the bandwidth outside EDRAM remains the same as for LDR rendering. The 
R11G11B10 format gets expanded into ARGB16 in the texture cache by default. To  

56 



avoid that, we would recommend to remove _AS16 suffix from this format. 

However even 11 bits per channel provide way too low storage precision for HDR 
lighting in linear space. 
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Thus we decided to use a floating range window for HDR.  

We define minimum and maximum values for HDR buffers and rescale all input light 
parameters on CPU before submitting it to the GPU. 

The range window is based on the average frame luminance. The maximum value is 
adjusted empirically for each level. 

However the lower bound can be computed analytically, based on the tone mapping 
operator in use. 

The idea behind that is that the HDR image becomes LDR in order to be presented on 
the LDR display. 

However the lower threshold for the majority of displays does not exceed 0.5/255. 

Using this lower bound of the output color, we can apply an inverse tone mapping 
operator to it and find a minimum HDR value analytically. 
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On this slide there are two tone mapping operators we use. The l is an average 
luminance in these equations. The c is an input HDR color. 

We use value for l from previous frame, as it changes smoothly due to eye adaption. 

The exponential tone mapping operator is very sensitive to dark colors. 

However the filmic tone mapping operator is rather moderately tolerable to dark 
colors. 
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Here are the resulting screenshots made on Xbox 360 with R11G11B10 HDR buffers. 
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Here are the resulting screenshots made on Xbox 360 with R11G11B10 HDR buffers. 
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Here are the resulting screenshots made on Xbox 360 with R11G11B10 HDR buffers. 
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Here are the resulting screenshots made on Xbox 360 with R11G11B10 HDR buffers. 
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This small section is devoted to rather small, but extremely powerful concept of 
tagging areas and volumes with deferred pipeline. 
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There is a common problem of light bleeding become apparent with the deferred 
approach: the boundaries of lighting are not controllable. 

E.g. the deferred light placed in one room can bleed through the wall into another 
room. 

Thus we decided to provide a tool for artists that they can specify a custom stencil 
culling geometry for each light source in the scene. 

This approach is very cheap provided that the clipping geometry is rather coarse and 
the stencil tagging is very fast on consoles. 
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This is an example of how the clip volume works for some particular light. 
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This is an example of how the clip volume works for some particular light. 
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This is an example of how the clip volume works for some particular light. 
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This is an example of how the clip volume works for some particular light. 
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This is an example of how the clip volume works for some particular light. 
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This part of the talk is devoted to the problem of materials variety with deferred 
pipeline. 
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The core idea is preserve the current bandwidth and interfere with the deferred 
pipeline as less as possible. 

The current G-Buffer layout can store only a Phong BRDF as it was mentioned before. 

However in order to represent a complex BRDF, such as a highly anisotropic Ward 
BRDF, we need much more lobes. This can be implemented by expanding the G-
Buffer layout and adding more information about BRDF. 

However the whole lighting pipeline would suffer from that. Moreover, taking into 
account the complex layered lighting and increasing data size stored in G-Buffer per 
pixel, the bandwidth grows too quickly. This fact makes this approach unaffordable 
for the actual game production. 

However if we consider one pixel of the G-Buffer, we know a lot of fixed parameters, 
such as normal, view direction etc. (note that for a given particular pixel it is fixed and 
known at the G-Buffer generation time). Thus the BRDF can be defined as a function 
on the sphere. 

But something that is unknown at that time for us is lighting conditions. 

71 



So the general idea behind the approach is to do a Phong lobe extraction at the G-
Buffer generation time.  

There are several advantages: 

• G-Buffer layout, memory footprint and bandwidth remains the same! 

• Support for arbitrary type and complexity of BRDF 

• Completely orthogonal and transparent for the subsequent lighting pass 

First, consider a microfacet BRDF model. 

The Fresnel and geometry terms of this model can be completely decoupled from 
lighting and applied in a subsequent shading pass per object. 

Thus the part of BRDF that affects the lighting directly and cannot be decoupled from 
the lighting pass, is the Normal Distribution Function. 

We approximate the NDF of the BRDF with Spherical Gaussians in spirit of 
[WRGSG09]. Note that most of common BRDFs have analytical formulas for this 
basis. Another important fact is the compactness of the representation. E.g. 
anisotropic Ward BRDF can be represented by only 7 basis functions in a vast 
majority of cases. 
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After we’ve got a compact representation of the BRDF for current screen pixel, we 
can extract the principal Phong lobe out of it. 

In order to do that, we need to know lighting conditions for this pixel. 

We approximate the lighting conditions with Spherical Gaussians per object. 

The approximation is done on CPU. Similar lobes can be merged together at this time 
in order to minimize the representation. 

If an object is huge or long, we can prepare several lighting representations in 
different places of the object and interpolate between them in the vertex shader. 

 

So in order to extract the Phong lobe, we convolve each SG function of the BRDF 
representation with each SG function of the lighting representation. We use the 
result to weight the normal and fit the glossiness factor after each convolution. 

Note that the SG basis is not orthogonal, so the cost is polynomial O(n*m), where n 
is number of basis function representing lighting and m is the number of function of 
BRDF representation. 

After the normal and the glossiness are extracted, we output it as a usual Phong lobe 
into G-Buffer. 

Then we do a usual deferred Phong lighting with many lights. Note that normals and 
glossiness are already adjusted to best approximate the BRDF by a Phong BRDF for 
each particular pixel. 

Thus the variety of BRDFs becomes completely invisible at the deferred lighting  
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stage. That fact itself unifies the pipeline and has a very positive performance 
implications. 

And we apply the Fresnel and geometry term in the end after the lighting is done. 
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So, the extraction pipeline is as follows: 

• CPU: Approximate lighting conditions with SG for each object (e.g. in object’s 
center or multiple points) 

• Vertex shader:  

• generate SG coefficients for BRDF representation 

• Cull invisible SG lobes of lighting representation (based on hemisphere of 
visibility) 

• Pixel shader: 

• Do a local rotation of BRDF based on normal maps (if any) 

• Convolve each SG of BRDF with each SG of lighting representation 

• Accumulate principal Phong lobe and output it 

 

 

 

74 



This is a diagram of decoupling the BRDF complexity from the lighting complexity. 

As you can see, the BRDF complexity is completely eliminated from the lighting pass. 
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This is an example of the technology at work 
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This is an example of the technology at work 
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There are several obvious disadvantages of this technique: 

• Lobes are extracted not precisely. Specular highlight appears slightly shifted due 
to per-object lighting approximation 

• However this turns out to be a rather small issue due to the human 
perception limitations. Please see [RTDKS10] for more details. 

• Essentially we do the lighting twice: the first time during the G-Buffer generation 
pass, and the second time is the actual deferred lighting. 

• However the first pass is hierarchical with merging and culling. And it is 
executed only for pixels covered by objects with complex BRDF, which is a 
reasonable cost. 

 

Besides that, there are several obvious advantages of the technique: 

• The G-Buffer remains the same!  

• The lighting pipeline is unchanged. 

• The materials pipeline stays unified, as deferred lights can be applied in-place for 
objects with arbitrary BRDFs. That means we don’t need to shade it separately in 
forward pass; we don’t need to store all shadow maps and compute many shader 
permutations for forward shading with different number and types of light sources 
etc. 
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This part of the talk is devoted to the aliasing problem in deferred pipeline and the 
proposed solution to it. 
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There are multiple sources of aliasing in rendering pipeline. 

Some aliasing artifacts such as jaggy edges can be addressed with some 
postprocessing techniques, such as Morphological Anti-Aliasing. 

However there are some fundamentally different sources of aliasing that cannot be 
solved by postprocessing, as it require supersampling. 

E.g. flickering of highly discontinuous geometry such as foliage or thin ropes are 
caused by per-screen-pixel visibility resolution, which is considered too sparse for 
such kind of geometry. So in this case the visibility should be resolved at higher 
resolution with some supersampling technique. 

Another source of aliasing can be discontinuities in shading, e.g. reflections of high-
frequency or discontinuous shadows etc. This means we need to supersample the 
shading per pixel for. 
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However we noticed that in the majority of scenes, the supersampling is required 
mostly only for distant objects, where the GPU fails to approximate shading/mip-
mapping/visibility per pixel. 

Thus we propose a hybrid solution that solves different aliasing problems based on 
the distance to camera (some other parameters could be taken into account as well 
though). 

 

We apply a post-processing edge-detection algorithm on close-up objects. That 
solves the problem with edges. Note that there is almost no supersampling required 
for near objects, as they are sampled and shaded at sufficient rate in screen space. 

 

We supplement it with temporal supersampling based on reprojection of previous 
results. This temporal supersampling is done only for distant objects. 

 

We render different parts of the scene with different techniques and separate it with 
stencil masking. 
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As the edge-detection algorithm needs to smooth the shapes of close-up objects 
only. Thus we decided to make it as simple as possible. 

So we compute the color deviation from 8 surrounding screen pixels in 4 lookups 
with bilinear filtering and then decide how strong the current pixel should be blurred. 
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We use screen-space sub-pixel temporal camera jittering. That means we shift the 
camera position with a subsample pattern in screen space for each frame. So for still 
camera we can accumulate sub-pixel supersampling over time. 

In case of dynamic objects and/or camera movements, we use cache miss philosophy 
based on the depth changes across frames. 

In order to accumulate super-sampled visibility on the edges, we check for depth 
discontinuities in the frame’s depth buffer.  

Please see [NVLTI07] and [HEMS10] for more details. 
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The reason is that the reprojection in it is based on the depth buffer. Thus it is 
impossible to take into account shading-space local changes on objects. That might 
lead to ghosting shadows, reflections and so on, if we apply it onto close-up objects. 
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This image shows two parts of the scene (“close-up” case and “distant” case) and 
demonstrates how different techniques are applied onto  different parts of the scene. 

Please watch the supplementary video for more details. 
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Please watch the supplementary video for more details. 
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Improvements to textures quality on consoles was proposed. 

We demonstrated a few solutions to several fundamental problems of deferred 
lighting. 
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I’d like to thank all these people as well as Crytek GmbH for providing me the 
information and time do prepare this talk! 
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The texture can be copied over from this slide or downloaded from 
http://advances.realtimerendering.com/ 

Note that the 8-bits precision is sufficient if the best fit length is stored for the normal 
divided by maximum component. 
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Note that the G-Buffer pass is usually bound by vertex processing, so  
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