
1

2

What is destruction masking?

In the frostbite game engine one important feature is destructable environments. We
have developed several systems that, when put together, lets us do belivable
destructable environments. One of these systems is destruction masking.

Here is an example to illustrate this.

3

When destroying a part of this house, we begin by removing a piece of the geometry.

4

We then add detail meshes around the destroyed section.

5

And the final step is to add the destruction mask.

We can go on and let the player destroy other parts of the house and the detail
meshes and mask will be added for those parts as well. We also add particle effects
and mesh debris for a more dramatic look.

6

1. How we did destruction masking in the first frostbite engine.

2. How we use volume distance fields.

3. Two techniques for drawing the destruction mask efficiently.

4. Result screenshots and performance numbers.

7

The frostbite 1 engine has been around for a few years now and we have shiped three
titels on it. The first was Battlefield Bad Company, followed by Battlefield 1943 and
the latest was Battlefield Bad Company 2.

All these titles used a system for destruction masking. This system had good visual
quality and decent performance. The main issue we wanted to address was the time
consuming workflow which involved creating UV maps for each destructable part.
Although giving the artist full control of the mask, we felt that speeding up the
workflow, to allow our artists to create more content, was more important.

8

In frostbite 2 our main focus has been speeding up workflows and iteration times.

We have also switch to using deferred rendering, which opens up for some rendering
techniques we couldn’t do before.

The target platforms for frostbite 2 are PS3, xbox 360 and directx 10 and 11

9

How do we use signed volume distance fields as one step in creating the destruction
mask.

We start by marking out the areas where we want the mask to appear on the target
geometry. We do this by placing spheres on the target locations.

Next we take this group of spheres and compute a signed volume distance field. We
store the distance field in a volume texture so that each texel contains the shortest
distance to any sphere.

Using spheres makes computing the distance field a fast operation.

We can also get away with a rather low resolution distance field of approximatly 2
meters per pixel.

The volume texture is local to the target geometry and placed to tightly encapsulate
it. So we have one volume textures for each destruction masked geometry in the
scene.

The spheres are authored by the artist by first auto generating a set of spheres so
that each destructable part has one. The artist can then go on and move/scale the
spheres as well as add new ones. For example, to cover a hole that is not close to
square the artist might want to put several smaller spheres to get a better fit.

10

The next step is to use the low resolution distance field to get a detailed destruction
mask.

1. Here we can see a destroyed part of a building wall and the distance field around it
drawn with point sampling.

2. Turning on trilinear filtering gives a smooth gradient, the surface of the destruction
mask is at gradient value 0.5.

3. By multiplying and adding an offset we can find the surface of the destruction
mask. Additionally we project a detail texture onto the geomery and use it to offset
the distance field. This breaks up the low frequency shape of the mask and creates a
more interesting look.

4. Final result with texturing.

11

One thing to consider when working with small textures on Xbox 360 is that texture
dimensions need to be a multiple of the tile size. For 3D textures the tile size is
32x32x4.

Our distance field textures are typically 8x8x8 in dimension which will be a
considerable waste of memory if we allocate them one by one and have a lot of
them.

Our solution to this is to use texture atlases.

To simplify packing textures into the atlas we keep one atlas per texture dimension.

As always when working with texture atlases we need to add padding between the
textures in the atlas to prevent leakage across texture borders. Since we don’t need
to generate mipmaps for these textures (they are so low resolution that we LOD them
before min filtering would be needed) padding only needs to be one pixel wide.

12

When we draw geometry with destruction masking we first sample the distance field,
if we then see that the pixel is outside the mask volume we can use dynamic
branching to early out from the rest of the mask computations. This saves us a lot of
computation time for pixels not affected by the mask.

However, when we tried this on PS3 we saw that dynamic branching was not very
efficient. The RSX has a fixed cost of 6 cycles when introducing a branch in the shader,
and for the branch to be taken a group of up to 1600 pixels all need to take the same
path.

This led us to to try out a different approach, drawing the mask as a deferred decal.

13

Deffered decals works simular to how we apply light sources in a deferred renderer.

1. Begin by drawing the main geometry of the scene to fill in the g-buffer.

2. Next draw a convex volume covering the decal area.

3. When drawing the volume fetch depth from the depth buffer and convert to local
position within volume.

4. Knowing the position within the volume we can look up the decal opacity by for
example sample it from a volume texture.

5. Finally we alpha blend the result to the g-buffer.

One advantage of this method is that the convex volume we draw covers only the
decal area, and pixels outside of it are uneffected. So if we can make a good fit for the
convex volume for the decal area we can save performance. Many optimization
techniques has been developed for applying light sources in a deferred renderer
(stenciling, tile classification) and we could potentially use those here as well.

14

The destruction mask replaces the underlying diffuse albedo and normals by
projecting detail textures onto the masked geometry.

In order to achive that we need tangent vectors for the projected surface - both for
converting world space positions into texture coordinates, and to convert tangent
space normals from the detail normal maps to world space normals.

It is appealing to construct tangent vectors from g-buffer normals, but those normals
are typically based on normal maps, while we want the normals from the actual
geometry.

We took a look at the geometry our artists are creating and saw that there are only a
few tangent vectors required for a typical object. With that in mind, we created a look
up table with the required tangent vectors and stored them in a texture. Then, when
drawing the scene geometry we write out an index to the g-buffer. We sample this
index when drawing the deferred volume and use it as an offset into the lookup table
texture.

15

What about alpha blending to the g-buffer?

One thing we found was that the fixed function blend in current GPU hardware was
limiting when alpha blending to the g-buffer.

The problem comes from that we use the g-buffer alpha channel to store data, but
from the shader we can’t output one alpha to use in the blending equation and a
seperate one to store in the render target.

This limits us in what we can output to the alpha channel when drawing the decals.

It also limits us in g-buffer layout. We need to arrange g-buffer data in an order that
supports blending of the components we are interested in.

We see a good use case here for programmable blending.

16

Another thing to consider is getting correct mipmap selection for our textures.

When we have discontinuities in the texture coordinates within a quad, the mipmap
selection for that quad is going to be wrong.

In the zoomed in picture to the right we can see an example of this. Here the texture
coordinates for the upper part of the quad samples from the brickwall texture and
the bottom part from the floor texture. These texture coordinates are at different
locations within one texture atlas and the GPU is going to select the lowest mipmap
for this group of pixels.

The way we solved this problem was to manually calculate the correct mip level for
each individual pixel and explicitly sample with tex2Dlod.

It is possible to optimize the computation by creating a 2D lookup table texture with
the inputs v.n and distToNearPlane.

17

Another PS3 specific method we have explored to optimize drawing the destruction
mask is distance field triangle culling.

Instead of branching in the fragment shader, which we saw is not very efficient on the
PS3, we have moved the branch from the GPU to the SPUs and do the branch per
triangle.

The way it works is that for each triangle in the mesh we test it against the distance
field to see if it inside or outside the mask volume. We output the triangles into two
seperate index buffers and issue two draw calls. The draw call for triangles inside the
distance field volume is drawn with a shader that computes the mask while outside
triangles are drawn as normal.

To help us do this in an efficient way on the SPUs, we take advantage of the
playstation edge geometry library and run it a step of that geometry pipeline.

We only need to do the actual culling against the distance field when the distance
field changes, inbetween we can cache the result.

18

This table shows the GPU cost for drawing the destruction volume in a typical
scenario running on PS3. Numbers differ from different scenarios, but they indicate
that the method of culling triangles is the best method for GPU performance on PS3.

Deferred volumes didn’t give as good performance as we had hoped for. However, we
still have optimization methods for this technique left to explore.

19

We have seen how volume distance fields can be used to define the shape of the
destruction mask.

We have explored two different methods for drawing the mask in an efficient way.

Although the method of triangle culling initially has shown us the best GPU
performance it’s not clear that it’s the best solution for other reasons. Because it is a
PS3 specific solution it requires us to maintain a seperate code path and the whole
solution is more difficult to integrate into the game engine in an elegant way.

Before settling with one solution we need to do more testing and explore further
optimization techniques for deferred decals.

Deferred decals is an interesting technique which potentially has other use cases
than destruction masking. For example, traditional decal solutions are often complex
platform dependent implementations and suffer from rendering artifacts such as z-
fighting. Deferred decals could be a possible replacement.

20

21

Here we can see the interior of the house. In the ceiling we use a second detail
normal map that we blend in around the edges to make them pop out more.

22

This next screenshot shows a zoomed out view with more destruction applied to the
house.

This is more or less our worse case scenario, where most of the house is covered by
the destruction mask.

23

One more screenshot of the interior of the house.

24

And here is an outside view.

We can see that we get a lot of detail in the mask from the projected detail textures.

25

26

27

