
1 



Here’s the general problem we want to solve efficiently: 

Given a light and a set of pixels in view space, resolve occlusion between each pixel 
and the light. 

2 



To visualize this problem, consider the shadow rays from the lights point of view. 
The camera frustum is visualized in white. 
The coloured pixels represent samples that the camera can see and thus for which we 
need shadow data. 
The yellower the pixel, the denser the samples. 

 

As this image demonstrates, the naive shadow mapping projection is pretty 
inefficient. 

It wastes resolution where there are no objects in light space. 

It produces perspective aliasing near the camera (lots of samples there means we 
need lots of resolution). 

And finally you get projective aliasing on objects nearly parallel to the shadow rays. 

 

 

3 



There are a number of ways to address these issues. 

Z-partitioning (also called cascaded shadow maps) is the most common and produces 
good results. 

Warping methods like perspective shadow maps can also be used, but some 
partitioning is always required. 

However these methods only explicitly addresses perspective aliasing. 

 

4 



Projective aliasing is simply a hard problem as it produces unbounded and highly 
irregular sample distributions. 

Thus it’s difficult to address while maintaining a given performance and memory 
budget. 

Our goal here is to maintain a fixed performance and memory budget and get as 
good quality as possible within that budget. 

Conversely, techniques like resolution-matched shadow maps and the irregular Z-
buffer are able to guarantee a quality level, but drop in performance for complex 
cases like heavy projective aliasing. 

Thus they are typically unsuitable for games which have a fixed frame budget. 

 

5 



Our work is based on Z-partitioning. 

The idea of Z-partitioning is to split the frustum into multiple segments and use a 
different shadow map for each. 

6 



This image shows a visualization of Z-partitioning.  

The coloured regions indicate which shadow map (four in this case) is being used for 
each part of the scene. 

As you can see, the shadow maps partition the camera’s Z axis. 

 

7 



Z-partitioning is actually a really good solution with a lot of desirable properties such 
as predictable performance, memory costs and simplicity. 

It is also orthogonal to many other shadow map algorithms such as warping and 
filtering, making it easy to fit into established pipelines. 

However it does leave open a few questions. 

In particular, how do you partition the Z range for optimal shadow map usage? 

After that partitioning is done, where do you place the shadow maps in light space to 
avoid waste and ensure the best resolution possible? 

 

8 



Brandon Lloyd showed that a logarithmic partitioning produced the minimal 
maximum error over a Z range. 

He noted though that it’s very important to have tight bounds on the near plane in 
particular, or else the majority of partitions and resolution will be wasted in empty 
space near the camera. 

 

To address this problem in a practical way, parallel-split shadow maps mix a 
logarithmic and uniform distribution with a tuneable parameter. 

However the optimal value of this parameter is related to the optimal near plane of 
the scene and so it’s not possible to set it in a globally-optimal way. 

9 



In practice, artists manually place partitions for specific views and scenes, but this is 
time consuming and ultimately sub-optimal. 

This is the largest complaint about Z-partitioning that we hear from game developers. 

 

10 



Here’s an example of PSSMs with two different views of the same scene. 

No static partitioning can handle both of these cases well. 

11 



A further problem is where to put the shadow maps in light space once we have the 
frustum partitions. 

Almost everyone uses a simple axis-aligned bounding box of the frustum corners, but 
this is often suboptimal since it doesn’t consider empty or occluded space. 

12 



Sample distribution shadow maps address both of these issues by analyzing the 
actual distribution of light space samples required to shadow the current view. 

To ensure minimal wasted shadow map space, we compute a tight light-space 
bounding box of the required shadow map samples for each partition. 

This greatly increases the useful amount of shadow map space by taking advantage of 
occluded or empty regions in light-space. 

 

13 



Significant aliasing problems both near the camera and far away. 
The PSSM tuneable parameter has been tweaked for this view to provide a 
reasonable solution. 
Significantly worse results can occur in practice! 

 

14 



15 



This is what the camera frustum looks like from light space. 

16 



A simple frustum partition bounding box results in lots of wasted space. 

Large parts of the frustum are empty or occluded (this is typical). 

 

17 



Comparatively, SDSMs achieve sub-pixel resolution almost everywhere. 

Note that filtering and shadow MSAA have been disabled to better display the raw 
resolution. 

 

18 



Partitioning is similar to the hand-tuned solution but fully automatic and adapts to 
the view. 

Tight bounds achieve significantly better shadow resolution throughout. 

19 



Near/far has been tightened to cover only visible samples. 

Note that near being tightened is actually the most important. 

20 



Tight light space bounds take advantage of camera space occlusion and produce 
excellent bounds for each partition. 

21 



There are many options for deriving a Z partitioning from the sample distribution data 
beyond the simple logarithmic scheme. 

We explored a number of more complex algorithms including K-means clustering and 
adaptive gap-skipping algorithms. 

Unfortunately these algorithms tend to be fairly situational and occasionally 
introduce glass jaws where particularly poor solutions are selected. 

These fancier schemes also involve generating a full depth histogram while the simple 
logarithmic scheme only requires a min/max Z reduction. 

22 



We implemented these algorithms in DirectX 11 using compute shaders and they run 
entirely on the GPU. 

 

There are two paths: the first uses a simple reduction which is all that the logarithmic 
scheme requires. 

This path can be implemented in pixel shaders and is suitable for previous generation 
hardware. 

 

The second path uses a generalize histogram and can support all of the variants. 

This path uses shared memory atomics to generate the histogram efficiently. 

Without this feature, generating this histogram is generally too slow to be practical. 

23 



We measured the cost of the SDSM analysis step compared to using static partitions. 

At 1080p the overhead of the reduce path is around 1ms for these GPUs. 

 

The histogram path is practical on the ATI card. 

On the NVIDIA card is impractically slow, perhaps due to the heavy use of shared 
memory atomics. 

 

Thus together with it being the most robust, we recommend using the logarithmic 
scheme with the reduce path. 

 

24 



We now measure full frame times when using the technique. 

We’re using a very high quality shadow map setup that produces extremely nice 
results. 

Shadow map MSAA is effectively jittered super-sampling since we’re using only depth 
(which is super-sampled). 

Note that because we’re using a deferred renderer we only need the storage 
footprint for a single shadow map partition. 

 

Even with these high quality settings we achieve good frame rates. 

You’ll also notice that SDSMs actually come out faster here than PSSMs in addition to 
being much higher quality... 

25 



The reason is because of the tighter light-space frusta that we derive which enables 
better frustum culling. 

It’s effectively free occlusion culling for the shadow maps. 

This is a typical result for SDSM in complex scenes. 

 

26 



A potential caveat about using the SDSM results for better frustum culling is that the 
data is generated on the graphics card and thus is not readily available to the CPU for 
culling. 

One option is simply to stall and read back the partition results. 

While this is typically a bad thing to do, it’s what we do for now and it’s less slow than 
you might imagine. 

 

Frustum culling can actually be computed very efficiently on the GPU right now, but 
there’s currently no good mechanism for the GPU to drive rendering. 

In the long run we really need better hardware and programming models that allow 
the GPU to submit work to itself instead of being spoon-fed by the CPU. 

 

27 



Another potential concern of any view-adaptive technique is temporal aliasing. 

The typical solution to this for cascaded shadow maps is to quantize the partition 
boundaries in light space so that you only move them by texel-sized chunks. 

Unfortunately this places far too many restrictions on the partitions, lights and 
camera and results in bad shadow solutions. 

 

28 



A slightly better option is to quantize the partitions to power-of-2 sizes so that you 
always “double” or “halve” resolution, which avoids sub-pixel shifts. 

This works, but it’s too extreme. 

Far too much shadow resolution is wasted. 

 

The best option we’ve found is just to aim for sub-pixel shadow resolution. 

If you can achieve that, the temporal shifts are not visible. 

This requires sufficient shadow partition resolutions and good filter, but it is quite 
achievable on modern cards. 

29 



Our hope is that this idea spawns future work in the space. 

There are many directions to go in terms of finding better partitioning schemes. 

We investigated some of the more obvious ones but there may be better options just 
waiting to be discovered. 

 

To address projective aliasing efficiently it will be necessary to look at hybrid 
algorithms. 

Since we know the sample distribution we know the places that exhibit high error 
and could potentially apply a more expensive algorithm to those regions. 

More investigation is needed to see if there is a practical and artifact-free way to do 
this. 

30 



31 



32 



33 


