
1

-Transmittance maps to the [0,1] interval.
- In this work we don’t take in consideration light scattering, transmittance can only
change (decrease) via absorption. Emissive materials are technically possible as our
work doesn’t make any assumption on the monotonicity of the visibility curve.

2

3

4

- An individual AVSM texel encodes N nodes, each node is represented by a depth
and a transmittance value. Nodes are always stored as sorted (front-to-back)
sequence.
- The AVSM is cleared by initializing all nodes within a texel to the same value. We set
depth to the far plane and transmittance to 1 (no occlusion)
- Incoming light blockers are represented by light-view vector aligned segments. A
segment is defined by two points (entry and exit points) and transmittance at the exit
point (transmittance at the entry point is implicitly set to 1).
- We assume that the space between the entry and the exit points is filled by an
uniformly dense media. This would typically generate transmittance curves shaped as
piece-wise exponential curves, we use lines instead to simplify the problem (not
much visual difference in most cases)

5

- The first and last node are never compressed/removed as the provide very
important visual cues. The last node is extremely important as it encodes information
on the shadow that is cast on any receiver which is located behind the volumetric
blockers. For instance the shadow cast by some cigarette smoke over a table will
always be correct (no compression artifacts)
- After a node is removed we don’t update the remaining nodes location in order to
better fit the original curve (ala deep shadow maps). In fact updating nodes location
over dozen of insertion-compression iterations can generate some unpredictable
results as the nodes perform random walks over the compression plane.

6

- The variable memory (pixel shader based) implementation avoid data races by
reading back per pixel linked lists and building an AVSM via a full screen pass. A full
screen pass avoids data races by guaranteeing that only one fragment that maps to a
specific pixels in shaded in flight at any given time (no overlapping primitives)

7

-AVSM sampling is implemented via a 2-level search performed over a sorted (front-
to-back) array of nodes. The first step is a linear search performed with a 4-node
stride, while the second level search within 4 nodes. Since we always work with a
pre-determined number of nodes it is possible to generate some very efficient search
code that doesn’t employ any dynamic control flow statement or dynamic access to
arrays of temporary values.
- It is possible to generate mip-maps for an AVSM texture, which are mostly useful to
improve data locality and to improve IQ for volumetric shadows generated by sharp
and thin light blockers.

8

- Diff images have been enhanced by 4X

9

- FOM has significant issues with very sharp transmittance function transitions
generated by hair-like geometry

10

- In this particular case AVSM generates slightly better results than Deep Shadow
Maps. The latter performs a local analysis of the visibility curve. AVSM, while working
on an incomplete data set, always try solve a global (within a texel) optimization
problem.

11

- The per-pixel-list and AVSM rendering (compress) time is often negligible compared
to the AVSM sampling/filtering time.

12

- Pixel shader based implementation is fast but
uses unbounded memory

13

14

15

16

17

18

19

