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There is no easy way to objectify what looks good, but I find it useful to lay our goals down as 
to what we consider “good” means, to make it more objective. 
 
Blinn-Phong, properly factored and filtered, turns out to be quite expressive. 



4 

The normalization factor on Blinn-Phong is vital for a number of reasons. It prevents the total 
illumination from the function from getting darker, and though this could be compensated by 
an artist, what it means is that an artist shouldn’t have to modify the Ks value when they are 
changing the shininess of an object. It also automatically makes a scene ‘HDR’, because high 
powers will return very powerful highlights. 
 
This normalization factor will also prove helpful later on when we switch to a different BRDF, 
since this one will be normalized. 
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There is more to reflectance than this, specifically when we talk about materials which have 
some level of light scattering on the surface. But in terms of many hard materials, the 
microfacet model is a good one. 
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These screenshots are from a quick and dirty demo. The right way to do this is to use a 
texture parameterization and render to it using Texture Space Lighting. This will create very 
stable, nice looking results.  
 
For my slides on this, check out: 
http://www.slideshare.net/mobius.cn/advanced-lighting-techniques-dan-baker-meltdown-2005 
 
It’s a bit old now, but still good info. 
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As of now, my kitchen remodel still Isn’t done. 
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The inability to use high powers was a huge problem for us for Sid Meier’s Civilization 5. I 
think people typically use reflectance maps to mitigate this, but this didn’t work well for our 
scale. In general, it makes Blinn-Phong far less useful because the range of settings is very 
narrow. 
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As I am not an expert in offline rendering, I don’t know the answers to these questions to my 
own satisfaction. I believe that brute force has helped them, but an elegant solution would be 
better. 
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A copy of our paper can be found at: 
http://www.csee.umbc.edu/~olano/papers/ 
 
Or in the I3D proceedings: 
Marc Olano and Dan Baker, "LEAN Mapping", I3D 2010: Proceedings of the ACM SIGGRAPH 
Symposium on Interactive 3D Graphics and Games. 
 
This talk is a little vague due to time constraints, but the I3D paper describes the specifics.  
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We had some issues with low power materials being different – in some of our shaders we 
actually LERP to Blinn-Phong for very low powers since the aliasing/reflectance issues aren’t 
as great for low powers.  
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The fact that there are still some illumination differences is likely due to the fact we shift the 
distribution on the tangent plane rather than reorient the surface.  
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We have experimented with different compression schemes, and have found that splitting the 
high and low precision into different channels of a BC5 texture actually works reasonably well. 
Artifacts from incorrect linear filtering weren’t terrible. 
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A year ago I had a wakeup call: I’d been throwing my life away, focusing on the wrong things. 
What’s the point in supporting many dynamic lights, for instance, if the shading is all wrong? 
 
This was a ‘self-intervention’; the art team, on the other hand, had just come to accept 
temporal aliasing and lack of appearance preservation. 
 
The first rule is to admit that you have a problem. The second rule is: don’t go pointing this out 
to artists before you have an action plan! I started showing them the many ways in which 
things were broken and they hated me for it. Pride in their work turned to disgust. You can’t 
‘unsee’ this stuff! 
 
So, I went looking for solutions… 
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The first of these is texture-space shading (TSS). It’s a simple idea: light at the base mip 
texture resolution and generate mipmaps (on the fly). 
 
This is problematic in two respects: 
1)  You need a unique parameterisation (no UV overlap) 
2)  Shading is likely to be prohibitively expensive (and variable), since small on-screen 

objects are still shaded at a much higher rate. 
 
The second issue can be overcome by combining TSS with another technique. 
 
The reason I’m mentioning TSS is that it’s a useful ground-truth method (like super sampling, 
as Dan showed) to compare other methods against. 
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Fitting is one technique that could be combined with TSS. 
 
The idea is to pre-calculate adjusted surface/material properties that best approximate the 
average lighting response of the base textures (albedo, specular and normal maps), for each 
MIP level. 
 
The fitting process can be fiddly to get right. For instance, you need to ensure coherent results 
between texels, so that hardware texture filtering can be used. 
 
The bigger problem is that the process can be slow, particularly if you’re trying to solve for 
several parameters. In practice, the average normal that you get from regular mipmap 
generation works well, so fitting can be focused on other properties, such as roughness/
glossiness, which has a big impact on appearance when using energy-conserving specular. 
Still, anything that takes many seconds/minutes for a large texture will inhibit artist iteration. 
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Fortunately, there’s a much more direct approach (avoiding fitting entirely) if you’re just 
concerned with adjusting the specular power. 
 
In 2004, Michael Toksvig came up with a supremely elegant method that does this based on 
the length of the average filtered normal (Na), that we might get when sampling the normal 
map in a shader. 
 
The length provides an estimate of the variance of the original normals… 
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Here we’re plugging the length into this simple equation… 
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…and out pops the variance estimate. 
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Using this second equation, we can then adjust our old specular power, s, based on the 
variance. 
 
This gives us a new specular power, p, that we shade with instead. 
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On the left: the original specular result. Highlights shimmer a lot under object, camera or light 
motion. 
In the middle: the adjusted, anti-aliased result. There’s a lot less shimmering and the teapot 
looks similar at all scales. 
On the right: a visualisation of gloss adjustment (Toksvig scale factor). Flat areas are light, 
rough areas are dark. This makes intuitive sense. 
 
Here’s a demo with a similar setup: 
http://selfshadow.com/sandbox/gloss.html 
 
In theory, these calculations can be performed in the shader itself… 
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However, there’s a major practical issue: DXT compressed normals don’t place nice with 
variance estimation. 
 
With two-component normal map formats, we can’t even estimate variance (normal length is 
assumed to be 1). 
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Fortunately, the problems go away if we precompute on texture import, prior to compression. 
 
How do we do this? 
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Simple: for each MIP level of the normal map, compute the variance at each texel and store 
the result in a texture. 
 
Note: it’s a good idea to apply a small (3x3) filter here to simulate hardware texture filtering 
that will happen at runtime. This further reduces aliasing and leads to smoother mip transitions 
(particularly from the base mip level). 
 
Instead of storing variance directly, another option is to adjust the (artist-painted) gloss map. 
This has the advantage that there’s no extra shading cost at run time – everything just works 
automatically. However, it does tie the two textures together, which could be an issue if you 
regularly mix and match to save time/memory. 
 
It’s perhaps tempting to allow artists edit the results, but this has the danger of reintroducing 
aliasing and/or breaking the appearance in the distance. So far we haven’t found any need for 
this. 
 
Games are already shipping with this or very similar implementations. See [Lazarov11], 
[McAuley12]. 
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Once you have variance-adjusted glossiness, it pays off everywhere it’s used! 
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However, although this method can work well, we can do better in some cases… 
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LEAN mapping results in a tighter highlight here, which is closer to the ground truth. 
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However, there are some downsides… 
 
Memory in particular is a big issue. 16 bit storage is needed if you want to go to higher 
powers, as Dan already mentioned. 
This is a major storage multiplier over DXT1 or DXT5, plus we need two textures! 
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Before I cover some thoughts on overcoming these drawbacks, I’d like to briefly give some 
additional background on LEAN mapping that helped me understand things more intuitively. 
 
On the left is a regular normal (Gaussian) distribution. It has a similar falloff to Blinn-Phong, 
particularly for higher specular powers. 
 
LEAN mapping an extension of this – in fact it’s a bivariate normal distribution. The covariance 
matrix that’s reconstructed in the shader (as Dan mentioned earlier) describes this distribution. 
There are two variances (tangent and bitangent) and correlation, ρ. These change the shape 
and angle of the lobe. 
 
It’s easy to see how LEAN mapping can better approximate the distribution of normals. In 
particular, if there’s more variance in a particular direction, the lobe will stretch out and 
produce an anisotropic highlight. 
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On the memory front, we could theoretically bake the covariance matrix offline and store that, 
similar to baking Toksvig. 
 
This isn’t strictly linearly filterable, but in practice it’s not too bad. 
 
However, there can still be precision problems, particularly with Σz. 
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Another option is to store two gloss values in log space. This is a popular encoding for gloss, 
as it’s pretty linear in terms of highlight size. This makes it intuitive to paint, and it also 
behaves well with texture filtering and compression. 
 
The correlation could be stored too, but you may find that this isn’t needed with your game 
content. For instance, in the case of the earlier brick texture, most anisotropy in the normals is 
strongly axis-aligned (along brick edges), so the correlation is low. 
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By storing two log-space gloss values, we can cut down on the shading complexity too. 
 



44 

The final challenge is with deferred shading. The LEAN distribution requires a tangent frame, 
so we need to store/reconstruct this somehow. 
 
One compact option is to store a quaternion. 
 
This image shows (0, 0, 1) rotated into world space using this quaternion, followed by lighting. 
With R8G8B8A8, this produces banding beyond what you would get from storing the world-
space normal directly with the same precision, particularly if you compare against “Best Fit 
Normals” [Kaplanyan10]. 
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To improve precision over R8G8B8A8, we can get rid of the largest component, store the 
index and reconstruct it later. Precision can then be improved by rescaling the remaining 
components and using R10G10B10A2. See [Frykholm09] for more details. 
 
This leads to more encode and decode overhead, although for tile-based deferred rendering, 
the decode cost is amortized. 
 
There is still the per-light overhead of transforming the half vector into tangent space using the 
quaternion (6 instructions). 
 
It’s a classic tradeoff of storage cost vs. performance. I’m not recommending this approach for 
current consoles, where MRT space and shader cycles are typically at a premium, but it’s a 
potential option for DX11. 
 
Some space can be clawed back to make room for two gloss values by storing x and y of the 
tangent space normal (reconstructing z later). 
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But we’re not done. Specular aliasing from normal maps is just one of several issues! 
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Let’s say that we’ve gone ahead and implemented specular AA based on normal map 
roughness. 
 
What happens later if we want to slap a detail normal map on top? 
 
One (statistically sound) solution is to sum the variance. This works so long as the two normal 
maps are not strongly anti-correlated – i.e. they don’t cancel each other out. (See the LEAN 
Mapping paper for more details). 
 
To do this, take the reciprocal of the existing specular power, s, add the variance from the 
detail map, then finally invert again to get the new power, s’. 
 
This is a simple rearrangement of the second equation for Toksvig mapping covered earlier. I 
find this version a little easier to remember and it could be convenient if you’re summing 
additional variance from other sources. Other sources you say? Well, let’s see… 
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Geometry is another source of normal variance and therefore aliasing! 
 
We could prefilter our object-space normals and use Toksvig to get the variance. 
 
However, just like TSS, we would need a unique parameterisation (an ‘atlas’), which isn’t 
convenient! 
 
Still, this gives us something to compare against. 
 



Instead, we can adapt Eric Penner’s Pixel-Quad Message Passing technique (presented at 
Advances last year) to access the other normals in the pixel quad at run time. 
Note: high-quality derivatives are available with DX10/11 or PS3. 
 
We can then average the normals and calculate variance. 
Note: this code has been optimised a little, which explains the lack of a *0.25. Also, in case it’s 
not obvious, these are interpolated vertex normals that have been renormalised.   
 
Behold, similar results to before! 
(Please forgive the mesh flipping and different orientation; the last image comes from a 
RenderMonkey project, whereas this one comes from a separate DX11 test app.) 
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Anton Kaplanyan was kind enough to share an alternative method developed in collaboration 
with Michal Valient at Guerrilla Games. 
 
This process essentially works by adding spread/cone angles instead of variance. 
 
First we convert the original specular power to a cone angle. (I won’t go into the details, but 
this is based on a curve that relates specular power to the solid angle of the highlight above a 
threshold.) 
 
Next, we calculate a delta normal based on the deviation (fwidth) of the adjacent normals. 
 
We then add this angle and convert back to a specular power. 
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Using a cheap approximation to acos (there’s no direct GPU support for this, so it expands to 
several instructions), we arrive at a pretty compact result. 
 
The results are similar to the variance version… 
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…here’s the variance version again. 
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Diffuse shading isn’t immune to aliasing either and we can get the same problems as specular 
under normal map minification. 
 
Here’s a plane lit with a light at a grazing angle using the filtered (averaged and renormalised) 
bump normal. 



54 

If we compare against TSS we can see that we’re losing a lot of luminance. 
 
(Bump-level self-shadowing is another issue, which I’ll be skipping over here.) 
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This can affect specular too, since N.L is part of the lighting equation outside of the BRDF. 
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Here’s the result with TSS. It’s a lot brighter and more detailed 
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What we should be doing is a full integral of the specular BRDF and N.L for all of the original 
normals in the footprint of the current pixel. 
(You can think of this as a discrete weighted sum instead, but I’ve use an integral to convey a 
continuous signal, including interpolated normals). 
 
Note: I’ve simplified things here quite a bit, by stripping the BRDF down, ignoring energy 
conservation, for instance. Ideally, some other terms should be considered too. 
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What we’re doing now (with Toksvig or LEAN) is approximating the integral on the right (just 
the specular BRDF) but we’re still using the average normal for N.L. 
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Approximating the full integral is a bit of a challenge, but we can get closer to the ground truth 
by factoring the full integral into two separate integrals. 
 
So now we just need to find a reasonable approximation to the left-hand side. 
 
The result can then be used both for diffuse AA and for better specular AA. 
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Back to cones! 
 
We can trivially convert normal variance to a cone angle: cos(angle) = 2*|Na| - 1 
 
Then, an we can approximate the earlier integral as an integration of N.L over this cone of 
normals. 
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This integral can be precomputed via numerical integration and stored in a LUT. 
This is just like Eric Penner’s Pre-Integrated Skin Shading technique (again, presented last 
year at Advances). 
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In practice, we can focus in on a smaller cone of normals, reducing the size of the texture and 
therefore the potential for texture cache thrashing. 
We could do the same for the x axis too. 
 
The first 25 degrees seems to make the biggest difference in the cases I’ve seen so far. 
Beyond that you start to get unwanted ‘wrap’ that looks wrong with unshadowed lighting. 
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It’s possible to go a step further and replace the LUT entirely by approximating the curve. 
 
It turns out that the ‘tail’ is close to an x^2 curve that joins with a straight line (regular N.L). 
 
The video shows how things change with variance. 
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With the help of Mathematica, I’ve been able to boil this down to the following function. 
 
The result is pretty close to the ‘focused’ LUT. 
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Unfortunately this costs too many shader instructions at the moment (it’s per light!) 
Some of this cost could be amortised, but it’s likely that a cheaper approximation is possible. 
 
We also face the same problem as with Toksvig when it comes to compressed normals, 
so in practice the length of the normal or the variance should be stored somewhere. 
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Back to our problem case… 
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Here are the results with the integral. This looks promising… 
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In fact it’s a close approximation of TSS! 
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What about specular? 
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Ta da! Much brighter (and also more stable) 
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It’s not identical to TSS, but there are several reasons for this: 
 
1)  Integral approximations. We’ve factored the full integral into two separate integrals 
2)  These simpler integrals have in turn been approximated (LEAN, diffuse AA) 
3)  Additionally, I’m actually undersampling the signal here with TSS (2048^2 not enough!). 

When I focused the resolution on a smaller section of the plane, the results were a little 
darker and smoother (i.e. a little closer to the LEAN + diffuse AA result) 
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Here’s a link to a simple WebGL demo that shows the diffuse AA component. 
 
As with specular AA, there’s far less temporal shimmering and appearance is better preserved 
at lower mip levels with “Diffuse AA” enabled (zoom out, or adjust the mip bias). 
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Environment mapping can be another major source of aliasing. 
 
Toksvig gloss adjustment in conjunction with Phong prefiltering is a good option here. 
 
However, it would be nice to go a step beyond this and use a microfacet BRDF. 
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Here’s Phong prefiltering on a plane. Highlights remain the same shape independent of view 
angle. 
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Here’s the same result with Blinn-Phong. The highlights spread out at shallower angles, which 
is more realistic. 
 
Filtered Importance Sampling (FIS) is one route to achieving this. It involves taking multiple 
weighted (and mip-biased) samples of the environment map. 
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The sample directions importance sample the specular distribution. 
 
There are several steps to this process. 
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We start off with a uniform distribution of random numbers. 
(A low-discrepancy 2D point set like Hammersley is one option here.) 
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Next we can use the Box-Muller transform to generate a normal distribution. In this case for 
(isotropic) Beckmann – a close match to Blinn-Phong, as Dan showed. 
 
In practice, this can be done offline and then scaled by the standard deviation (sqrt[1/power]) 
on the fly. 
 
This warps the random points to fit the distribution. 
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Next, ‘unprojecting’ onto the upper hemisphere gives us a half vector. 
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Finally, we can generate a sampling direction, Li, by reflecting the view vector about this half-
angle vector, Hi. 
(Well, there is a final, final step, which is to transform this direction from tangent space to 
world space, for lookup.) 
 
This is sort of the opposite of what we normally do when lighting with point sources, where we 
have a known light and view vector, from which we calculate the half vector. 
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This process can easily extended to the bivariate normal distribution used by LEAN mapping. 
 
As before, we use Box-Muller to generate a normal distribution. 
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Next, we use the covariance matrix… 
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…to warp the points to the distribution. 
Note: mu_x and mu_y come from the projected average normal. 
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Then we unproject to get the half vector and reflect as before. 
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Either distribution produces the stretched highlights shown earlier. 
 
What’s interesting is what happens with a strongly grooved (anisotropic) normal map. 
For Beckmann (or Blinn-Phong), the result in the distance is overly diffuse. 
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On the other hand, with the LEAN distribution, the distant appearance is similar to the high-res 
version. 
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Unfortunately, quite a few samples are needed with FIS. More samples are needed for highly 
anisotropic cases (64+), whereas you can get away with less for semi-glossy, isotropic 
situations. 
 
It’s possible that a different parameterisation and anisotropic texture fetches could result in a 
cheap approximation. 
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In spite of this, it’s a useful framework to have around for prototyping purposes. 
 
The approach could also be used to accelerate cubemap prefiltering. 
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Cubemap array index = the average of covariance matrix diagonal (top left, bottom right) 
inverted, times 4. 



93 



94 



95 

We would like to thank various people for their help. 
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