
Everything that we're presenting today has been a real team effort. A lot of people 

contributed to the systems we're describing



PBR: Material, lighting, camera











Such a loop can be optimized with CPU or GPU help to remove lights that don’t affect 

the material.



Note that this light loop is conceptually identical in deferred or in forward. Only the 

source of the properties of the material differ. In deferred it comes from the GBuffer 

and in Forward it comes from the object uniforms / textures.



For each light TYPE, evaluate material response



For performance reasons, in game there is often a coupling between a light type and 

the material evaluation response. Like we pre-integrate IBL by the lighting model of 

the material.

So we need to do one loop for each light TYPE.



This series of light type loop is sometime split in different call, performance may vary



In HDRP we use a single light loop with all the light type. We have Sun, punctual light 

(spot, point), area light, IBL, sky.



HDRP support both deferred and forward renderer. Let’s take the example of deferred 

renderer. We have one deferred material that fill a gbuffer and one transparent 

material that use

The same light loop. Unified lighting.



Example of forward renderer. We have forward opaque and transparent material



HDRP also support both forward and deferred at the same time. In this case, in 

addition to what we have seen for deferred path, we also have forward opaque 

material.



We can switch (dynamically or not) to full forward



This schema show how we write a material in HDRP to work with our deferred and 

forward architecture. These are guidelines. And we introduce the concept of artists 

friendly data and engine friendly data.

Let’s say that the inputs fill by an artists in a UI or shader graph is artists friendly data. 

Like Smoothess. We add a conversion function to engine data (For example 

roughness), that the lighting engine is able to used.

The Gbuffer is then just an intermediate storage. It can be compressed.

Material of HDRP need to follow this material guidelines to fit in the lighting 

architecture.





With volumetric the concept is exactly the same, except we used volumetric material 

instead (absorption, scattering)



Similar to GBuffer we use VBuffer as input of volumetric material for evaluation.



And in practice we decouple the lighting pass and evaluate for each cell of a froxels. 

Then apply the result on the opaque and transparent material in a separate pass.



1. Major emphasis on aggressive (but fast) removal of false positives even for spot 

light with sphere cap.

- Important since spot lights are often shadow casting and narrow. 

- List building using basic bounding sphere testing is highly insufficient.

2. All list building work is absorbed by leveraging asynchronous compute.

3. False positives are much more expensive to deal with during lighting rather than 

early on.

- Final lighting shader has higher loop complexity and greater register pressure.

- Final lighting shader cannot leverage asynchronous compute during rendering of 

shadow maps.

4. The lists can be used for either deferred or forward or both.

5. Lists are delivered in order of increasing index to preserve order by type which 

helps reduce thread divergence during lighting.



1. Find screen-space AABB for each visible light

2. Big tile 64x64 tile pre-pass. Use AABBs for initial early out (2D no depth).

- Follow up with exact intersection test between tile and convex hull.

- Use bounding sphere as an extra testing criteria (helps with point lights and sphere 

capped spot lights).

Basically first comes AABB pass, then comes big tile pass which uses what AABB 

pass produced and then comes FPTL and Clustered list building passes which use 

both what big tile pass but also what AABB pass produced fptl and clustered both use 

the list of potential tile overlaps generated in big tile prepass 

they both use the AABBs to test the ones left in the list from big tile prepass 

the convex hull is the oriented bounding box but with 2 scale values so we can 

squeeze the top 4 vertices along separate axis X and Y to create either a pyramid or 

a wedge when the scales are set to 1.0 it's just an obb if they are less than 1.0 they 

get scaled inward. If they both go all the way in it becomes a pyramid if only one goes 

in its a wedge and then the bounding sphere helps give us the sphere capped part of 

the spot light, the obb and the two scales is what we use as the convex hull but we 

also use the bounding sphere as an extra constraint for rejecting more tiles which is 

important for both point lights but also for the sphere cap in both FPTL and clustered 

they loop over what the big tile pass generated per 64x64 tile as a list. They both 



check AABBs first against the list and build up a coarse list in LDS. Then they both 

follow up with checking if the silhouette of the bounding sphere overlaps the tile for 

each light in the coarse list. finally fptl does fine pruning and clustered checks clusters 

against the remaining lights

when bigtile prepass checks AABBs it's 2D and against 64x64 tiles. When fptl does it 

for instance it's 3D aabb test and against 16x16 tiles

for fptl it's particularly tight since it only needs it to cover opaque pixels so we can 

reject a lot in that early pass alone by including that min/max depth in the intersection 

test so big tile only does .xy in the aabb test. fptl does .xyz (edited) the sphere overlap 

against tile is 2D overlap test in all cases but of course you can remove a little extra 

because it's a smaller tile so I decided to do the test again because it's pretty cheap

for clustered the second AABB test is still 2D but it prunes a little extra since it runs on 

32x32 instead of 64x64 and it's a very fast test 



FPTL implementation 

1. For FPTL we use 16x16 tiles with no clustering. 

2. First do trivial AABB test (3D). Then do tile vs. bounding sphere test.

big tile only does .xy in the aabb test. fptl does .xyz

3. Fine pruning removes any light that does not have at least one opaque pixel/point 

inside its true volume.

- Aggressive removal of false positives but works for opaque only.

4. Since all false positives are removed and since FPTL is for opaques only we write 

one list per tile.

- During deferred this allows light attributes to be read into scalar registers instead 

of vector registers since all pixels in the tile visit the same list.

- No thread divergence during deferred since all threads processing the tile read the 

same list.

What is new compare to the article referenced:

1. Clustered

2. big tile prepass

3. fast silhouette of sphere vs. 2D tile overlap test



Clustered implementation 

1. Cluster resolution is 32x32 tiles with 64 clusters.

2. Performs accurate but fast cluster vs. light intersection test - even for sphere 

capped spot lights.

3. Use geometric series to establish cluster position and size.

4. Common ratio established per tile such that half of the clusters (32) are consumed 

between near plane and max. opaque depth.

- Provides highly optimal cluster resolution in the visible area while still permitting 

queries behind max. opaque depth (for things like particles, volume lights and 

transmission fx).

(3 + 4) it's choosing the parameter for the geometric series such that it has spent 

exactly half of the clusters by the time it reaches max opaque depth in the tile







Entry cost is expensive: 1ms, almost same cost for 1 or 10 light, but it scale well.

Scene on the side is display with our debug tile lighting mode







Static diffuse lighting is sampled during GBuffer pass



Default to 4 RT for XboneOne

Light layering is light linking, mean linking a light to a set of objects, so it only affect 

those objects.

RT4 can be dynamically allocated. For example it could be enabled only when doing 

in game cinematics but not during regular gameplay



SSR: Screen space reflection

SSAO: Screen space ambient occlusion



Light layering can be enabled per camera, meaning that we allocated an extra RT 

only when required. Typically for in game cinematic

The blue dragon is affected only by blue light and the grey in the middle of the white 

is not affected by reflection probe



SSR: Screen space reflection

SSAO: Screen space refraction





For forward path we require to output data during depth prepass. Note: for opaque 

forward material we always perform a depth prepass in HDRP











Outputing SSS data during prepass will make prepass expensive. We prefer to avoid 

it. 



Note: For XBoneOne we aim at keep 4 RT 32 bit. This is what we get. 1RT diffuse, 2 

RT specular , 1 RT sss data





Note: This is discuss later but in case of SSS material, we store diffusion profile and 

SSS Mask and not specular occlusion in RT0, specular occlusion is store in RT2 for 

SSS material.









Here are all the pass we have speak about, I wont go into the detail of them, if you 

are interested, slides will be availables after the conferences.



Normal orientation fading is desired by the artists to avoid artifacts when projecting 

decals along edge that become stretched. Goald is to smoothly out the decal in this 

case but this require the underlying normal



DBuffer is the decal buffer approach use in Unreal engine 4 (There is no presentation 

about it that I am aware). It is similar to GBuffer but for decals

[Sousa 2016] Tiago Sousa and Jean Geffroy. The devil is in the details:  idTech 666. 



No silver bullet!

Note: We output normal buffer for forward material during prepass, so we can’t do 

normal fading with DBuffer for forward path





To support separate attribute blending, each attributes need to have an opacity. The 

DBuffer layout here show how we have packed the attributes and the opacity.

Note: Multiply blend mode is not supported. We use lerp only.







Remember that for lighting features we use normal buffer during prepass. But in this 

case the DBuffer don’t affect the normal for the lighting features effect







Here are all the pass we have speak about, I wont go into the detail of them, if you 

are interested, slides will be availables after the conferences.

Note: now depth prepass is mandatory.

Reduce all aysnc work (SSR, SSAO), in label async work.

This is our Render Frame allowing features parity betweend deferred and forward.







Note that to sample the correct mip with cluster decal it is not trivial, we can used the 

derivative of the position convert to decal space. Take care of the atlas coordinate.



Decals off mean with have remove the decals code. Goal is to measure the overhead 

induce by the DBuffer and cluster approach when there is 0 decals and when there is 

no decal code.

As we can see currently with our approach there is extra cost induced that is non 

negligeable. But then it scale well. Transparent material can chose to receive or not 

deals.

For DBuffer approache we perform an extra step of ‘decal classification’ that save a 

bit of performance.

These measurement have been done on a scene compose of multiple simple objects. 

Mean the decals that require to fetch multiple textures hurt a lot. With real world 

scene with complex layering where the material have plenty of ALU and fetch 

severals tetures already the difference between decals off and decals 0 is way lower.

Also the extra cost show here is for the whole scene.



The test scene for performance number are a typical area of our demo Fontainebleau 

with various foliage and tree + a complex layered ground with some tessellation.



























[Heizt 2014] Understanding the Masking-Shadowing Function in Microfacet-Based 

BRDFs

[McAuley15] S. McAuley, The rendering of far cry 4, Cedec 2015



[Revie11] D. Revie, Implementing Fur Using Deferred Shading, GPU Pro 2

[McAuley15] S. McAuley, The rendering of far cry 4, Cedec 2015

Hack purely empirical :)

○ Still far from reference 
- Limit of this hack



Use this calibration cubemap to check the stretching

Anisotropy left to right: -1 to 1

Perceptual Smoothness bottom to top: 1 to 0



Looks rather incorrect, but with high frequency cubemap….



Looks ok and there is almost something that (from far) could looks like reference...



in the future we would like at anisotropic filtering instead of this hack.







[Lagarde 2011] Sébastien Lagarde. Feeding a physically based shading model.

F0 is Fresnel0 i.e reflectance at incident angle.





Area Light use an extra LTC calculation

In the future we will use a more physical way based on our stacklit shader approach







[Heitz 2016] Eric Heitz, Johannes Hanika, Eugene d’Eon and Carsten Dachsbacher

Multiple-Scattering Microfacet BSDFs with the Smith Model



F_{ms}\approx F_{ss}=2\int_{0}^{1}F(\mu)\mu  \mathrm{d}{\mu } = \frac{(1 + 

20F0)}{21}\approx F0

E_{ss}({\omega_o})=\int_{\Omega_i} \rho({\omega_o}, {\omega_i}) |{\omega_i \cdot 

n}| \mathrm{d}{\omega_i}

k_{ms}({\omega_o})= {\frac{1 - E_{ss}({\omega_o})}{E_{ss}({\omega_o})}}

\rho (\omega_o, \omega_i) = \rho_{ss} (\omega_o, \omega_i) + 

F_{ms}k_{ms}(\omega_o) \rho_{ss} (\omega_o, \omega_i)





No multiple scattering

1st colum is dieletric pure white - Diffuse term here is Disney diffuse

2nd colum is F0 = 1 - Conductor

3nd is F0 = gold = 1 - Conductor

3nd is F0 = copper = 1 - Conductor



With multiple scattering

1st colum is dieletric pure white - Diffuse term here is Disney diffuse

2nd colum is F0 = 1 - Conductor

3nd is F0 = gold = 1 - Conductor

3nd is F0 = copper = 1 - Conductor



No multiple scattering

1st colum is dieletric pure white - Diffuse term here is Disney diffuse

2nd colum is F0 = 1 - Conductor

3nd is F0 = gold = 1 - Conductor

3nd is F0 = copper = 1 - Conductor



With multiple scattering

1st colum is dieletric pure white - Diffuse term here is Disney diffuse

2nd colum is F0 = 1 - Conductor

3nd is F0 = gold = 1 - Conductor

3nd is F0 = copper = 1 - Conductor



Anisotropy with no multiscattering



Anisotropy with multiscattering



Anisotropy with no multiscattering => We are using fake anisotropy with stretch hack, 

so the visual above is exactly the same than for no anisotropy.



Anisotropy with multiscattering perfectly energy conserving! Totally fake but visual 

result isn’t bad.



Top HDRP, bottom Mitsuba

Comparison with Mitsuba is not so bad. But it is not simple to do fair comparison as 

Mitsuba is way more accurate and include light transport (reflection of sphere in 

sphere).



Quick pass on this one, just for reference

FGD =\int_{\Omega_i} \rho({\omega_o}, {\omega_i}) |{\omega_i \cdot n}| 

\mathrm{d}{\omega_i}

FGD=\int_{\Omega_l} (F0 + (1 - F0) * (1 - |{V \cdot H}| )^5)\rho({V}, {L}) |{L \cdot N}| 

\mathrm{d}{L}

FGD= (1 - F0) *\int_{\Omega_l} (1 - |{V \cdot H}| )^5\rho({V}, {L}) |{L \cdot N}| 

\mathrm{d}{L}+ F0*\int_{\Omega_l}\rho({V}, {L}) |{L \cdot N}| \mathrm{d}{L}

FGD= (1 - F0) *x+ F0 * y

[Hill 2016] LTC Fresnel approximation







Code provide as reference. EvalSensitivity is the same function than in the original 

provided code of the paper.











The weird arrangement is to be able to save bandwidth and store all required 

information for SSS in one RT0. The lighting code don’t need to read RT0 until the 

very end, so DiffusionProfile and SubsurfaceMask are duplicated to not have to read 

RT0 ahead.



What can be observe is that our area light cost twice the price of a punctual light.

Reflection probe have good performance with complex material (Due to various 

approximation we do)







And here is another example showcasing organic material properties, 
from the Windup project done using HD from Yibing Jiang and the 
graphics team, which shows the power of anisotropic materials (used for 
hair), subsurface scattering, cloth BRDFs, and more advanced materials.
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Bump Mapping Unparametrized Surfaces on the GPU Morten S. Mikkelsen 2010

Built from UVSet, position and normal





[Mikkelsen  2008] Morten S. Mikkelsen. Simulation of Wrinkled face Revisited.



Given a scalar height field (i.e. a two-dimensional array of scalar values), the 

gradient of that field is a 2D vector field where each vector points in the 

direction of greatest change. The length of the vectors corresponds to the rate 

of change.



1. The surface gradient based approach [MM2010 - sfgrad] allows us to unify all of 

this into one framework.

2. It is shown in [MM2010 - sfgrad] that Blinn's perturbed normal can be expressed as 

n' = n - SurfGrad(H)

3. SurfGrad(H) is a linear operator and will work for any weighted combination of 

bump influences.

- An object space normal can be converted on the fly (in the pixel shader) into a 

surface gradient.

- Conventional mikktspace compliant vertex level tangent space can be converted 

on the fly to a surface gradient.

- We can also generate a surface gradient on the fly from a uv, position and 

normal WITHOUT a vertex tangent space (though not mikktspace compliant).

- For volume bump maps we can generate a surface gradient on the fly which as 

shown in [MM2010 - sfgrad] provides the correct result





conversion from tangent space normal to derivative allows us to rewrite tbn 

transformation as surfgradient since it represents a uniform scale

n = (nx, ny, nz) as derivative is d = (-nx/nz, -ny/nz)

So after final normalization we get tbn transform vT*n.x + vB*n.y + vN*n.z is the same 

as vN - ( d.x*vT + d.y*vB) where the part in parenthesis is basically a tbn style surface 

gradient when used together with your other slide where tbn are uniformly scaled. 

The normal mapping slide with code involving worldToTangent. So in the former 

version vT, vB and vN are all unnormalized since interpolation. In the latter surfgrad 

variant they’re uniformly scaled (as a trick to normalize vN since surfgrad formulation 

requires it). This factor is canceled out in final normalization along with division by nz 

to make the derivative which is also a uniform scale













People may not be aware but using inverse square attenuation mean that you use 

physical unit. I.e it is candela and directional light is in Lux (if divide by PI), else PI Lux





[Lagarde 2016] An Artist-Friendly Workflow for Panoramic HDRI (Sébastien Lagarde)

Lux value can easily be measure with a lux meter

Typical value for clear sky HDRI without Sun: 20 000 lux



No shadow :(



Next up: volumetrics! See SIGGRAPH 2018 HD RP volumetrics.mp4

Do not remove this slide. It has a video.



Thank you, Sebastien.

In the remaining time, I will shed some light onto our implementation of volumetric 

lighting (along with some open problems).



We implemented the so-called “froxel” lighting algorithm, which is a popular AAA 

solution for volumetric lighting.

Some of its advantages include support of all surface types, as well as the ability to 

efficiently perform sub-native resolution rendering with temporal reprojection.

My goal is not to repeat the information that’s already been published, but rather 

describe how our implementation differs from the existing approaches, and provide 

the missing details.



We support 2 ways of adding fog to the scene:

- an artist can add global, unbounded fog, or

- a local density volume represented by an oriented bounding box with a 

grayscale 3D texture.

See SIGGRAPH 2018 HD RP volumetrics participating media authoring.mp4



In both cases, we expose an artist-friendly volumetric material parametrization of 

single scattering albedo and mean free path, which we then internally convert to the 

scattering and extinction coefficients.

For performance reasons, we only support monochromatic mean free paths, which 

means that extinction coefficients are also monochromatic.

As a result, while light bounces can tint scattered light, fog attenuation will never 

affect the color of light travelling along straight paths (such as camera rays).



We chose to support the Cornette-Shanks anisotropic phase function with the global 

anisotropy parameter. Compared to the Henyey-Greenstein, it provides a better 

match for the “true” Mie phase function.

Note: Cornette-Shanks anisotropic phase function [Cornette 1992] [Toublanc 1996].



For example, this is how a spot light acts within highly forward-scattering fog. (see

SIGGRAPH 2018 HDRP talk - spotlight with forward scatter fog.gif)

For local fog, we use 3D textures to represent participating media because volumetric 

lighting is evaluated at such a low rate that many involved signals quickly become 

undersampled and thus alias...



This includes shadow maps, light cookies and density textures. Luckily, for textures 

we can just* use MIP maps, while handling geometry LOD is more complicated.

* see “Open Problems and Future Work”



Our implementation is quite flexible when it comes to slice distributions.

We started with work of Brano Kemen of Outerra, who described the logarithmic 

depth distribution in his blog post [Klemen 2012].

In some sense, his distribution is optimal. However, different content may have 

different needs, therefore we expose a tweak parameter which controls the 

generalized logarithmic depth distribution, which smoothly transitions between linear 

and logarithmic.



Now, how to read this graph (https://www.desmos.com/calculator/qrtatrlrba):

* on the X axis, you have the depth slice of the buffer, from 0 to 64;

* on the Y axis, you have the linear depth corresponding to this slice, from 0.5 to 64 

meters;

* I’ve also drawn a vertical line in the middle, at 32 slices, which we’ll examine.



In red, we have the typical inverse Z distribution, which is predictably awful, and 

covers the range of 0.5 to 1 meter.

In green, we have the standard logarithmic distribution, covering the distance of up to 

5.6 meters.

In blue, we have the generalized distribution with the tweak parameter set to 0.5, 

which covers the distance of up to 10 meters.

Depending on the value of the tweak parameter, it can span the range from the 

logarithmic distribution in green to the linear distribution in purple.



Our implementation is split into 3 passes.

During the 1st pass, we fill the density buffer by voxelizing density volumes.

During the 2nd pass, we solve the single scattering integral.

During the 3rd pass, we combine the results from the current frame with accumulated 

results of previous frames.

As a result, we obtain volumetric lighting and opacity buffers, which we bilaterally 

upsample and apply during mesh rendering.

Note: opacity is (1 - transmittance).



We start by performing conservative solid voxelization of density volumes. To put it 

plainly, we determine the set of voxels overlapping a box.

We want to compute partial coverage in order to anti-alias the resulting buffer and 

achieve temporal stability. While this may seem like a nice application for a 

conservative rasterizer, our goal is to use async compute.

We haven’t yet found a paper which describes an efficient solution to this problem. 

Therefore, we came up with our own.

It is inspired by techniques presented in the paper of Samuli Laine titled “A 

Topological Approach to Voxelization” [Laine 2013].

Just as for clustered lighting, we start with a clustered pre-pass to prune and localize 

a set of volumes.

Then, for each voxel, we look up the set of volumes overlapping its cluster, and 

voxelize those.



In order to determine partial coverage, we take the closest face of the box and 

compute its normal.

Then we take the diagonal of the voxel most aligned with this normal, and compute 

the overlap of this diagonal with the box.

This gives us an approximation of partial coverage of the voxel.



A solution involving voxelization is by its nature an approximation. The largest issue is 

resampling, which causes an irreversible loss of information.

Ideally, during the lighting pass, we would integrate over individual ray segments 

overlapping density volumes, skipping voxelization altogether.

However, since volumetric lighting is already quite expensive, we prefer to have an 

approximation involving two simpler shaders over a giant ubershader with nested 

loops.



We solve the Volume Rendering Equation using Monte Carlo. It’s “just” a plain old 

recursive multidimensional integral.

Instead of spending 10 minutes on this slide, …

Note: joke slide, don’t waste time deciphering this one. :-)



… I will only cover the way the math applies to our use case of voxel buffer lighting.

If you feel lost, please check out the references.



Imagine that d is the distance to the closest opaque surface along the ray.

In that case, the amount of incoming radiance L_i is the sum of reflected radiance L_r

attenuated by transmittance T, and the integral of in-scattered radiance L_s 

continuously attenuated by transmittance T along the ray.



In case there are two voxels along the ray, it’s trivial to split the integral in two.

*5s pause*



Finally, we can utilize the multiplicative property of transmittance to obtain 

independent voxel integrals.



Therefore, our lighting algorithm is conceptually very simple:

- evaluate voxel integrals using Monte Carlo

- multiplicatively accumulate voxel transmittance along the camera ray

- finally, compute a prefix sum of voxel integrals attenuated by transmittance



Since we pre-voxelize density volumes, we can consider voxel’s participating media 

to be homogeneous. This considerably simplifies integral evaluation.

We use Monte Carlo tools for the job. In particular, we use importance sampling for 

variance reduction.



For directional and box projector lights, we use analytic distance sampling.

For punctual and spot lights, we use equiangular sampling, which is designed to 

handle inverse square attenuation.

For area lights, we use null sampling, which means we take 0 samples because area 

lights are not yet supported (sorry, Eric).



Here is some programmer art with equiangular sampling in action. This is global fog...



And this one uses a density volume, giving the fog a spatially-varying texture.



Monte Carlo integration usually involves taking several samples. However, taking 

more than one sample per voxel every frame is typically too expensive, especially on 

the current generation of console hardware.

Therefore, we take a single sample per voxel per frame instead, and then combine it 

with exponentially weighted average over previous frames.



In practice, we compute radiance and transmittance estimates per voxel, combine 

them with the contents of the history buffer, and write the results into the feedback 

buffer.

We perform reprojection in the world space, trilinearly interpolating radiance and 

transmittance estimates from 8 closest voxels.



How do we perform temporal blending?

Let’s say that we computed voxel radiance and transmittance estimates at time 0, and 

want to reproject and combine them with estimates at time 1.

If we have a fast forward camera motion, we may end up reprojecting from the voxel 

at the back to the voxel at the front.

What’s immediately obvious is that their dimensions are very different. Therefore, 

radiance and transmittance estimates are not going to be similar.

For instance, you may experience brightness of your entire screen changing as a 

result of fast camera motion.



So, what do we do?

The idea is to somehow “normalize” both radiance and transmittance estimates w.r.t. 

the voxel dimensions to obtain blendable densities.

However, the radiance integral over the length of the voxel and transmittance are not 

linear functions of length.

Transmittance is an exponential of optical depth, which is a linear function of length, 

so we can easily use that.

As for the radiance integral, the story is more complicated.

On the graph, as a function of length, I plotted the estimate of the integral given by the 

weight of analytic distance sampling 

[https://www.desmos.com/calculator/divvz5q57p].

The solid line represents the estimate, and the dotted line represents its 1st derivative 

w.r.t. length.



The derivative is non-constant, so the function is not linear. However, for small 

displacements the linear approximation is not too bad.



We can improve upon this a bit by dividing the estimate by the length, as shown here 

in green. It’s much closer to being linear.

Another idea is to integrate incoming radiance along the unit interval rather than the 

actual length of the voxel, and use that for reprojection.

While both of these methods are relatively simple for directional lights, correctly 

handling punctual lights with equiangular sampling remains an open problem.

Also, I suspect a more elegant, generic solution exists. If you have one, please let me 

know!

Given a reprojected voxel with “normalized” radiance and transmittance, we can 

rescale it back using the length of our current voxel, and then blend it with the 

estimate from the current frame. The correct way of volume blending is given by Tom 

Duff in his paper titled “Deep Compositing Using Lie Algebras” [Duff 2017].



However, there is a catch: all of this works assuming that the phase function is 

isotropic. Generally speaking, it’s not.

Let’s say that we have a strongly forward-scattering phase function. If we look straight 

at a directional light, we obtain a high radiance estimate for the voxel. 



If we rotate our camera, and therefore our voxel, by 90 degrees, we obtain a very low 

radiance estimate, since our medium is forward scattering, and we are facing the light 

at the right angle.

Therefore, the high value reprojected from the previous frame is no longer valid in the 

current context.

You can try to be clever, and say that since we know the light direction, we can 

rescale the phase function of the previous frame to fit the direction of the current 

frame...



However, once you have several lights illuminating the voxel, it’s “game over” for this 

approach.

So, what is the solution?

I can only offer a workaround which, nonetheless, works reasonably well in practice.

When computing the voxel integral, we compute two estimates… One multiplied by 

the phase function, and one that is not. We store the isotropic version in the history 

buffer, and that is what we reproject.

To reconstruct the influence of the phase function during the current frame, we divide 

the estimate with the phase function by the one without it, and use the ratio to rescale 

the reprojected radiance.

This excludes anisotropy from the temporal integration process, which is of course 

bad, but it also removes a lot of jarring reprojection artifacts.



One of the most obvious results of temporal integration is the reduction in shadow 

aliasing and banding, as you can see here.

*flip back and forth*



One of the most obvious results of temporal integration is the reduction in shadow 

aliasing and banding, as you can see here.

*flip back and forth*



High quality sampling is essential for quick convergence of the Monte Carlo algorithm. 

We also need to ensure that our low resolution buffers are well anti-aliased, since all 

issues will be magnified by upsampling.

For high convergence rates, we want our sampling pattern to be rather uniform.

We also want the spectrum of our sampling pattern to contain most of its energy in 

high frequencies, which are less perceptible to the human observer, and which are 

going to be attenuated by the low-pass component of the reconstruction filter [Mitchell 

1991].

These are blue-noise, or Poisson-hypersphere properties.



Additionally, as perceptively noted by Timothy Lottes, the shape of the sampling 

pattern should approximate a good reconstruction filter. While it’s difficult to have 

spatially-varying weights in the temporal integration context, we can at least make 

sure that the footprint of the pattern is circular rather than square [Smith 1995].

Finally, while using a random pattern can mask structured artifacts with noise, it 

becomes more difficult to control the quality of the resulting distribution.



Therefore, we decided to use a deterministic pattern called hexagonal sphere-packed 

lattice [Wiki H]. It is the highest density sphere packing, and it fits all of our criteria.

We slightly rotate the pattern by 15 degrees to minimize the discrepancy along the X 

and Y axes.

Currently, each pixel uses the same pattern, but we would like to try per-pixel 

rotations in the future.

To avoid visible jitter, we make sure to traverse the samples in the order which keeps 

the average of coordinates as close to the center as possible.

Finally, Don Mitchell’s paper [Mitchell 1991] tells us that in addition to the Poisson 

sphere properties in 3D, the distribution should satisfy Poisson rod properties after 

projections onto individual axes.

With that in mind, for now, we simply use a uniform distribution along the Z axis. We 

are planning to explore sphere packing in 3D in the future.



To upsample the volumetric lighting buffer, we perform biquadratic filtering in the 

screen plane [Getreuer 2011], and simple linear filtering in Z.

It’s 4 bilinear taps in total.

The idea is to limit both the memory bandwidth and the spatial extent of the filter, 

which tends to be quite large due to the low resolution of the buffer.

Additionally, we use bilateral filtering, which basically means that the coordinate of the 

texture look-up depends on the depth of the closest surface.

It would be interesting to experiment with generalized filters in the future [Nehab 

2014].



Image upsampling should be performed in the perceptually-linear space [Nehab 

2014].

Therefore, we upsample tone-mapped radiance and transmittance rather than 

physically-linear optical depth.

Interestingly, the same should be done for anti-aliasing [Persson 2008]. However, the 

Monte Carlo formulation of the temporal integrator expects physically-linear rather 

than perceptually-linear values.

So there’s a certain conflict between correctness and aliasing in this case.



Finally, I’d like to make a few comments about open problems and future work.

Voxels usually have highly anisotropic footprints in the texture space. However, the 

hardware doesn’t offer anisotropic filtering support for 3D textures, which means that 

we overfilter in practice.

Manually writing a texture filter loop in the shader is not particularly appealing from 

the performance perspective.

It is worth noting that we have exactly the same issue with anisotropic cubemap 

filtering.



Another issue is that, since volumetric buffers are shaped like a frustum, distances 

from the near to the far plane increase as you move away from the center of the 

screen.

This results in different radiance and transmittance estimates even for constant 

lighting and participating media.

It can show up as darkened corners during cubemap rendering, for example.



The solution is to use spherical buffers, parametrized by distance from the eye rather 

than depth.

Additionally, rotational reprojection becomes nearly perfect, which is a nice bonus.

We had a concern that it could make light culling more complicated, but turns out that 

it may actually be more efficient than the traditional methods [Zhang 2018].



As I’ve already mentioned, temporal support of anisotropy and equiangular needs 

improve.

We need to support area lights.

Dynamic lights need to be handled correctly. Marco’s Variance Clipping seems 

promising [Salvi 2016].

Finally, performance needs to improve. The current numbers are mostly limited by the 

cost of shadows, and clustered lighting not being scalarized on GCN.





Please note that the source code of hdrp is available on github at this link above. You 

can retrieve the code mention in these slides












