
(Xiaoling)

Hi I’m Xiaoling Yao. I’m a graphics engineer in the Unity terrain team.

My team is currently developing a next generation terrain renderer, and the purpose 

of this talk is to share our progress and some insights using the concurrent binary tree 

for rendering large scale terrain.



(still Xiaoling)

As a disclaimer, the content we are about to share is work in progress, and it is not a 

final product.



[Xiaoling reads text below while getting his mouse on top of the video to press play]

With that being said, here’s a video that shows the current state of our terrain 

renderer.

[presses play, then silences while the video plays. Move on to next slide once 

animation is finished]



(still Xiaoling -- shows shaded terrain animation video) 

The video showed a 2 by 2 km terrain rendered in real time in Unity.

We rely on multiple components such as a virtual texture system, a biome system, 

and the adaptive terrain geometry.

In this presentation we will only focus on the geometry.



[Xiaoling reads text below while getting his mouse on top of the video to press play]

Let’s play the video again but this time with the geometry highlighted in wireframe.

[presses play, then silences while the video plays. Move on to next slide once 

animation is finished]



(still Xiaoling)

As you can see, the wireframe is pretty dense: our current implementation produces 

triangles as small as 1.5cm over this terrain. 

We produce these triangles thanks to a subdivision algorithm published in a recent 

paper from our research team at Unity Labs Grenoble. My colleague Thomas will now 

talk about the paper in more detail.



(Thomas)

Hi, I’m Thomas Deliot, I’m a research engineer at Unity Labs, and I work with the 

team that wrote this research paper here, published last year at HPG (high 

performance graphics)

The key contribution of this paper is to provide an adaptive tessellation scheme that is 

computed entirely on the GPU thanks to a novel data structure called the Concurrent 

Binary Tree.

Here on the right you can see the video of the HPG paper and you can see that it’s 

the same geometry as that Xiaoling just showed.

An important thing to note is that we don’t rely on tessellation shaders at all. Rather, 

this geometry is only generated with compute and vertex shaders using an algorithm 

called Longest Edge Bisection, which I’m going to introduce first.



Longest Edge Bisection is a subdivision scheme, and specifically it is the simplest 

form of subdivision scheme for 2D shapes



It has a simple rule : given a triangle, divide it into two triangles along it’s longest 

edge.



This can then be applied recursively on the two new triangles, and so on

This uniform subdivision gives us a regular tessellation of the original triangle



Of course this can also be done non-uniformly to produce adaptive tessellations

For example, here we are targeting a finer subdivision around the red target

One important thing to notice is that the adaptive subdivision is free of t-junctions by 

construction



And avoiding T-junctions is a crucial property for terrains as it prevents cracks and 

holes in the final geometry.

Which is something that quad trees for example cannot achieve without further post 

processing.

Image source : https://victorbush.com/2015/01/tessellated-terrain/

https://victorbush.com/2015/01/tessellated-terrain/


Finally if we apply this adaptive subdivision to a moving target, we get a level-of-detail 

system



And if we apply this subdivision algorithm to a triangular mesh with a heightmap, we 

get an adaptive terrain mesh.

Since its adaptive, for every triangle of the subdivision we are deciding each frame 

whether to bisect it or not, based on an arbitrary level-of-detail criteria

But how can we do this in real-time ?

There are way too many triangles in this example to iterate through each of them 

sequentially

And ideally we’d want to be able to dispatch this work to the GPU which is much more 

suited to handle such a workload, with thousands of parallel threads.

This is precisely what Concurrent Binary Trees bring to the table.



So if we look at that longest edge bisection scheme again, we see that it’s a binary 

subdivision rule : each triangle subdivides into two new triangles



What that means is that we can represent the entire subdivision process as a binary 

tree

where each bisection creates two children nodes out of a parent node

Here in this uniform subdivision, each new level in the binary tree represents a new 

subdivision depth,



Which means that the leaf nodes of the binary tree representation (in green here) 

correspond to the triangles we want to display for the subdivision scheme



And this is also true in the case of an adaptive subdivision, where the smaller and 

bigger triangles displayed on the left correspond to a binary tree with leaf nodes at 

varying depth.



Basically this means that any state of this subdivision scheme can be represented by 

a specific binary tree.

Enumerating the leaf nodes of the binary tree means looping over the current 

triangles of the subdivision scheme.

Bisecting a triangle in two means creating two new leaf nodes in the binary tree,

And vice-versa merging two triangles means deleting two sibling leaf nodes in the 

binary tree.

What Concurrent Binary Trees offer is a way to do these three operations 

concurrently, in parallel, by introducing a novel data structure.



So here’s a Concurrent Binary Tree on the left. It is an alternative representation of 

the binary tree on the right.

And it’s different from a regular binary tree in a couple significant ways:



First, the last level of the Concurrent Binary Tree is a bitfield of ones and zeroes, that 

in itself, encodes another binary tree fully.

It does so by using ones to represent the presence of a leaf node

And a number of zeros after it to represent its level in the binary tree



A few quick examples :

If we look at the first two bits in the bitfield, we have a one followed by a zero



This means that we have a leaf node which is one level higher than the max depth of 

the binary tree



Now if we look at the next four bits, they are all ones without any zero behind them



This means that we have four consecutive leaf nodes at the binary tree’s max depth



Finally if we look at the last bits in the bitfield, we have a one followed by three zeros



And this tells us that we have a leaf node which is two levels higher than the max 

depth of the tree. And so on.

This encoding of a binary tree in a flat bitfield is explained in much more detail in 

Jonathan’s paper and his HPG talk, which I recommend.

And it’s exploited by the other part of the Concurrent Binary Tree...



Which is the Sum-Reduction Tree, stored in all the other levels of the Concurrent 

Binary Tree.

It progressively sums the number of bits set to one (or leaf nodes) in the bitfield,

until the root node, which gives us the total amount of leaf nodes in the binary tree 

encoded by the bitfield

Then by traversing down this sum-reduction tree, it gives us a way to loop over the 

bits set to 1 while ignoring the zeros,

or in other words to loop over the leaf nodes.

Going back to our practical example where the encoded binary tree represents a 

Longest Edge Bisection,

we use this to assign one thread per active triangle in the subdivision.



Using these two components, Concurrent Binary Trees are able to process the binary 

tree associated with a longest edge bisection scheme, completely in parallel.

It dispatches individual threads to all active triangles, and uses bitwise atomic 

operations for splitting and merging leaf nodes.

And again, Jonathan’s presentation talks at length about how these operators are 

implemented in a concurrent manner, if you are interested.

For now I will focus on what it takes to implement and use them.



So while Jonathan was working on his paper he asked me to work on implementing 

his code in Unity to accompany the paper with a practical video and demo.

So what does it take to do this? Well there's a couple of systems to implement.



The first step is importing the two function libraries that Jonathan provides with the 

paper : the CBT library and the LEB library

They are single file libraries with both a cpu and gpu version.

The first library provides all the tools to manipulate the Concurrent Binary Tree : 

fetching data, splitting and merging nodes, and so on.

The other implements all the code required to compute Longest Edge Bisection 

schemes in parallel using a Concurrent Binary Tree.

So, getting triangle vertices, subdivision rules for splitting and merging, getting sibling 

and parent nodes, etc.

Of course we are mostly interested in their gpu versions, but having the cpu code at 

hand is useful for testing.



Then the next thing to do is initializing a concurrent binary tree to its base state.

To do that we first need to decide on a maximum subdivision depth, which 

corresponds to the maximum binary tree depth

This dictates the size of the bitfield we want to allocate and the max depth of the 

binary tree it can fully encode.

And in practise this will determine the maximum terrain resolution for a terrain of a 

certain size.

As a quick sidenote, the concurrent binary tree is a pointer-free data structure

In the memory, it is simply a flat integer array

It contains first the sum-reduction tree in sequential order like this



And then the rest is the bitfield at the end



And another quick sidenote, I need to add that in practise,

concurrent binary trees use an optimized memory layout which allows packing all this 

data into the least possible amount of bytes

The bitfield at the bottom packs 32 nodes together into a single integer

Then because the deepest level of the sum-reduction tree can only have a value of 0, 

1 or 2, it’s represented by two bit nodes packed in integers, and so on.

Jonathan explains this optimized memory layout in detail in his paper.



Ok let’s get back to our implementation

There are three different steps now that we need to perform each frame during the 

update loop, to update the longest edge bisection

And in practise they correspond to three different compute shaders



First, Because our concurrent binary tree lives in GPU memory,

the initial step is to dispatch one thread on the GPU to read the root node of the sum-

reduction tree,

which gives us the amount of leaf nodes in the subdivision, or active triangles.

We write this value into a indirect dispatch argument buffer...



Which we use for the next step to dispatch on the GPU one thread per triangle for the 

subdivision update.

Each thread gets assigned to its triangle using the sum-reduction tree.

And once we’ve fetched the triangle vertices, we can decide whether or not we want 

to split it or merge it.

This depends entirely on the chosen level of detail criteria, which I’ll talk about a bit 

later.

If we want to split or merge a triangle, we use the LEB library to do so while 

preventing cracks in the geometry

And the CBT library to update the binary tree using atomic operations to avoid race 

conditions.



The last step, since during the Subdivision dispatch we might’ve created new leaf 

nodes or deleted some,

is to update the sum-reduction tree.

We use another compute kernel repeatedly for this, iterating over each level in the 

sum-reduction tree while summing the leaf node count.



And finally, we go to the next frame and start again with the Dispatcher kernel which 

will read the new leaf node count value,

to prepare for the next subdivision step.

And that’s it for updating the longest edge bisection.



Now that we know how to update our subdivision, we need to also render it to the 

screen.

We want to render all the active triangles of the subdivision, which correspond to the 

leaf nodes of our binary tree.

How do we do this ? It’s pretty simple :



we use the dispatcher kernel again to read the amount of leaf nodes, and output that 

to a indirect draw arguments buffer,

That we use to draw triangle primitives procedurally.



This will spawn three vertex shader threads per triangle,

and in that vertex shader we use the LEB library to fetch the triangle vertices 

associated to the current leaf node,

And choose the correct one.

And right before projecting it into clip space, 

We can use its 2D position as its uv texture coordinate,

since our subdivision happens on a flat unit square.

With this we can sample the heightmap and apply it to our terrain vertices.

Then we output the transformed vertex to the rest of the pipeline and shade our 

terrain how we want



On an another subject, it would be possible to update the subdivision and render it 

simultaneously, with the newly introduced Mesh Shader API.

Mesh shaders basically introduce a “compute-like” capability to the first stage of 

traditional rendering shaders, and replaces vertex shaders.

Here we would simply update the subdivision during the Task Shader, and let the 

Mesh Shader read from it right afterwards for immediate rendering.



It’s worth mentioning that combining Jonathan’s work on GPU binary trees with Mesh 

Shaders was mentioned two years ago by Yury Uralsky during his siggraph 

presentation on this new API,

So it’s definitely a very interesting avenue for future research.



Finally, the last thing I’ll talk about is the level of detail criteria that we use in our 

demo.

Anything can be used here and it’s pretty easy to plug in whichever criteria you want 

in the subdivision update kernel.

In our case we use two separate ones :



First we read the current triangle’s vertices and read the heightmap to get final 

displaced triangle.

Then we measure the length of the longest edge in pixels on the screen.

And we compare this length against a set target length to decide whether to split or 

merge the triangle.



Our second level of detail criteria is frustum culling.

To avoid drawing many small triangles that are outside of the camera view,

We test the axis aligned bounding box of the triangle against the camera’s frustum.

If they don’t intersect, the triangle is not visible, and we don’t allow it to split.



So with all this implemented, this is the result we got for the paper’s publication.

We used a real world heightmap at its real scale, here we see the Kauai island at 51 

by 51 kilometers.

And setting our maximum CBT depth to 27, we get the following numbers.

Memory usage is 64mb. It’s equal to two to the power of depth minus one, so it 

doubles with each new depth level.

The maximum resolution we get on the ground for the subdivision is about 6 meters. 

This isn’t detailed enough for a game, but it increases dramatically when replacing 

triangle leaf nodes with meshlets, which I will let my colleague Xiaoling explain right 

after.

Finally, we can clearly see that the sum-reduction quickly becomes the bottleneck 

with deep subdivisions, while the subdivision itself has a negligible cost. This is 

expected because of the nature of these reduction operations.

Nethertheless, this is really good for a demo of a gpu driven, completely adaptive 

mesh tessellation, so we shipped the paper with this video.

And then we started transferring this from our research team to Xiaoling’s team, with 



an immediate focus on optimization for their needs.

And I’ll let Xiaoling take over for this.



Thank you Thomas.

In this half of the presentation, we will talk about how to integrate this technique into a 

production game engine and some of the practical considerations we’ve learned 

through this process. In our case, we have integrated this method into the Unity 

engine, which is a real-time engine designed for games and variety of other 

applications, such as film, architecture and construction, automotive, design and so 

much more. 



Unity enables you to customize the render pipeline for your specific project needs. 

For our prototype implementation we use Unity’s own High-Definition Render 

Pipeline.

If you are interested in additional details about it, feel free to check out our github 

repository or the slides of the previous talk.

However our implementation doesn’t really rely on HDRP features. It should be easily 

extendable to other render pipelines as long as they have compute shader and 

indirect draw capabilities.

https://github.com/Unity-Technologies/ScriptableRenderPipeline

http://advances.realtimerendering.com/s2018/index.htm

https://github.com/Unity-Technologies/ScriptableRenderPipeline


Before I dive into all the details, let’s play the video again that shows our current 

result.

(Plays the video)



The terrain you have just seen in the video uses a CBT with a maximum depth of 28. 

This means that over the entire 2 by 2 kilometers area, each leaf node represents an 

area of a quarter by a quarter meter.

This is less than the resolution we want to achieve. So instead of rendering just one 

triangle for every leaf node, we further render 256 triangles, which we refer to as 

meshlets, to reach the resolution we wanted. I’ll explain in detail in the next slide, but 

eventually in the video the terrain triangles can be as small as 1.5 centimeters.

It is also worth mentioning that we put the heightmap data in a virtual texture so that 

the draw call has access to the entire terrain heightmap. The heightmap data has a 

resolution of an eighth of a meter. On top of that we blend micro-displacement 

textures from the terrain materials to provide details as fine as 1.5 centimeter 

resolution.



Now let’s get back to the details of the technique called meshlet.

To achieve higher triangle density under the current limitations, one quick way is to 

render more triangles for each leaf node. Jonathan implemented this meshlet idea in 

his original paper.

This illustration shows what these pre-subdivided triangles look like at level 0, 1 and 

2. The triangles are constructed exactly the same way as regular CBT subdivision, 

making them visually seamless when incorporated into the terrain CBT geometry.

We construct the vertex and index buffers on the CPU and simply send them to the 

Unity indirect draw as the mesh argument.

This approach basically gives us more resolution over the existing CBT for free. The 

downside is that the meshlets are not adaptive, so the final mesh is not as adaptive 

as what the CBT can produce.



With such huge amount of subdivision data, the performance soon became the 

number one focus in our implementation. Please notice that we’ve only done our 

profiling on PC environment as we are in early prototyping stage.

The subdivision pass is pretty fast because we don’t need lots of leaf nodes to get to 

a satisfying subdivision of the terrain geometry. In the demo video most of the time 

there are fewer than 10 thousand leaf nodes.

The sum-reduction passes however are the slowest among all the CBT update 

passes. On a middle tier hardware we measured 5.78 milliseconds for the first 4 

passes, which are the most expensive.

You may notice that the rendering time of the terrain geometry isn’t ideal either. I’ll list 

some of the ideas later in the talk that the team will be experimenting in the near 

future.

For now we’ll take a deep look at what’s causing the slowness in the sum-reduction 

passes.



Let’s look at this profiling results for the first sum-reduction pass, the most expensive 

one.

We quickly noticed that the Top “speed of light” is L2 memory, followed by the texture 

unit, and the efficiency hasn’t even reached 50%. Specifically NSight shows the warp 

stalls mostly waiting for “Long Scoreboard”. From NVidia’s website we know it means 

the GPU is waiting for buffer access operations to finish.

Improving the way we read and write the CBT buffer in the sum-reduction passes 

became our main goal for the optimization.



Now let’s take a deeper look at the code. What exactly does the compute shader do 

in this pass?

The first sum-reduction pass by its definition counts the two bits from the left and right 

child nodes of each level-2 parent node, sums them up to either 0, 1, or 2, and writes 

this 2 bit integer sequentially back in the buffer.

The subsequent passes do exactly the same, only they operate on one bit wider data 

at each level from bottom up.

So, first of all, there are simply lots of data to write. For a 28 depth CBT we have 2 to 

the 27th level-2 parent nodes, which is about 127 million such nodes. Dispatching 1 

thread for 1 such node is not only unviable, but also feeds way too little workload to 

the GPU to consume efficiently.

Secondly, our buffer for the CBT data is 4 bytes wide. It means that if we did naively 

implement this code, dispatching 1 thread for 1 level-2 parent node, we would end up 

having 16 threads write to the same uint in the buffer. And because of that, we have 

to use atomic operations, which are InterlockedAdd and InterlockedOr intrinsics, to 

operate on the bits to make sure the concurrent write is done correctly. This for sure 

leads to massive data access conflicts between threads.

Let’s see how we can tackle these two problems.



So writing 2 bits per thread is not optimal. How about combining 32 of them in one 

go?

The fact that leaf nodes are 1 bit wide gives us the opportunity to treat 32 of them as a 

32 bit wide integer, and summing the 1s basically translates to a call to the countbits 

intrinsic. This way we quickly get to the parent nodes of 6th level from the bottom.

As a result we completely skipped processing the sum-reduction info for the levels 2 

to 5 from the bottom. (Click)

They are not necessary anyway because for tracing any node deeper than  the max 

depth level minus 5 correctly   we can read 32 bits from the bottom level and trace the 

bits within the integer directly.



Still writing the 6th level node from the bottom is not memory friendly because each 

node is 6 bit wide and the memory access conflicts still exist.

To solve that, we relied on shared memory. Specifically, we allocate an array of 

integers in the thread group shared memory. Each element in the array is dedicated 

to one thread, holding the 6 bit wide value that would need to be written.

For every 16 threads we take 16 such 6 bit wide integers out of the array, combine 

them into 3 full integers and write out to buffer with regular non-atomic writes, 

because we don’t have concurrent writes from different threads any more. Problem is 

solved for the first pass!

For subsequent sum-reduction passes   we employed a similar optimization: first, 

calculate the number of integers we need to write every 256 threads, which is our 

group size of choice. Then after all the threads have written to their allocated slot in 

the shared memory array, we again combine the values into full integers, and use the 

first few threads to write one integer per thread to the buffer.

Notice that   we only cache the memory writes   to eliminate the write conflicts and 

atomic operations. It’s not beneficial to cache the buffer reads according to our 

profiling results, even though there are many redundant reads. We think the L1 and 

L2 cache is working well for this type of access pattern.



The resulting performances are pretty encouraging. We measured a 14.5 times boost 

on the same hardware. Now it takes less than half a millisecond on a 4 year old 

graphics card, making the technique much more viable.

You can see in the screenshot that the Long Scoreboard dependency is much 

reduced. Instead the Short scoreboard increases as it represents the stall due to the 

shared memory operations, which is expected.

There is also a tiny increase in Stall Barrier dependency, because the thread group 

needs to be synchronized via a barrier before reading the shared memory array.

(Click)

One fun thing we noticed is that using GetDimensions on the buffer object is actually 

very slow. We used it to get the total depth of the CBT. Replacing it with a uniform 

variable we get roughly 1.6x faster, which was a happy surprise to the team.



Conclusions!

With CBT subdivision the team is able to achieve the size and resolution we want for 

the terrain with relatively low memory cost and good runtime performance.

The team especially likes that the algorithm allows customizing the LOD criteria 

arbitrarily to meet the project needs.



The team is eager to explore the technique more in the near future. Here lists a few 

things that we will be focusing on.

First the team is aiming for getting more depth in the tree hierarchy, so we rely less on 

the meshlet to reach our target triangle density. In order to do that we need to 

optimize the system more because each additional depth would double the memory 

and time cost.

We want to find a way of avoiding the subdivision of flat triangles. (Click) We will 

extend our LOD criteria to account for terrain curvature and screen-space projected 

area to help mitigate the situation.

We also need to implement real view frustum culling for the geometry especially for 

rendering to cascaded shadow maps. We believe it can be done relatively easily by 

leveraging the inherent tree hierarchy.

Again for shadow map rendering we want to customize the LOD criteria so we can 

subdivide more at silhouette triangles for better preservation of the silhouette shape. 

Again, having a curvature information should help here. 

We want to improve the overall responsiveness of the system when the camera 

moves due to the limitation of doing only one level of subdivision every frame.



Additionally our lab team continues their exploration of the idea and is looking to 

extend the application to generic geometries other than terrain. (next slide)



For example, an advantage of CBTs is that they can also allow tessellating arbitrary 

subdivision surfaces.

Here's a work in progress demonstration.

It shows Catmull-Clark subdivision surfaces adaptively tessellated on the GPU, in 

real-time in Unity, thanks to CBTs.

You can check out their latest HPG talk for more information on this.



Okay this is it!

I want to thank our artist colleagues Martin and Julien for making the demo scene in 

less than 1 week.

Our colleague Jean-Philippe for the beautiful ocean rendering.

And Natalya and my team for all your support.



Last but not least, Unity continues hiring graphics researchers, developers, tech 

artists and more world wide. Please visit careers dot unity dot com if you are 

interested in joining us.



Thank you for listening! Good bye!


