
Hello! Welcome to Destiny’s Multi-threaded Renderer Architecture talk.  
My name is Natalya Tatarchuk, and I’m a graphics engineering architect at Bungie. 
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Today’s talk is not about specific graphics techniques or shader tricks for Destiny.  
We covered a fair amount of those in previous years and you can find most of the 
slides on the advances website.  
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For this talk, I will assume that you have some familiarity with task-based parallelism 
concepts, job managers and synchronization primitives.  
Also, Barry Genova covered the foundations of the threading design for the Destiny 
engine in an earlier talk today – I hope you had a chance to attend if. It not, you can 
watch it on the GDC vault later on.  
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Today, I will cover the Destiny core renderer architecture, talk about how the engine 
data flows from game simulation through to the GPU, discuss how we approached 
renderer jobification, and relevant considerations for task- and data-parallel 
execution for our renderer workloads, including dynamic load-balancing. 
We’ll cover topics for reducing game input and rendering latency, and methods of 
keeping GPU fully saturated at all times. 
I’ll also touch on the architectural principles that allowed us to encapsulate the 
complexity behind well-designed abstractions, allowing our graphics engineers to 
focus on what they do best – writing Destiny graphics features. 
If there’s anything I want you to walk away with today it is that creating data-driven 
pipelined architectures can give you huge flexibility for creating graphics features and 
yet help you optimize the overall performance of your engine across different 
platforms.  
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This breaks down into the following sections – we’ll do a quick background on coarse-
grained parallelism, talk about our goals for Destiny, then dive into the deep details of 
the architecture in the next four sections before drawing some conclusions about our 
experience in the end. 
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Let’s do a high level overview of what happens in a single frame of a game 
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For every game tick, we start by running our game simulation. This is where we run 
the physics engine, our AI, animation and any code that affects the game play.  
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Then we use the latest simulation data to determine what elements would be visible 
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Then we convert these elements to a set of GPU commands. We refer to this 
operation as ‘CPU submit’. The result of this is GPU command buffers that we flush to 
the GPU  
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which processes them to output results to the backbuffer, which we flip to display to 
the player.  
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This pipeline maps pretty well to what’s called “system on a thread” type of 
parallelism. We shipped with that approach in our Halo engine.  
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In Halo: Reach we mapped major game functions to a small number of threads, for 
example, unique threads for rendering, audio, simulation, where each CPU thread 
was also mapped to a HW thread.  
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A different way to view execution is by looking at frame tick diagram.  
Here you see that as we go through Game Tick N, simulation computes <game> tick 
for frame N, while we are <rendering> the previous frame.  
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Once the simulation has finished <we copy> the gamestate to start <rendering> this 
frame during the next gametick.  
In Halo games, all output systems’ processing began only after simulation thread 
finished its work for current game tick and we copied the full gamestate.  
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We ran <serialized> visibility computation at the start of each render loop using the 
full gamestate copy. Until visibility is done, we can’t start generating drawcalls.  
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Static per-thread load balancing meant suboptimal workload distribution. 

We tended to see heavy utilization on the threads for simulation and render 
loops (our largest workloads) but the other threads saw plenty of idle time.  
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This approach also does not scale well for systems with different core and thread 
layout, or heterogeneous computing systems (such as PS3).  
We also wouldn’t be able to easily take advantage of additional cores we would have 
on the latest generation of hardware with this design. 
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We pay for a full extra copy of the entire game state which includes a fair amount of 
data that rendering does not care about (physics state, for example, or animation 
state machines).  
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Serialized visibility computation could mean GPU idle bubbles and potentially longer 
latency. 
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But this design is easy to use, extensible and convenient to code for.  
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Nor does it exhibit complex concurrency issues because the threading model is pretty 
straightforward.  
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Since we overlap simulation and rendering, we could do more work in each phase. 
When you have complex AI and physics computation and the simulation could take 
up the entire frame’s ms, and heavy rendering workloads, this pipelining is important. 
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With all of this in mind, what were the goals we set out to hit for our Destiny engine?  
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Our most important goal was to ship a fun game with great visuals and responsive 
gameplay.  
Destiny worlds are complex, alive and beautiful. Destiny players explore large 
destinations, with diverse environments, lush vegetation. All of this required a 
renderer with high-quality lighting with dynamic time of day and real-time shadows, 
high-resolution rendering, weather elements such as rain, snow, dynamic wind. To 
make that happen, we implemented variety of complex graphics features. 
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Our renderer architecture has been proven by the best test there is – the players.  
Destiny shipped last year and more than 17 million players have experienced the 
world of Destiny across four different console platforms.  
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We needed an engine with rock-solid performance on all of our platforms, but that 
also would be scalable across several console generations (and ideally beyond what’s 
currently available). 
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We see quite a difference in the makeup of last versus current generation consoles 
CPUs. And GPU designs are even more varied across these generations. This 
introduced a fair amount of challenges that our architecture had to cope with. 
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At the same time, Destiny is a fun, fast-paced sandbox game with highly-responsive 
gameplay, requiring consistently low input latency - from the time the player pressed 
a controller button to the time they see the result of their desired action on the 
screen.  
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But any sandbox game can exhibit high workload variability and bursty workloads on 
both CPU and GPU.  
Frames with little CPU simulation workload but heavy CPU and GPU rendering 
workloads (like this one) could mix with  
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shots where both GPU and CPU workloads are fairly light such as shot of the player 
on their sparrow flying through a Mars valley 
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Or, during a big battle scene, both CPU and GPU are brought to their knees and our 
engine and renderer must keep up which required very efficient load balancing. 
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To ship on last generation consoles without sacrificing our game play meant that we 
had to maximize every ms available on every available computational unit.  
To do that, we moved everything on the rendering and visibility workloads into tasks, 
used dynamic load balancing with smart job batching to for best CPU and GPU 
occupancy to keep our latency low. 
 
We achieved this by fully parallelized execution for best load-balancing, batching jobs 
smartly for both CPU and GPU and flushing GPU command buffer effectively for 
optimal GPU saturation, as well as keeping GPU idle to a minimum to avoid GPU 
bubbles.  
Everything on the rendering and visibility workloads was moved into tasks. 
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A major goal of the rendering architecture was to keep the API simple to use and let 
graphics engineers do their job and not worry about threading. We had a lot of 
features to write and we wanted to create new features quickly and automatically 
jobify them.  
 
The inherent complexity of multi-threading should be encapsulated within the 
underlying core architecture. By providing the right abstraction layers for common 
and advanced graphics operations, by focusing on local and coherent data 
encapsulation we could automatically enforce synchronization and correct data 
access. This allowed us to hide the vast majority of the threading complexity and 
write a ton of features!.  
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Decoupling game-state traversal from rendering would allow us to improve latency 
and help make the rendering submission a data-driven streamlined kernel processor.  

36 



We needed a fully data-driven rendering pipeline, where the rendering passes are 
executed via jobs operating on individual render elements arranged in coherent 
caches rather than directly on game objects. 
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And when it’s put together, the execution of our renderer look something like <this> 
Each node in this diagram is an actual job (this is a shipping frame from our 
Cosmodrome level on Xbox One) 
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We’ll start by simulating the game tick (multi-threaded where possible) 
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Then we will run our visibility workloads to determine what should be rendered in 
this frame. We used Umbra visibility in the Destiny engine – and last year at GDC 
there was an excellent talk covering a fair amount of details of the visibility 
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We’ll extract data from the current game state for visible elements only into a 
dynamic data structure we call frame packet at every frame. 
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We’ll then convert this data to GPU friendly format ready to be copied into GPU 
registers during the render prepare phase.  
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And generate drawcalls to submit to the GPU during the render submit phase. We go 
wide during this phase to reduce latency (by finishing the work faster) and to keep 
GPU fully saturated without any idle time bubbles.  
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Our architecture has well-defined synchronization points which are necessary to 
ensure safe and well-defined concurrent data access across each phase of execution. 
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Here is an example from PS3 execution. 
<Note> the distribution of jobs on PPU (these are the two PPU threads) – we had a 
few jobs running on PPU for rendering but mainly during extract and the high-level 
submit script jobs. 
<And> the rest had pretty solid wall of SPU occupancy. 
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<The first> set of jobs that runs in our frame are simulation jobs.  
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Next we have visibility workloads.  
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We extract gamestate for visible elements 
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Run render simulations and prepare GPU-friendly data 
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And finally generate GPU commands to render the frame. 
 
Note that we had a pretty solid wall of jobs to execute the frame.  
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Today, we will only focus on this part of our engine’s job graph.  
While I won’t have time to cover all aspects of our entire design, including getting 
into proper details for some of the more advanced topics, I hope that I will be able to 
give you a good taste of a system we have developed and give you ideas about how 
you could approach multi-threading graphics engines. 
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So how did we decouple game state traversal from rendering? 
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We drive all of our render workloads by results of visibility to decouple game objects 
and rendering. We decouple visibility objects and game objects (except for a thin 
interface between). With that, we don’t need to traverse game data to determine 
what’s visible.  
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What we store in a game object is not necessarily what we need for rendering. A 
typical game object has a ton of data we don’t need for rendering (AI, pathfinding, 
physics). So let’s cache only the data we need in the renderer (maybe its mesh and 
material references, some dynamic runtime state (where it is in the world, what are 
its skinning transforms if it’s animated, etc.). Most of that data is static while the 
game object is in memory and we can limit the access to be read-only.  
 
 
 
A typical game object has AI, physics, animation components. But we need a small 
subset of that data to render that object – maybe its mesh and material references, 
some dynamic runtime state (where it is in the world, what are its skinning 
transforms if it’s animated, etc.). 
For most game objects much of rendering data is static over its lifespan. For example, 
if we have environment scenery, we have their mesh references, their materials and 
shaders handles, their transforms – all of that data never changes until we unload 
that environment instance from memory.  
We cache this static render data in the renderer when registering a game object w/ 
the renderer. Then since this data never changes, its access is always read-only.  
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For dynamically generated data we also don’t need the full object. For example, in 
case of a character we only want it’s world transform, its skinning transforms, and 
maybe some small additional state about that object (“am I the player?” “am I 
damaged?”, etc.) for each frame. We already cached this character’s mesh and 
material references in a static cache, so we only need to extract this dynamic data – 
and only for the frame when it was generated.  
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Also, we only care to grab data for what we will actually render. If an object is not 
visible, don’t extract anything. This lets us save the amount of data we need to 
double-buffer, and reduces the amount of data we need to copy out of game state. 

Thus, visibility drives what data needs to be extracted. 
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Let’s bring back the Halo engine diagram and modify it for this approach. 
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So in this world we have <simulation>, followed by <visibility>, followed by <extract>, 
which copies out a <much smaller> per-frame data out of gamestate which is then 
used by rendering this frame. 
 
 
 
(Note that simulation time didn’t reduce in this model, I just had to fit the words on 
the diagram for readability). 
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To decouple game systems and visibility and rendering, we first separate data 
representations into three separate categories: 
- Object system (this is our components on the game side) 
- Render objects 
- Visibility objects  
We provide interfaces for each layer to communicate across the boundaries. And we 
enforce strict access rules to allow access only during specific phases to guarantee 
correct threading synchronization. 

60 



We start with a game object. <Each> component will map to a particular render 
object on the renderer side. 
<When> a new game object is added to the world, it registers itself with the renderer. 
This caches the static render data for that game object inside the renderer. 
<The render object> may cache a game object handle (for dynamic objects) for later 
use. 
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The renderer then returns a handle to the render object back to the game object 
which caches it in the corresponding render component.  
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Using this render object handle, the game object registers with the visibility system to 
create a visibility object which caches render object handle inside. This render object 
handle points to the original render object 
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Which then returns a visibility object handle back to the object.  
To hide the game object now, we then just have to unregister this object with the 
visibility, and it will stop rendering.  
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Note that render object does not know anything about visibility; only visibility 
<knows> about the render object 
 
Thus we’ve decoupled game object system, visibility and render layers and can now 
drive rendering system from the results of visibility without having to access game 
objects. 
  
What about the dynamic data extraction?  
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We store all dynamic data (extracted or generated) in a double-buffered frame packet 
ring buffer. This multi-thread-allocation-safe structure is fully stateless - it is 
generated each frame and thrown away after we submitted each frame. 
<Each>frame’s worth of data is referred to as a frame packet.  
It has a fairly small footprint – each frame is ~1 MB per frame on last gen consoles 
which is about 9% of the total game state on those consoles. For comparison in 
Reach we copied ~10 MB of gamestate every frame to a mirror. 

66 



Next, let’s talk about how we generate jobs for the renderer workloads 
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Our render pipeline operates on concept of views.  
A view is defined by the usual frustum & camera parameters. 
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for example – we have <player view>, <shadow views>, <overhead> map views, etc.  
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A view also defines end-to-end renderer job chain, so it becomes our jobification 
unit.  
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Let’s take a look in a simplified form at how the architecture handles views to jobify 
the renderer workloads. 
We run <game simulation>, then <determine the views> for current frame and 
<generate> the frame packet data structure for this frame, <figure out what’s visible> 
in each view,, <populate> internal data structures for each view for efficient iteration 
in later jobs, <extract> game object data into the frame packet for each view’s visible 
list, and <unblock simulation> for next game tick. Then we  <prepare> GPU-friendly 
data and run render-specific simulation workloads, <tell> the core system we’re ready 
to submit it to the GPU, <run> high level submit script job, <generate> drawcalls for 
each view, <present> the frame, and <tell> the core system that we’ve completed this 
frame’s submit. 
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We run a few <global core renderer system jobs> which are executed regardless of 
what data we have in our frame. These act as the main synchronization points for our 
system. 
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However, for every view that we have in a given frame, we create a separate <view 
job chain>. These job chains are data-driven - they are only created if needed. For 
example, if a shadow view does not appear in our frame, we do not create jobs for 
that view. 
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Each engine phase completes by the <global synchronization> jobs.  
These synchronization jobs are used by the core renderer and simulation system to 
control access patterns to the underlying data containers (render and visibility 
objects, game state data).  
 
 
 
We use the execution environment mechanism that Barry Genova covered in his talk 
to help us identify any breaks in the expected data access patterns. 
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The <first job> we execute is a global job for the frame to compute which views we’re 
going to render in this frame.  
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This job also reserves the frame packet and <view packets> within it. Each view 
packet is just encapsulation for all data necessary to operate on this view. 
<Note> that for all the memory management in the frame packet within the view job 
chains, we don’t perform any runtime dynamic memory allocation in the true sense 
of that word. There are also no heavyweight heaps here. We simply allocate already 
frame entries in a lock-free frame ring buffer. 
Once the views are determined, this job sets up job chains for executing all 
operations for each view. 
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Next we begin the <extract phase> to copy data out of the game state. 
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So now that we have views defined, we run <our visibility job> for that view.  
This job operates on visibility objects that we just talked about and returns a list of 
visible render objects. We only need the visible list until the next job we run 
(populate render nodes for this view). So we store the <visible list> in a temporary 
visibility ring buffer just until extract is done. 
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The next job we’re going to run for this view is the <populate render nodes> job.  
This is the job that sets up the cache coherent arrays of data we call render nodes 
that the rest of the job chain will operate on.  
From this point onward, rendering jobs be driven from an array of render nodes.  
 
 
Each render nodes maps to a unique render object visible in each view. This data 
structure is defined to be very compact for iteration efficiency. 
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The populate render nodes job will run through the visible elements for that view, 
and sort them by render object type. This sorting enables coherent execution in later 
jobs. 
It will then <reserve and populate> render nodes in each corresponding view packet 
for the view we’re working on using the lock-free frame ring buffer.  
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Each view node stores some view information (bounding sphere, distance from view 
camera). This data is stored directly in render node for cache coherency for core 
renderer workloads which run tight iteration loops over the render nodes during 
extract, prepare and submit operations. A small amount of redundancy for such 
elements is more than made up by resulting performance improvements, and we 
selectively choose what data to store in the render nodes by type. 
The view node can also allocate data in the frame packet if needed. 
This allocation details are defined uniquely by each render object type (which is 
stored in the view node).  
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Each view node <maps uniquely to a frame render node>. This allows our system to 
share data across multiple views. For example, we might have multiple views that 
have a skinned character visible. All of those views would need to extract and prepare 
the skinning matrices. By putting those in the frame node we only do this work once, 
and we only have one copy of the data. We take this even further by allowing game 
objects to share data too, for different render objects. 
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For example, if we were rendering this frame with a <raider> character 
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Then if this raider is visible in the player view, then the <view> node would be our 
<reference> to the raider render object 
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Each <frame node> links to the render object, which allows us to access its statically 
cached data. 
 
Next, let’s look at our extract jobs execution 
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For each view node in the view packet, we’re going to extract data out of the game 
state object into the frame packet.  
The core renderer will iterate coherently over the view nodes sorted by render object 
type and execute extract job entry point for each render object type. Those jobs will 
operate on only this data as inputs: 
- Individual frame and view nodes for that visible element 
- Statically cached data from the corresponding render object 
During extract, we also reach out to the game object using the handle cached in the 
render object. 
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Coming back to our friend the raider here, we would extract and store his per-view 
attributes (distance from camera, etc.) in the <view node>, we would extract and 
store his bounding sphere and skinning transforms in the frame node. We would get 
all this data by reaching out to the <game objects> using the cached <render object>. 
While this all sounds pretty basic, I’ll explain in a minute how we wrapped this up in 
convenient interfaces to make sure that we could go wide for these operations with 
safe threaded access. 
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Note that extract phase is the <only> time we allow crossing the object system and 
renderer wall.  
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It’s akin to <this>  
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During extract, we actually generate separate jobs to go <wide> during extract. We 
generate multiple extract jobs for each view. The jobs are generated with smart 
batching for different render objects types.  
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Once extract jobs are finished, we tell simulation that <extract is complete> – this 
signals that simulation can proceed computing the next game tick. 
Before we go much further, there’s an important point to touch on – namely game 
simulation latency. 
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Coming back to an earlier diagram, we see that <extract> phase is required to 
complete before we can <unblock> the next frame’s game tick, thus increasing <game 
simulation latency> 
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During the extract phase, all of the output systems (rendering, networking, UI, audio) 
are reading gamestate.  
Which means it can’t be modified during that phase thus we cannot start next 
frame’s simulation. 
So we have to run extract as quickly as possible to unblock simulation.  
 
 
 
During Destiny development, extract was our most latency-sensitive workload that 
we constantly fought to reduce.  
 
 

93 



Extract window consists of visibility computations for all views and gamestate data 
extraction. 
Visibility computation is CPU work. Can we move visibility out of extract? 
Observation: the main player view’s static environment visibility is the heaviest 
workload in visibility computation. Let’s move that out of the latency-sensitive extract 
window 

 

94 



If we stagger visibility with simulation we can achieve that. We start by <polling> the 
controller during simulation (as late as possible). As soon as we have the controller 
information, we determine what views are present in our frame. 
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Then we are going to run <static visibility> computations predictively for our main – 
heaviest – <player view>. It’s the view where we see all of the environment objects 
for our gameplay. 
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There, we are going to compute visibility for static environment objects, which is the 
bulk of computations for the player view. Then <we will run> visibility computations 
for any dynamic views or dynamic objects.  
 
Because simulation might move the dynamic objects (physics or AI decisions), we 
can’t compute their visibility until the simulation is complete. Similarly, we create 
dynamic views (this includes, for example, dynamic shadow views) when we’re done 
with static environment visibility (when we know that a shadowing light is visible in 
the player view, and we’ll need its shadow). 
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This <reduces> game latency by 3-4 ms on last generation consoles and by ~2-3 ms 
on current generation consoles.  
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Next, we separated the work to extract data out of game state in its raw form from 
prepare (where we’ll transform that data to render-ready form). 
During extract, we are going to simply copy out the game state data with minimal 
work and not do any complex transformations on that data.  
And then we will unlock game state to unblock simulation for the next game tick. 
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We’re going to run prepare jobs for visible elements only. 
By running them after visibility computation we also avoid extraneous work for 
elements that won’t be seen.  
We also can use LOD to skip any computations that aren’t going to be perceivable 
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<video> 
This video can show a good amount of examples for the work we do in prepare 
phase. We convert the extracted data to GPU-friendly data formats. For example, for 
characters that you see, we convert local-space animation transforms to world-space 
dual quaternion vectors or linear blend skinning matrices ready to be copied directly 
to GPU registers during prepare.  
We also run non-game-affecting simulation workloads in prepare such as cloth and 
particle simulations.  
Another really important set of workloads we compute in prepare is for maintaining 
predictable performance budgets. We have designed our system to maintain 
predictable performance for various parts of our pipeline (for example, for cloth 
simulation, or for GPU cost of skinned elements). During prepare execute work to 
help us distribute visible elements into LOD buckets, for example, to maintain a 
consistent skinning budget per frame, or for trees instance, etc.  
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Then you can <prepare> the render-ready data in subsequent jobs while <simulation> 
for next game tick is running.  
This allows us to pipeline the work much better.  
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So now while simulation is running in parallel, we are going to execute the <prepare> 
phase 
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Similar to extract, prepare also operates by iterating through the view and frame 
nodes and cached render objects data, executing prepare entry points for different 
render objects. 
Prepare writes results of each prepare jobs into frame packet as well.  
But there’s an important difference from extract: <render jobs no longer can access 
game objects>. 
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Bringing back our friend the raider, during prepare we will run cloth simulation jobs 
for its tattered cape, we will also compute non-deterministic animation for his fingers 
and toes bones if the raider is close enough to the player (or skip that work if he’s 
not). We’ll also bucket him based on his vert count into a skinning LOD bucket to 
maintain a consistent LOD footprint for our combat frame.  

105 



During prepare phase the core renderer architecture generates per-render-object 
type jobs automatically, so that the phase also goes wide.  
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Once prepare jobs completed, the core architecture closes the frame packet for write 
and signals the system that we’re now ready to start submitting to the GPU. The 
reason why we need this explicit synchronization is because we may have multiple 
jobs generating GPU-friendly data, and we need to complete all that work before we 
start piping it to the GPU. Past the end of prepare, no jobs are allowed to write to the 
frame packet for this frame. 
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Next we will execute jobs to generate GPU commands for this frame. We’ll talk about 
submit in details in a few minutes.  
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When all submit view jobs are done, we execute the <final present> for the frame in 
end frame job. This synchronization point indicates to the core system that we are 
ready to flip any time GPU gives us back the signal that it processed all workloads. At 
the same time, we are ready to start generating the next frame’s worth of GPU 
commands. 
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We can repeat this jobification process for additional views (for example, if we had 
three views total in a frame) – and we have the following job chains for each view 
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Next, let’s talk about what all this complex job chaining meant for writing leaf 
features – i.e. the bread and butter of game graphics code. Threading should be 
transparent and automatic for the leaf features. Every one of our graphics engineers 
wrote graphics features (including myself), and we didn’t want to have to change job 
dependencies or job occupancy, or synchronization any time a new feature was 
added. We also didn’t want to do this for every new platform we support. So 
jobification had to become transparent and automatic and guarantee cache 
coherency and proper synchronization for core rendering workloads. 
<The way> we have implemented this is via the feature abstraction. 
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So far we talked about our frame rendering as if we have the same types of render 
objects. But our game has many different render object types. For example, this shot 
is made of  … 
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Static environment instances render objects 
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Gear render objects 
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Terrain  
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Trees and Decorator render objects populating our environment 
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Sky dome objects 
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And many other features which together builds up this frame.  
How do we express this taxonomy in our core renderer architecture?  
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Each render object type maps to a render feature which is the basic encapsulation 
unit in our architecture. We group render functionality by same data representation 
and code paths. For example, most of the skinned characters need dynamic 
transforms for skinned data, shaders and meshes, and iterate over the mesh 
containers to generate drawcalls, uploading skinned matrices to the GPU. A particle 
system would have a different data representation and have very different draw call 
generation logic.  
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Each render feature is implemented with a unique feature renderer responsible for all 
work for that graphics feature. Feature renderers are the main interface for 
implementing graphics features in the Destiny engine. This interface defines how 
graphics features represent their cached render data; how we extract dynamic data 
from game objects into frame packet render nodes, how we convert that data to 
GPU-friendly formats, and, most importantly, the code path to render these objects.  
Feature renderer interface exposes entry points for each of our engine’s phases which 
the core renderer architecture converts into jobs. This interface also provides data 
encapsulation to allow safe multi-threaded data access. 
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A game object can register with multiple feature renderers – that can be statically 
defined based on imported components of the object or dynamic (if we add new 
components to the game object at runtime).  
For example, this Hunter can register with … 
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simulated cloth, … 
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skinned objects, … 
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and customizable gear feature renderers.  
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We provided an interface for feature renderers entry points with strict rules for data 
they are allowed to read or write at each entry point. Feature renderers could only 
read the render node data and statically cached render object data. They are also 
only allowed to output to frame packet data. The latter was done to automatically 
ensure synchronization – double-buffering of dynamic data was automatic for feature 
writers as long as they wrote to the frame packet.  
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The core renderer architecture generates jobs for each phase by batching across 
multiple visible render objects of the same feature type for several entry points (for 
example, batching all extract entry points into one extract job). This jobification is 
done transparently to feature writers. This was very important while shipping Destiny 
because as we added new platforms, or had to significantly restructure job 
dependencies or load balancing granularity for existing platforms (which happened 
quite a few times throughout our development cycle), the leaf features’ code was not 
affected.  
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Here is the set of all entry points for feature renderers that our interface provides. 
You probably can’t read their names but don’t worry about that, they are just to give 
you an idea how our system worked. 
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These entry points mapped to each phase: extract … 
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Prepare …. 
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And submit. 
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For extract and prepare we also had entry points that operated only on the 
<individual local render nodes> (per view or per frame) – these were the bread-n-
butter extract and prepare entry points for regular render object operations 
(extracting and preparing skinning bones, for example). In other words, these entries 
only operate on one render object at a time – like <this piece of simulated cloth> 
here 

131 



But there were cases where you had to do operations on all <visible nodes> of the 
same feature type in a given view. We added extract and prepare finalize entry points 
to the feature renderer for that. By these entry points, all previous per-object 
operations were complete and we could do view-global operations, for example, 
running computations for all visible <<cloth elements>> in our player view. We used 
that also for sorting lights into priority queue to generate dynamic local light 
shadows, or LOD bucketing all skinned objects to maintain a constant skinning vert 
count per frame (we’ve implemented a number of techniques that maintained 
constant budgets for individual features within a frame to maintain consistent 
performance and latency). 
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And you may have wanted to do some global operations per frame – at the start and 
end of each phase (extract and prepare). So those entry points were also available to 
feature renderers. There, they could go through every view’s visible nodes (in other 
words traverse all elements visible in a frame) or do other frame-global operation for 
that specific feature.  
As you can see we had a number of entry points. When you multiply those per view, 
there could be a lot of jobs that we are running at once. How did we deal with this 
concurrency on the feature renderer level? 
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Extract and prepare computations and data are split up by frequency (view, frame, 
object). This allowed us to share data across different views, across different render 
objects to save memory in frame packet (ex: only need one copy of skinning 
transforms for any render objects using the same game object), and performance 
(only compute skinning transforms once for all render objects using them).  
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The core architecture sets up synchronization primitives to ensure safe multi-
threaded access. When feature renderers writers write code for ‘extract_per_frame’ 
for example, they don’t need to worry that this entry point will be executed from 
different jobs and may write to the same data in frame packet. However, it is 
important to use a performant synchronization method for this operation since it will 
be a high-frequency operation per frame.  
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Since thread access has to be controlled per render node based on frequency, we can 
have tens of jobs vying for the same node (for example, trying to extract skinning 
matrices for a cloth element on a warlock from player view in one job, at the same 
time as from a skinned object in the same view in a different job, and maybe from a 
skinned object in a shadow view). If we just used a regular heavy-weight 
synchronization primitive we would kill all performance gains from running these 
operations per-frame. <here> is an example. It is an example of our jobs in an early 
development build where we used locks to control this synchronization. The <wall of 
red> that you see is locks. This is awful (it was only there for convenience for a brief 
moment in time). 
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Instead we developed custom lockless primitives for render node synchronization 
control. We used an interlocked bitvector and then hashed a render node to a key to 
use for the synchronization. The wall of red is now gone. One word of caution is that 
although lockless primitives are good for performance, they are notoriously finicky. 
When developing these, beware of <schrodinger’s bugs> – now they are here, and 
now they aren’t. Timing related bugs due to getting lockless prims logic wrong can be 
quite challenging to debug and get correct, so patience is required.  
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For example, we run extract and prepare per frame operations to perform expensive 
computations that have to happen only once per entire frame as long as this render 
object is visible in any view. For controlling lockless access we used per-frame node 
index (which was unique to all objects registered with the renderer) 
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We also run per-game object extract and prepare computations to do workloads that 
need to be shared across multiple render objects that belong to the same game 
object. For example, we might have a skinned render object, a cloth and a gear 
render object all share computations to: 
- Extract and transform skinning data 
- Compute dynamic AO  
- Compute forward-light probe 
- Run non-deterministic animation solves (fingers, face bones) 
The core renderer provides lockless synchronization primitives for this operation 
based on skeleton hash 
Now let’s look at a couple of feature renderer examples. 
 

139 



First a simple one – static projective decals feature renderer <a><b><a><b>. Static 
decal renderer does not implement any extract or prepare entry points. It doesn’t 
need to. But it does implement the submit entry points. In the <submit node> entry 
point we execute decal drawcall generation logic. But we render a bunch of decal 
render nodes at once since they render to G-Buffer stage and we can sort them to 
execute together. So as an optimization we can setup render states they need in <“on 
submit node block begin”> entry point and then we clear these states in <on submit 
node block end> entry points. 
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The next level is the skinned feature renderer. This feature needs to <extract> game 
data (object properties, skinning transforms) during extract phase. In <prepare>, this 
feature renderer executes animation solve workloads for non-gameplay affecting 
bones (fingers, face bones, etc.) based on the object’s LOD. This is also where we 
generate the GPU-registers data for bones (dual quaternions or otherwise) and 
compute per-object dynamic AO and light probe data. <Both extract> and prepare 
use render node entry points and rely on <per-object data> and work-sharing. And of 
course we <render> our skinned objects using submit node entry point. 
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One of the most complex feature examples we have is cloth feature renderer. This 
feature renderer implements nearly all entry points our architecture provides. It 
<iterates> over all possible cloth objects to resets cloth simulation LOD on extract 
begin since we recompute simulation state every frame, in <extract per-frame and 
per-view entry> points we extract skinning data, object transforms, and cloth collider 
data from game state for individual render objects. In <extract per-frame finalize>, we 
run LOD bucketing to sort all visible cloth instances into high-, low- simulation and 
GPU skinned buckets to maintain a consistent performance budget per frame, we 
also determine cloth transition state for each cloth element (are we transitioning to 
or from GPU skinned state?) and do a number of other cross-object / cross-frame 
computations.  
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In <prepare> entry points we update cloth colliders, gather static and dynamic physics 
shapes to collide cloths with, launch and run Havok cloth solver jobs, synchronize on 
final cloth world updates for the whole frame, updated global cloth vertex buffers, 
and so forth.. And of course we render individual cloth objects in <submit> node 
entry point. 
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Adding a new feature is easy (and very quick to code). And very important, it is cross-
platform.  
<Create> a new render feature type (enum) 
<Create> render object data structure for your feature type. Typically a simple struct  
with a few helper methods.  
<Add> register / unregister calls to your game-side object for that feature 
<Create> a new feature renderer by copying an example FR file; convert to use y our 
render object data structure.  
Note that for FR we did not use virtual functions for better performance.  
<Implement> entry points for each phase (extract / prepare / submit)  

Voila – now  you’ll have jobified feature 
In practice for a new feature renderer (without the actual rendering code) this 
is about 10 mins of coding. And then you can focus on your data layout, and 
the submit code.  
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So far we have a job pipeline that can submit general views. Which would work great 
if we always rendered with the same shader and the same render target in that view. 
But what we really want is actually selectively render some objects into render passes 
automatically selecting the right shader techniques when we want to render that 
pass. And we want to make this process automatic and super extensible.  
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The point of submit is to generate GPU commands for this frame. The first workload 
we start processing is <the player frame submit script >job. I’ll often refer to this 
workload as “high-level submit script” – but that’s a conceptual, name, we are not 
running an actual script (Lua, etc.) at the moment.  
Before we breakdown how that works, let’s take a look at how the GPU frame is 
structured. 
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If we look at breakdown of a frame, you’ll quickly see that we build the frame from <a 
number of passes> (as you see in this list on the right). Note that these passes are 
different depending on the state of the game and the content visible.  
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We typically start computing GPU updates for particles and other GPU-driven 
elements.  
Then we render the atmosphere pass. 
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Followed by Gbuffer passes (depth prepass opaque, decals, etc.) 
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Then shadows – this includes cascade shadow view rendering and application, or 
local dynamic light shadows and application. 
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Followed by the lighting pass 
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Then we render additive decals  
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And transparents 
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We render geometry to light shafts occlusion buffer 

155 



We punch everything up by rendering lens flares 
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And that, ladies and gentlemen, is our frame. 
So what does it take to submit this frame?  
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The high-level submission of the overall frame is branchy, complex code with 
dynamically modified execution based on the state of the game.  
We need to figure out how to setup our player view based on whether the game is in 
first-person or third-person mode. We may have special rendering paths for 
cinematics, with additional subsurface scattering passes, or higher quality post-
processing effects.  
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High level frame submit ‘script’ executes high level rendering directives. It interleaves 
global state with high-level submit directives to submit the frame. Global state setting 
generates direct GPU commands into the main GPU command ring buffer; inserted 
directly. This includes: 
- Render target operations (alias / bind, clear / resolve / decompress)  
- Fframe registers: engine time, etc. and view state (view projection matrix, camera 

location, etc.) 
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During each high-level submit script pass, we issue “submit view” directives. This is a 
call to the core architecture which is designed to generate GPU commands for this 
view. From the perspective of folks writing the high-level submit script, this is all they 
need to do. They don’t worry about jobifying submit directives manually. Another 
benefit is the submit view directives are cross platform. Which means that as we had 
to adjust job granularity, batching rules, and occupancy behavior for each platform, 
the high level feature code was not affected. 
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Under the hood, the core renderer architecture converts the submit view directive to 
a set of submit view jobs. The rules for converting to jobs varied per platform due to 
our desire to have optimal GPU occupancy and keep game latency low. I will talk 
about that in a few minutes. 
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If we come back to our previous diagram for our pipelined execution, where does 
GPU fit into the picture?  
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What we want to do is thread the <rendering> execution to start feeding the <GPU> 
right away to have GPU crunch of the work as quickly as possible so that we can be 
ready to flip at the very next vblank event. I’ll mention a few things we did for that in 
a later section.  
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Ultimately, what we want to do is figure out how to fire up <submit view jobs> and 
feature submit entry points, from the high-level submit pipeline.  
What we need to do is distinguish which of the visible elements need to be submitted 
to a decals stage or which need to submitted to transparents stage 
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For example, we already know that some of our main player view’s visible elements 
render to G-Buffer pass 
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Other render as additive decals 
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And yet other elements for the same view render as transparents.  
 
How do we filter the visible nodes in the view packet for our streamlined feature 
renderer kernel submission?  
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In Destiny’s renderer, the high-level submit control code is cross-platform (with some 
exceptions for dealing with surfaces due to ESRAM / EDRAM / main / GPU memory 
particulars). 
The high-level submit code is organized in phases, where each phase is a sequential 
combo of render passes and render stage submission directives in our system. The 
distinction between the two is whether it is required or data-driven – i.e. only 
executed if the right data is present in the pipeline. 
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Certain render passes are required to render regardless of any data present in the 
pipeline – for example, the shading pass, the tone mapping and resolve pass, etc. 
Those are not considered render stages in our system.  
Render stage directives are a high-level command to execute submission for a specific 
view for a specific stage of the frame pipeline where we might have content-driven 
data (for example, G-buffer or transparents, or shadows elements). 
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Here’s an example of pseudocode (fairly close to the original) of what our high level 
submit code looks like. 
What we will talk about here is  <this> part 
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Render stage is our mechanism for filtering runtime submission for passes and views.  
At its core it is about shader management (selecting the right techniques at the right 
time) and filtering the visible list in a given view (which comes down to mesh filtering 
for actual drawcall generation using the right shader we’ve just selected). Of course 
we want it to be automatic and transparent to leaf feature writers. Render stage has 
also been design to improve cache coherency and enable fast iteration for core 
renderer workloads. 
How do we go about it? 
 

171 



Each render object can subscribe to a render stage. To do that, it registers with 
specific render stages when upon the registration with the renderer. This subscription 
can either be computed during offline importing or … 
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… registered dynamically at runtime. For example <when we engage a super>, we 
spawn effects on the character. We register the new character’s transparent FX 
elements for the character render object w/ the transparent render stage to render 
these new dynamic effects with the character’s feature renderers when we invoke 
transparent render stage high-level submission passes. 
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How do we filter the list of visible elements in a view for each stage?  
A view can specify whether it subscribes to a render stage or not. If the view doesn’t 
subscribe to the stage, it won’t render any visible elements for that stage.  
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For example, a shadow view only supports shadow generate stage and thus renders 
only the render objects that have subscribed to shadow generate render stage (i.e. 
shadow casters) that are visible in each view (respectively) 
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but the main player view supports variety of render stages (gbuffer… 

176 



…decals… 
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…transparents, etc.).  
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When we execute the submit view directives in our high level submit script, the core 
renderer architecture figures out for any given view whether we should execute 
anything for that stage by checking: 
- <Does this view support this render stage?> 
<and> 
- <Do any of the elements visible in this view support this render stage?> 
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How do we get information about render stage subscription for render entities?  
Each shader specifies render stage property in its metadata. Here is an example of 
how we do that in source code. (We wrote a custom shader language format for 
Destiny). 
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We iterate through all shaders offline when processing meshes for each platform, and 
create containers that allow constant time look up at runtime to get all mesh parts 
for a given render stage. 
This let’s us have super quick submit filtering for drawcalls when processing a submit 
node based for a render stage. 
Each render entity subscribes to stages at runtime by either using the static offline-
generated data or by using dynamic runtime state. 
Next, let’s look at how render stage filtering flows through our pipeline in an efficient 
manner. 
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After visibility returned us a visible list, the <populate view render nodes> job will run 
through the list of visible nodes for that view and sort them by render stages that 
they support (as well as render feature type). We actually cache the render stage 
subscription in core renderer objects and during visibility when we add objects to the 
visible list we automatically build counts for each render stage (better cache 
coherency). Effectively this filters visible nodes by stages they support for each submit 
node block  
<For each render stage>, the core architecture then creates a <submit node block>. A 
submit node block is just a block of render nodes that should render in that view | 
render stage pass.  
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When we submit certain passes, we may want to render objects in certain order. For 
example, transparents need to be rendered back to front. Or we may want to render 
G-buffer objects in groups of the same type, to have coherent execution. We do this 
sorting using submit nodes. Each render object writes custom per-stage sort heuristic 
key into the submit node. Each render stage has custom sort callbacks. Sorting is 

executed during prepare. 
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It’s important to note that each render object can create as many submit nodes per 
stage as it wants. This is very handy if you want to sort individual drawcalls for 
transparents for a given object, instead of just sorting by object. If you want to sort by 
individual drawcalls, go ahead.  
The sort calls themselves are extremely fast since they are operating on tiny elements 
in cache-coherent submit node blocks.  
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All core renderer jobs operate on the render nodes – <which> are tiny data structures 
(here are the sizes in bytes for each node type) 
This ensures that all core renderer workloads are fast, cache-coherent operations 
(sorts, allocations, iteration for each stage by the core feature renderer interfaces).  
Note that a small percentage of the data is duplicated in each node type for faster 
cached access during tight iteration in the core workloads. 
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Now when we say “render first cascade shadow view” the core system interprets that 
as “generate <submit jobs> to render first cascade shadow view packet’s shadow 
generate render stage submit nodes block”.  
Internally, the renderer grabs the appropriate <submit node block> for the view and 
render stage we’re submitting. Then for each submit node (i.e. a visible node for that 
stage), we execute the corresponding render object’s submit entry point, using <the 
view node>, <the frame> and the <render object’s> cached data to generate the 
drawcalls.  
<And, like prepare, submit> also cannot access game state because simulation is 
running at the same time. 
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The core system actually splits up the high level directive into separate jobs, for 
example, grouping one set of nodes together into a single job, while another 
grouping gets batched into a different job (I used different colors for submit nodes 
here to indicate example batching). Within each job, we still execute feature 
renderer’s submit kernels for individual render nodes. We’ll talk about how the 
batching works in a few minutes in a later section on dynamic load balancing. 
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This way, feature renderer submit abstracted inputs to each submit kernel to restrict 
knowledge only to the specific render entity’s local state for this submission: 
- The render object itself, its locally cached data and it’s dynamic data in the frame 

packet 
- The specific submit parameters (view, stage, etc.) 
- But not the global state (bound surfaces, etc.) 
Leave the state in the same way as when you can in. 
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So feature submits are already grouped by same code paths. We can then sort the 
submit node blocks by feature type if the render stage allows it (ex: G-Buffer or 
shadows). We are only executing using local state using specific stage’s kernels. This 
sure looks like GPU pipeline, right? All of this allows us run coherent execution in that 
stage’s job. In a way, we have so much to thank SPU for, don’t we?  
You can see that this maps well to data-parallel processing.  
Our submit jobs became fully streamlined kernel processors. 
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When you put this together across all views, across all render stages and render 
features, here you have it - our full jobified renderer pipeline. 
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All the render features’ jobs are going wide across <extract> .. 
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<prepare> .. 
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<and submit phases> .. 
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And now that we have the core architecture established, we can start adding bells 
and whistles to improve it. And the nice part about getting to this point is from now 
onward – no feature code needs to change. Throughout the project, we had 
tweaked, pruned, batched, and otherwise massaged the job dependencies, 
synchronization, occupancy in the frame. And yet none of the leaf render feature 
code was affected and needed to be touched. And that’s the way I like it.  
 
So, what other cool stuff can we do to make our architecture even more effective?  
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We had to implement a number of techniques to reduce render jitter and latency 
reduction. We won’t  have time to go into deep details for these, but I wanted to at 
least mention them as they were crucial for robust performance. To keep the GPU 
maximally occupied and our game latency minimal, we multi-threaded our submit, 
implemented custom dynamic CPU & GPU load balancing to get rid of GPU bubbles. 
We implemented efficient command buffer flushing to get the generated commands 
to the GPU as soon as possible. We also used asynchronous swapping on all platforms 
that allowed it, and implemented jitter reduction technique with latency auto-
recovery which worked great and reduced the overall latency significantly. 
 
 
But with all of this work happening under the hood, none of the leaf features were 
affected!. 
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We need to keep GPU fully saturated with work. This means we had to mind the 
following: 
• When did the CPU generate the GPU commands and flush them to the GPU to 

work on? If we take a long time on CPU to generate and flush GPU commands to 
the GPU, we can starve the GPU. 

• When did GPU finish working on our previous frame? We need to make sure to 
time our submission correctly. This also helps us avoid problems with running out 
of space for GPU command ring buffer (on more memory constrained platforms).  
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To help answer a lot of these questions, we implemented custom tracking of GPU idle 
in our engine.  
While exposed counters for querying GPU idle state on various platforms are spotty 
and not super reliable, we still used what we could get our handles on.  
We tracked GPU idle information for all of our performance runs and used this data 
to attack latency reduction. Whenever you saw GPU idle rear its head strongly, you 
know that you are starving your GPU. 
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Here is a timing capture from our profile Xbox One build using Microsoft PIX using in-
development mode.  
In this case, we are submitting the GPU command buffers using serialized submit. 
Now in our world this still fell into a small set of jobs but everything is submitted 
using a single threaded device. 
We begin CPU submission <here>. Then <we execute> serialized CPU submit jobs 
next. 
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You can see that GPU starts working on submitted drawcalls <here>. The plus side of 
serialized execution is that you can flush immediately to the GPU. 
<Here> is we are done with all of our drawcall generation and we submitted present 
and swap directives. We’re done with all the submit jobs <here>. Single-threaded 
submit takes a very long time to execute on CPU [bad for game latency]. And finally, 
the present call gets processed on the GPU <here>. 
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But what you can also clearly see here is that there are a <TON of GPU> idle bubbles 
in the GPU timeline.  
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which indicates that the GPU was starved and did not have work to execute. This 
means that our overall time to process the rendering of the frame has been 
increased, negatively affecting the rendering latency. We need to fix that to ship. 
 
 

201 



While optimal GPU occupancy is a very complex subject, these four pieces were 
crucial to our shipping plan: 
• Multi-threaded submit 
• Efficient generated command buffer flushing 
• Submit job granularity load balancing 
• Vblank synchronization 
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Offset your computations based on vblank 
In order to get GPU work complete when we’re ready to flip without missing 
an interval 

Some consoles allow raw vblank event tracking  
Great for complete control  

Other consoles / PC do not and require manual work 
Spin up a separate thread, wait for Vblank event 
Beware of Present deadlock when resize / fullscreen event posted 
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We want to multi-thread our submission to keep the overall game latency low and 
keep GPU idle time minimal. The quicker we can get commands to the GPU, the more 
it’s occupied. In MT submit case, we start submitting the frame <here>. <Then>we 
run a bunch of threaded commands to generate deferred command buffers.  
Multi-threaded submit means we can flush commands to the GPU tighter, keeping it 
constantly occupied <good for latency> 
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You’ll notice that we <present> a lot faster 

205 



You’ll notice that we <present> a lot faster 
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And we see that the GPU execution is one solid wall of work – this is what we want to 
see.  
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Next, let’s take a deeper look at our threaded GPU command generation on the high-
level (that complex topic can fill another two hours easily). 
We convert the high-level submit directives to submit jobs executing feature 
renderers submit kernels.  
But GPU must execute commands in a very specific order. Ex: Can’t run transparents 
before G-buffer or else… 
So we need to establish and maintain this order via explicit command buffer flush 
dependency. It doesn’t matter when the command buffers are generated but only 
when we flush them to the GPU.  
So we must allocate GPU command buffers, execute submit jobs and flush the 
command buffers using this synchronization.  
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Remember our high-level render submission which issued directives to submit render 
per view per stage directives?  
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Each such request maps to a { asynchronous command buffer | deferred command 
list }, generated as the result of a number of submit jobs and inserted into the 
sequence of submission command  
These command buffers are either directly inserted into the main GPU command ring 
buffer (if platform allowed) or use custom indirection to insert later (for platforms 
with more limiting API) 
Each request generates submit jobs to generate this asynchronous command list in 
concurrent jobs 
 
*Lots of trickery here, I’m avoiding that all together… (allocation callbacks versus 
allocation upfront versus “jump-to-self” versus “flush from watchdog thread” – each 
platform plays by its own rules) 
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Thus we can jobify submit execution by blocks of submit nodes together.  
We can start by grouping by feature and render stage – the feature kernels are 
already in place. 
It’s important to know that these jobs will be flushed in order of creation so that we 
have the right GPU execution order. 
Each submit node block can map to a single submit job / command buffer { view / 
render stage} 
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Need optimal cadence of CPU and GPU loads 
Light CPU to flush to GPU quickly and get it going 
Medium CPU with heavy GPU workloads next 
Etc. 

Sort submit jobs by render feature and render stage cost 
ex: submit jobs for depth prepass stage for environment and terrain features which 
have very light CPU cost, but will crunch for a bit on GPU while we have the CPU work 
on submitting Gbuffer character jobs next, which will occupy the GPU for a while, and 
then continue submitting your workloads.  
Since GPU strengths varies per platform, this sort heuristic needs to be balanced per 
platform.  
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That in itself was pretty good, but we still had to attack one more axis. That is –in a 
data-driven pipeline, we can easily be doomed to high job overhead cost. So how did 
we attack dynamic load-balancing in our architecture? 

213 



A naïve approach to this type of design can result in a huge explosion of jobs. In fact, 
when we started, we had one job per feature renderer per entry point per phase. 
That resulted in pretty heavy job overhead. Additionally, workloads varied drastically 
from job to job – some features had heavy CPU workloads in extract, for example, but 
none in prepare, while others may have had almost no workload in either phases. 
This was not a shippable approach. 
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So we extended the architecture to allow dynamic load balancing by the number of 
visible objects and feature cost per each object type. Each feature renderer can 
specify cost per phase. On the coarsest level you can think of this cost as “should I 
run in a stand-alone job?”. This allowed the core architecture to batch execution of 
multiple render objects within a phase based on this cost. If you’re a feature with 
light extract, you will be batched with other light extract features. But if you’re a 
heavy extract user, then you get your own job. This automatically load balanced 
based on visible objects data in any frame.  
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Next, for heterogeneous systems, we allowed each feature to specify which execution 
unit they are able to run on – for example, on PPU or SPU. Then the core renderer 
architecture will automatically schedule based on phase and available to run on 
either. We mostly used it for extract phase because for both prepare and submit, 
simulation occupied the vast majority of PPU and we had none to spare. But during 
extract, which also had some of the heaviest SPU occupancy, this allowed us to 
balance more efficiently based on load.  
We could consider extending this to future systems, for example, compute on the 
GPU (if we ever had GPU to spare).  
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Combing back to the example from PS3 execution we looked at earlier 
<Note> the distribution of jobs on PPU (these are the two PPU threads) – we had a 
few jobs running on PPU for rendering but mainly during extract and the high-level 
submit script jobs. 
<And> the rest had pretty solid wall of SPU occupancy. 
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If we look at the extract phase, you’ll see that we spread the work pretty heavily 
across all units – this is the example of dynamic heterogeneous load-balancing I just 
told you about.  
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Well, this describes a fair amount of details about our system. Of course we barely 
touched on the more complex aspects of our system, but you should now have a 
good idea of the overall design. How did we do with respect to our goals though? 
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Our architecture delivered low-latency, efficient highly scalable execution across 
multiple platforms and multiple console generations. The Destiny renderer 
architecture enabled us to ship the game with steady performance on all shipping 
platforms.  
The vast majority of our feature code and high-level submit code was cross-platform 
and cross-generation. The vast majority of optimizations done for the core 
architecture did not affect any of the leaf feature code. This was no small feat.  
I’d say “ship it!” but it’s too late. We already have.  
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Multithreading the renderer was key to shipping Destiny. We simply would not be 
able to support some of the more challenging platforms otherwise as the kernel-
based processing for our render workload jobs mapped well to SPU. 
Our architecture’s scalability and dynamic load balancing, combined with cache-
coherent data access and heterogeneous support allowed us to achieve low latency 
despite heavy workloads across the board. 
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If there’s anything I want you to walk away with today it is that creating data-driven 
pipelined architectures can give you huge flexibility for creating graphics features and 
yet help you optimize the overall performance of your engine across different 
platforms.  
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We successfully decoupled game-state traversal from output systems (in our case, rendering). We moved visibility 
computation out of the render thread and multi-thread visibility computation from the get-go.  
We achieved better CPU and GPU utilization for shipping game by breaking up rendering algorithms 
into task and data-parallel workloads is a data-driven process based on visible 
elements in the frame and the underlying data (shader and mesh properties) 
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Our jobification is accomplished in a transparent manner for 
almost entire graphics team. Our graphics engineers focused on 
developing rendering algorithms instead of the challenges of breaking 
every feature up into multithreaded workloads. The <lego-like> 
functionality of feature renderers paid off tremendously for Destiny and 
allowed us to deliver a huge amount of varied render features. And the 

architecture proved to be extensible - many new render features and 
stages were added throughout the development and the 
architecture held up well. Of course we also learned and 
extended the core architecture as we went.  
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Cross-platform feature code meant we only have to write graphics features once in 
our cross-platform API (including the cross-platform device, surfaces and our shader 
layer). This meant that typical graphics features (ex: terrain, environment, characters, 
etc.) only had to be written once and automatically worked on new development 
platforms as we added them (with notable exception of SPU-fication). Some of the 
more advanced features needed special care, for example, for HW instancing 
(example: tree rendering) where we had to modify some of the feature code for new 
platforms (Example: Playstation 4).  
This meant tremendous savings to the graphics team coding efforts.  
Once we had a couple of platforms (for example, Xbox 360 and Playstation 3), adding 
a new platform meant: port low-level layers (device, surfaces, shader layer) and one 
representative feature renderer – let’s say, terrain. This is the bulk of the porting work 
and may take several weeks to do (depending on the platform). Once that’s 
complete, it took us less than one week to port and test the rest of the graphics 
features (with a couple of additional touches for HW instancing and advanced surface 
usage).   
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We encountered some challenges along the way, of course. Unfortunately, we don’t 
have a sufficient amount of time to cover these in details, but I wanted to mention a 
few.  
 
Submit job granularity and GPU command buffer generation / flushing had to be 
revisited for each platform with each throwing custom requirements into the mix. We 
have plans on how to improve that with our next engine’s iteration by making this a 
more automatic, data-driven process.  
As we added more features and threw more jobs with more complex dependencies, 
job overhead cost optimization was a periodic task for the core architecture 
optimization, both for existing platforms and for platforms we added throughout 
development. 
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So if you liked what you just heard and were excited about the work we do at Bungie 
– come join us! We are hiring (and in fact for the graphics team). Many people 
contributed to the awesome graphics of Destiny and we have an incredible team of 
engineers and artists that make this fun game.  
Stop by and talk to our recruiters – they are in the audience, or grab us afterwards, 
we’ll follow up post conference. 
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Note that we will post the slides on the Advances website. I listed my email and 
twitter handle – if you have some questions, let me know. 
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