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Figure 1. Various rain effects seen in the state-of-the-art interactive demo “ToyShop”: 
dynamic water puddle rendering with raindrops, raindrop splashes, and wet view-
dependent reflections of bright light sources. 
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3.1 Abstract 

 
In this chapter we will cover approaches for creating visually complex, rich interactive 
environments as a case study of developing the world of ATI “ToyShop” demo. We will 
discuss the constraints for developing large immersive worlds in real-time, and go over 
the considerations for developing lighting environments for such scene rendering. Rain-
specific effects in city environments will be presented. We will overview the lightning 
system used to create illumination from the lightning flashes, the high dynamic range 
rendering techniques used, various approaches for rendering rain effects and dynamic 
water simulation on the GPU. Methods for rendering reflections in real-time will be 
illustrated. Additionally, a number of specific material shaders for enhancing the feel of 
the rainy urban environment will be examined. 
  

3.2 Introduction 
 
 
Our goal was to create a moment in a dark city, downtown, during a rainy night. 
Fortunately, we had many opportunities for research, having started on the concept for 
the demo in the middle of October in Boston. As a comparison, in Figure 2 we see a 
snapshot of the theater district in Boston downtown compared with the final rendering in 
the ToyShop demo.  
 

(a) Rainy night in downtown Boston (b)Rainy night it the ToyShop town 
Figure 2. Comparison of a photograph from a real city during a rainy night versus a 
synthetic rendering of the interactive environment of ToyShop.   

 
Some games which incorporate rain rendering in their worlds use a very straight-forward 
approach: rendering stretched, alpha-blended particles to simulate falling raindrops. This 
approach fails to create a truly convincing and interesting rain impression. Frequently, 
the games only include one or two effects such as the stretched rain particles and 
perhaps a simple CPU-based water puddle animation to simulate the impression of rainy 
environment. This results in an unrealistic rendering with the rain not reacting accurately 
to scene illumination, such as lightning or spotlights. Some notable exceptions to this are 
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the recently released Spinter Cell from Ubisoft and Need for Speed: Most Wanted (Xbox 
360) with much improved rain rendering.  
 
We present a number of novel techniques for rendering both particle-based rain and rain 
based on a post-processing image-space technique, as well as many additional 
secondary rain effects, without which one cannot generate an immersive rain 
environment. Rain is a very complex atmospheric physical phenomenon and consists of 
numerous visual cues: 
 

• Strong rainfall  
• Falling raindrops dripping off objects’ surfaces 
• Raindrop splashes and splatters 
• Various reflections in surface materials and puddles 
• Misty halos around bright lights and objects due to light scattering and rain 

precipitation 
• Water, streaming off objects and on the streets 
• Atmospheric light attenuation  
• Water ripples and puddles on the streets 

 
We have developed methods to render all of the above in a real-time environment. Our 
techniques provide a variety of artist-directable controls and respect the rules of physics 
for simulating rainfall. They utilize light reflection models to allow the rain to respond 
dynamically and correctly to the lighting changes in the complex environment of the ATI 
“ToyShop” demo due to illumination from atmospheric effects (such as lightning).  
 

3.3 Rendering system requirements and constraints 

 
We faced a number of strict constraints while developing this interactive environment. 
First and foremost, the memory consumption needed to be in check – the goal was to fit 
the entire world of this environment into less than 256 MB of video memory. This was 
required for optimal performance on any graphics hardware, although this demo was 
specifically targeted to push the limitations of ATI Radeon X1800 XT graphics card. This 
memory requirement was a severe constraint for our development due to the large 
scope of the environment we wanted to create. At the end of the production we 
managed to fit the entire assets into 240 MB including 54 MB memory used for back 
buffer and offscreen storage, 156 MB for texture memory (including many high resolution 
textures) and 28 MB for vertex and index buffers.  
 
We must note that the high performance interactivity of this environment would not be 
achievable without using 3Dc texture compression. In order to create a realistic 
environment, we used a great deal of high resolution textures to capture the extreme 
detail of the represented world (for example, light maps and lightning maps, high 
resolution normal maps and height maps, high resolution color maps and specular 
maps). Using 3Dc technology allowed us to compress nearly half of a gigabyte of texture 
assets (478 MB, to be exact) to 156 MB. Specifically, we used texture compression 
formats such as ATI2N and ATI1N, DXT1 and DXT5 to compress majority of our 
textures. Additionally, we recommend using vertex data format DEC3N, which allows 10-
bit per-channel data storage, to reduce memory footprint for geometry. This format gives 
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3:1 memory savings while maintaining reasonable precision. We used it for encoding 
vertex normal, tangent and binormal data, as well as some miscellaneous vertex data. 
Note that this format is available on a wide range of consumer hardware and will be 
included as a first-class citizen in the upcoming DirectX10 API.  
 
We would like to provide a visual comparison of what the usage of 3Dc texture 
compression technology and the vertex compression format DEC3N allowed us to do in 
our interactive environment: in Figure 3a, the scene is rendered using compressed 
formats and in Figure 3b, only a portion of the original scene is rendered. This is due to 
the fact that the entire scene would simply not fit into the graphics card memory, and 
thus would not be rendered in real-time. Although this example is a bit contrived (since in 
real-life productions, one would first reduce the resolution of texture maps and decimate 
the geometric meshes), it serves the purpose of stressing the importance of high quality 
compression technology for interactive environments.  
 

 
(a) (b) 

Figure 3. In (a) the entire scene is rendered with the use of 3Dc and DEC3N technology. 
Without using this technology, we are only able to fit a small portion of the original 
environment into the graphics card memory (b). 
 
With the advances in programmability of the latest graphics cards and recent innovative 
games such as FarCry® by Crytek and Half-Life 2 by Valve Software, everyone realizes 
the need and the desire to create immersive interactive environments. In such worlds a 
player has many options to explore the surroundings; and the complexity of the 
environments helps make the experience truly multifaceted. However, that said, rich 
detailed worlds require complex shaders, and require a variety of those.  
 
In order to create the imagery of the ToyShop environment, we have developed a 
number of custom unique material and effects shaders (more than 500 unique shaders). 
Of course, approximately half were dedicated to rendering rain-related effects, including 
dynamic water simulations and wet surface material shaders. Just about one third of the 
entire shader database was used for rendering depth information or rendering proxy 
geometry objects into reflection buffers (see section 3.5). Finally, a number of shaders 
(roughly one sixth) were dedicated to rendering post-processing effects such as glow 
and blurring, along with the many custom particle-based effects. We highly recommend 
developing an extensive include framework for your projects. Separating shader sections 
responsible for rendering specific materials or effects allowed us faster iteration. For 
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example, we used more than 20 include files containing functions to compute reflections, 
shadows using shadow mapping, high dynamic range rendering including HDR lightmap 
decoding and tone-mapping, mathematical helper functions and lighting helper functions. 
In essence the include file system allows a game developer to emulate the richness of 
shader programming languages such as RenderMan®.  
 

3.3 Lighting system and high dynamic range rendering 

 

 
Figure 4. In the dark stormy night in the ToyShop town, we see a large number of 

apparent light sources 
 
We set out to create a moment in a dark city in a stormy, rainy night. But even in the 
midst of a night there is light in our somber downtown corner. Notice the large number of 
perceived light sources visible while flying around the environment (see Figure 4), such 
as the bright street lights, the blinking neon sign on the corner of the toy shop, various 
street lamps and car head and tail lights, and, last but not least, the lightning flashes. 
Every bright light source displays reflections in various wet materials found in this city.  
The sky also appears to illuminate various objects, including the raindrops and their 
splashes in the street puddles. While there are a number of different approaches that 
were used for implementing specific effects, an overall lighting system was developed in 
order to create a consistent look.  
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3.3.1 HDR rendering on a budget 
 
 
Any current state-of-the-art rendering must be done using high dynamic range for 
lighting and rendering6. Without using this range of colors, the resulting lighting in the 
scene will feel dull. (See chapter 7, section 7.5 for an excellent review of the HDR 
system in Valve’s Source engine). However, considering the memory constraints placed 
on this production, strict care had to be taken with regards to the specific format and 
precision selection for the rendering buffers. Additionally, since every rendered pixel on 
the screen goes through the tone-mapping process, the choice of the tone-mapping 
function directly affects the performance. Depending on the specific selection, it can 
constitute a significant performance hit. Because of the multitude of effects desired for 
the immersive environment rendering, both memory requirements and performance 
considerations were very specific and stringent.  
 
The goal lied in balancing performance and memory usage with an expanded dynamic 
range and good precision results. Recent graphics hardware such as ATI Radeon X800 
and above provides access to renderable surfaces which have 10 bits per channel. This 
surface format provides excellent precision results at half the memory usage of 16 bit 
floating point formats. All of the back buffers and auxiliary buffers were created with this 
surface format, as well as the HDR lightmaps used to light the environment.   
 
One challenge with using HDR for rendering in production environments currently lies in 
the scarcity of publicly available tools to work with the HDR art assets. Aside from 
previewing the lightmaps in-engine in real-time, there was a considerable difficulty for 
visualizing the lightmaps outside of the engine. We recommend using [HDRShop] for 
visualization of the light maps early on, as they take a considerable amount of time to 
render and ideally should not be rendered multiple times.  
 

3.3.2 Tone mapping and authoring HDR lightmaps 
 
 
For our HDR lightmap decoding, we used the RGBS (fixed-point RGB with shader 
Scale) approach for HDR lightmap decoding in shaders to maximize the available 
dynamic range of the 10 bit surface format. Simply using the straight 10 bit format for 
encoding and decoding light information in an expanded range results in the range 
expanded from [0, 1] to [0, 4]. However, if we are able to use the extra two alpha bits as 
a shared exponent, the range can be stretched to [0, 16]. See [Persson06] for a very 
thorough overview of available texture formats in the context of HDR rendering.  
 
The tone mapping curve was expressed as a four-point artist-editable spline for more 
control of the lighting. Some suggestions for integrating HDR into a game engine or a 
production pipeline: 
 

• Start by applying a linear tone mapping curve 

                                                 
6 For an excellent introduction and overview of image-based lighting and high dynamic range rendering, see 
[Reinhard05].  
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• This allows you to make sure that the values that you are getting from lightmaps 
in engine are correlated to the actual stored values in lightmaps 

• Remember – lightmaps are extremely time-consuming to render (especially if 
using any precomputed global illumination effects). Ideally the pipeline should be 
thoroughly tested prior to starting the process of lightmap rendering. That means 
testing the tone mapping curves first for accuracy 

  
Let’s look at some examples of HDR lightmaps in the context of HDR rendering and tone 
mapping. Figure 5 shows an example of the tone mapping curve incorrectly darkening 
and significantly reducing the available range for lighting. Therefore all details in the 
shadows are completely lost.  
 

 
Figure 5. Example of a tone mapping curve set to excessively darken the scene 

 
In Figure 6 we are seeing the opposite effect, where the tone mapping curve is over -
saturating the scene and all of the details in the bright regions are blown out and lost.  
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Figure 6. Example of a tone mapping curve set to excessively oversaturate  the scene 

 
We can see the tone mapping used in our interactive environment in Figure 7 where the 
contrast is set to the artistic choice. In essence, the tone mapping process comes down 
to being an aesthetic preference, and all of the three figures will look appealing in some 
circumstances and undesirable in many others. Additionally, the tone mapping curves 
can be dynamically animated depending on the scene intensity, location and timing. For 
an example of dynamic tone mapping, see chapter 7 of this course for the description of 
the HDR system in Valve’s Source engine. 
 

 
Figure 7. The tone mapping settings used in our environment allowed us to preserve 
desired amount of details in shadowed areas while maintaining overall contrast in the 
scene. Note the details under the “Closed” sign of the store.  
 
With respect to authoring lightmaps for any interactive rendering, the key notion to 
remember is that the process of rendering lightmaps traditionally is rather time 
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consuming (in terms of the rendering time), since it is an offline process. Thus the goal is 
to postpone this to the later parts of the development after iterating on some test 
lightmaps as a proof of concept. And, naturally, rendering lightmaps can only happen 
when the scene geometry and texturing, along with the lighting setup, has been 
completed and approved for the final environment.  
 
We chose to approximate global illumination effects with a less computationally-intensive 
approach. Due to time constraints and hardware limitations, we could not render both 
the final gather and global illumination in Maya® 6.0 Mental Ray for the lightmaps. 
However, the visual results of global illumination are crucial for the impression of light 
bouncing off nearby objects, and we needed a method to approximate it in the 
lightmaps. As an alternative, we chose to render lightmaps into a 32 bit texture format 
with final gather only using HDR light sources in Maya® (however, the light intensities for 
these light sources were set such that the final lighting values never exceed 16). See 
section 3.3.1 for the description of our HDR lighting and rendering setup. Additionally, 
the light intensities varied depending on the falloff type and distance from surfaces. An 
example of such a resulting lightmap render is in Figure 8a.  
 
To help approximate the soft lighting of global illumination we rendered the ambient 
occlusion map (in Figure 8b) into a 32 bit grayscale texture. This texture can be thought 
of as a global illumination noise map, to provide us with the darkening of the lighting in 
objects’ creases and in the areas where objects meet. To combine the ambient 
occlusion map and the prerendered lightmap, we used the Digital Fusion software 
package, first applying tone mapping to the ambient occlusion map to move the values 
into the appropriate range for the rendered lightmap and then adding it to the lightmap 
texture. The resulting final lightmap in Figure 8c displays an example of the actual art 
asset used in the interactive environment. Note that we are able to preserve both the 
hard contact shadows and the soft bounced lighting in the resulting lightmap.  
  

 
(a) 

 
(b) 

 
(c) 

Figure 8. An example of the lightmap asset creation process. We start out with the 
lightmap rendered with the final gather process in Maya® 6.0 Mental Ray (a), and then 
combine it with the ambient occlusion map from the same environment (b) to create the 
final art asset (c) used in the real-time environment. 
 
 

31 



Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments                
 

3.3.3 Shadowing system 
 
 
In the heart of the night, shadows rule the darkness. Enhancing the dynamism of the 
immersive environment of our interactive city meant having support for varied light 
conditions including dynamic lights. The shadow mapping technology allowed us a good 
balance between the final performance and the resulting quality of dynamic soft 
shadows. Shadow  mapping refers to the process of generating shadows by rendering 
from the point of view of the light source and then using the resulting texture (called the 
shadow map) during the shading phase to darken material properties depending on 
whether they are occluded with the respect to a specific light source. For an excellent 
overview of the shadow mapping and other shadowing techniques see chapter 6 in 
[Akenine-Möller02].  
 

(a) 
 

(b) 
Figure 9. Examples of shadow mapping technology used to render dynamic shadows on 
varied surfaces in the ToyShop demo 
 
We used a single animated shadowing light for our environment, which resulted in a 
single shadow map. To conserve memory, we took advantage of the novel hardware 
feature in the ATI Radeon series called ‘depth textures’. These are efficient and flexible 
surfaces for shadow mapping and other algorithms (see [Isidoro06] for a meticulous 
overview of these hardware features, and the efficient methods to implement shadow 
mapping and soft shadow filtering). Since these surface formats do not mandate binding 
of an identical sized color buffer, they provide excellent savings in memory for depth-
only rendering (we were able to bind a 1x1 color buffer to a 1024x1024 shadow map). A 
16-bit DF16 texture format provided good precision for our depth complexity needs. In 
Figures 9a and 9b we see some examples of shadow mapping applied in our 
environment.  
 
Shadow mapping has several important considerations that any developer needs to 
address in order to obtain visually pleasing results. The actual resolution of the shadow 
map will be directly proportional to the appearance of the shadows (as well as affect the 
performance). If the shadow map resolution is not high enough for the desired scene 
and viewer closeness to the shaded objects, potential aliasing artifacts may appear. We 
used a relatively large shadow map of 1024x1024 to improve the results. Additionally, a 
common bane of shadow maps is the need to filter the penumbral regions of the 
shadows in order to create soft shadows without aliasing artifacts. A typical approach 
includes using percentage closer filtering (PCF) ([Reeves87]) to soften the shadow 
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edges. However, simple PCF does not typically yield visually satisfactory results without 
aliasing artifacts or visible filtering patterns. We improve on the approach by using a 
randomized PCF offset sampling with custom filtering kernels ([Isidoro06]). For bright 
materials (or regions, such as in Figure 9a) we used an 8-tap Poisson disk kernel with 
random rotation offsets encoded into a lookup texture. Random rotation of the sampling 
kernel is needed for bright surfaces with smooth albedo, since the shadowing artifacts 
are most visible for these materials. For dark and noisy textured surfaces, we can relax 
the sampling requirement and can use a fixed Poisson disk kernel for sampling the 
shadow maps (as in Figure 9b).  
 

3.3.4 Lightning System and Integration  
 
 
Once we have the lighting and shadowing systems in place, we can start putting 
together the other components in order to create the illusion of a dark stormy night. 
Lightning and thunder increase the feel of a rainy, turbulent environment. Illumination 
from the lightning flashes needs to affect every object in the scene. As such, uniformly 
aligned shadows are crucial – we need to create a feeling that somewhere in the sky, a 
lighting bolt just struck in a particular location. At the same time, we have to keep in mind 
that we are using a single shadowing light and a single shadow map for our shadowing 
solution. Computing lightning shadows for each additional lightning ‘light’ can 
significantly impact performance and memory footprint (with additional shadow maps).  
 
In Figure 10a the city corner is rendered with just the regular lighting and shadowing 
system. In Figure 10b we captured the effect of a lightning flash on our environment – 
note all of the objects are throwing uniformly aligned shadows onto the street, creating a 
strong impression of actual lightning flash (combined with the sound effects of thunder).   
 
Lightning is a strong directional light that affects every object in the scene. Creating a 
convincing and realistic lightning effect is challenging for a variety of reasons. In our 
interactive environment, the viewer can get very close to the objects when lightning 
strikes. That means that the resolution of the shadows generated by the lightning flash 
must hold up regardless of viewer’s distance from an object. Finally, the illumination from 
the lightning must seamlessly integrate into the main lighting solution for our 
environment, as we are using a consistent illumination model for all objects in our scene 
(including shadow mapping).  
 
For artistic reasons, we felt it was important to include lightning illumination in our 
environment, despite the challenges – it heightens the mood. A dark night with rough 
weather would not affect the viewer in the same manner without the sudden surprise of a 
lightning flash followed by the inevitable thunder. Additionally, the extra illumination from 
the lightning helped us show off the details of various effects in the scene, which may 
have gone unnoticed in the pure darkness of the night.  
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(a) Scene rendered in the regular manner without a lightning flash 

 

 
(b) Scene rendered during a lightning flash 

Figure 10. Comparison of the regular environment rendering in (a) versus the same 
environment lit by a lightning strike from the right (b). Notice the correctly aligned 
object shadows in (b).  
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Our solution lies in special lightning lightmaps for the illumination due to lightning 
flashes. We can prerender the result of illuminating the environment from several 
directions, mimicking the light from a lightning flash into a lightning lightmap texture. 
Unlike a regular lightmap, this texture does not need to store full lighting color 
information – we are only planning to use it to modulate the regular illumination 
computed for each pixel (as an intensity multiplier of the underlying HDR lightmap). 
Therefore we simply encode the value into a single channel 8 bit texture. In our case, we 
found that computing the illumination for two unique lightning light locations was 
sufficient and provided good results for the additional increase in memory consumption 
(as a two-channel 8-bit-per-channel lightning lightmap, example in Figure 11). The scene 
information is encoded in a manner similar to regular lightmaps. We provide the artists 
an editable intensity parameter for custom mixing of the two lightmaps – which can be 
animated and controlled dynamically on a per object basis by a rendering script in our 
engine (we use the Lua programming language). The first lightmap contained the 
illumination from a lightning flash at an angle from far away, and the second lightning 
lightmap contained the illumination from a lightning flash directly above the center of the 
scene. Mixing these two maps in different object- and time- specific ways creates an 
illusion that we have a wider variety of lightning flash directions that we actually did.  
 

Every shaded pixel in our 
environment uses lightning 
illumination information. The 
rendering script propagates the 
animation parameter for each of 
the two lightning flashes to all of 
the shaders in the form of uniform 
parameters (floating point value of 
lightning brightness and location). 
In a specific material shader we 
can either read the lightning 
lightmap for the intensity value for 
the specific lightning selection or 
simply use the lightning brightness 
parameter (controlled by the artists 
from outside the script). (Or both 
types of parameters can be used 
simultaneously). The lightning 
lightmap sample is added to the 
regular lightmap sample before 
tone mapping. The performance 
cost for integrating this type of 
lightning illumination computation is 
very low – a single texture fetch 
plus several ALU operations in the 

shader to compute lightning flashes from varied locations. All objects in our real-time 
environment use this scheme and thus appear to respond accurately to lightning 
illumination in the scene.  

Figure 11. An example of a lightning lightmap 
where an individual lightning intensity value is 
stored for two lightning light locations in red 
and blue channels of the texture.  

 

 
Additionally, note that in realistic scenes, translucency of water is affected by the 
lightning flash illumination. We mimic this effect in our rendering. This can be 
accomplished by using the lightning brightness value to adjust the pixel’s opacity (alpha 
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value) when the lightning flash occurs. We use this approach extensively in the rain 
effects, improving the visual quality of those effects and making the lightning flash 
appear more natural.   
  

3.4 Post-processing effects for rain rendering  
 
 
In recent years post-processing has become a popular approach for adding visual 
variety to games, as well as approximate many camera or environment properties of the 
world around us. For example, the post-processing pipeline is used to add the depth-of-
field effects (as described in [Riguer03] and  [Scheuermann04]), enable high dynamic 
range rendering by providing a tone mapping step in the end of the scene processing, 
various image processing for artistic effects (some examples of post processing in a 
game environment are covered in chapter 7 of this course). In the Toyshop demo we 
used the flexible post-processing pipeline available in our engine to approximate 
atmospheric effects such as misty glow due to light scattering, to perform tone mapping 
for HDR rendering and for a variety of specific blurring effects for creation of rain effects.  
  

3.3.1 Creating appearance of misty glow due to inclement weather 
 
 
Water particles in the atmosphere during the rain increase the amount of light scattering 
around objects. Multiple 
scattering effects are responsible 
for the appearance of glow 
around light sources in stormy 
weather ([Van de Hulst81]). In 
order to approximate the effect of 
halos around bright light sources, 
we make use of the post-
processing pipeline available in 
our engine and controllable 
through the rendering script. See 
Figure 12 below for an example 
of misty glow in our environment. 
 
To approximate the atmospheric 
point spread function which can 
be used to model multiple scattering around the light sources in the stormy weather (as 
in [Narasimhan03]), we use the Kawase post-processing approach for rendering glows 
in our scene ( [Kawase03]). The main concept lies in blurring the original image to create 
the glow halos around the objects and bright light sources. Blur is a ‘magic’ tool: it adds 
softness to the scene, and successfully hides some artifacts (similar to the depth of 
effects).  

Figure 12. Misty glow in the ToyShop environment

      
First we render our environment into an offscreen buffer, where the alpha channel is 
used to specify the amount of glow for each pixel. Since we use 10-10-10-2 buffers for 
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rendering, we only use 2 bits of alpha for glow amount. This is not ideal for many 
scenes; however, with sufficient attention to details for material rendering we are able to 
achieve very good quality of the resulting effects even with just mere two bits of 
information and clever usage of blending states. Once the scene is rendered into an 
offscreen buffer (using 10-10-10-2 format), we downsample the rendering by a quarter in 
each dimension (giving a total of ¼ x ¼ = 1/16 reduction). We apply small blur filters 
(shown in Figure 13 below) repeatedly to the downsampled image, performing four 
feedback ping-pong passes for computing blurring.  
 
 
 
 
 
 
 
 
 
 

Figure 13. Kawase bloom filter. The weights for each sample are provided. (from 
[Kawase03] 

 
Each iteration of blurring ‘ping-pongs’ between two renderable textures used for storing 
the intermediate results. Each successive application of the bloom filter to the 
downsampled image takes the previous results as input and applies a new, larger kernel 
(as illustrated in Figure 14) to increase blurriness. The final blurring result is combined 
as described in [Kawase03]. More iterations will allow higher levels of blurriness; but we 
determined empirically that four passes give good visual results. 
 

 
 
To model fog attenuation due to water scattered in the atmosphere we implemented light 
attenuation based on distance in shaders. We attenuate the light information based on 
distance in shaders. In the vertex shader (Listing 1) we compute the distance of the 
object to the observer and then compute the linear fog value which is then sent to the 
interpolator for rasterization.  

 
Figure 14. Two successive applications of the bloom filter on a texture grid. (from 

[Kawase03] 

2nd 3rd 

1/16 2/16 1/16

2/16 4/16 2/16
Pixel being rendered 

1/16 2/16 1/16

37 



Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments                
 

 
    float4x4 mViewFog; 
   float2   vFogParams; 
 
   float ComputeFogFactor(float4 vWorldPos) 
   { 
      // Compute distance to eye 
      float4 vViewPos = mul (vWorldPos, mViewFog); 
      float fDepth = sqrt(dot(vViewPos.xyz, vViewPos.xyz)); 
 
      // Compute linear fog = (d - end) / (end - start) 
      float fFog = (fDepth - vFogParams.x) /  
                   (vFogParams.y - vFogParams.x); 
      fFog = saturate(fFog); 
 
      return fFog; 
   } 
Listing 1. Vertex shader fog segment  

 
In the pixel shader (Listing 2), we use the computed and interpolated fog value to 
attenuate pixel color value before tone mapping.  
 
    float3 cFogColor; 
   float4 vFogParams; 
 
   float4 ComputeFoggedColor(float3 cFinalColor, // Pixel color  
                             float glow, // Glow amount  
                             float fFog) // Vertex shader computed fog 
   { 
      float4 cOut; 
  
      // Foggy factor 
      float fogFactor = fFog * (1-(SiGetLuminance(cFinalColor)/10)); 
      fogFactor = min (fogFactor, vFogParams.z); 
 
      // First figure out color 
      cOut.rgb = lerp(cFinalColor, cFogColor, fogFactor); 
 
      // Then alpha (which is the glow) 
      cOut.a = lerp(glow, fogFactor*vFogParams.w + glow, fogFactor); 
 
      return cOut; 
   } 
Listing 2. Pixel shader fog segment  

 

3.5 Wet reflective world 
 
Realistic streaky reflections increase the feel of rain on wet streets and various object 
surfaces. These reflections are very prominent in any rainy scene and appear to stretch 
toward the viewer. Wet environments display a great deal of reflectivity – without realistic 
reflections the illusion is broken. Therefore, adding convincing reflections is a must for 
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any rainy environment. To simulate the appearance of a wet city street in the rainy night, 
we render a number of various reflection effects in our scene: 
 

 
(a)Wet surface materials (b) Glass reflections of the store from the inside 

(c)Wet metallic objects 
 

(d) Glass reflections from the outside as well as 
raindrop reflection 

Figure 15. A selection of reflection effects in the ToyShop environment.  
 

• Stretchy warped water reflections in the street, puddles and other wet surfaces 
(Figures 16b, 16c)  

• Various wet surface materials (wet granite, pavement, cobblestones, plastic, 
metal grates, etc) (Figures 15a and 15c above) 

• All of the rain effects used reflection and refraction effects (see section 3.6) 
(Figure 15d) 

• The inside of the toy shore and the outside scene reflected in the glass panes of 
the store windows (Figures 15b and 15d) 

• The drenched taxi cab turning around the corner displayed dynamic reflections of 
the scene around it (Figure 16a) 

 
Depending on the polygonal properties of a particular object, highly specular surfaces 
can display a great deal of aliasing if one is not careful. We dedicated a significant 
amount of effort to ensuring that these artifacts are reduced, if not completely removed, 
from our interactive environment. The solution was to attenuate both reflection 
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illumination and specular highlights at the objects’ edges using a Fresnel term of varied 
powers. 
 

 
(a) 

 
(c) 

(b)  
 
 

Figure 16.Dynamic reflection effects for rendering a wet taxi cab (a) and streets (b) in 
our interactive environment.  
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3.5.1 View-Dependent Streaky Reflections 
 
 
When moving around any city streets late night during a rain, one of rain’s strongest 
visual cues are the stretched reflections of bright light sources (such as street lamps, 
cars lamps, and store signs in the streets and sidewalks). These reflections are very 
prominent in any rainy scene. They appear to stretch very strongly toward the viewer, 
distorting the original reflecting object vertically proportional to the distance from the 
viewer. Water in the puddles and on the streets further warp the reflections, increasing 
the feeling of wetness in the environment (especially during the actual rain, the falling 
raindrops hitting the puddles create dynamic warping of the reflections). It is also easy to 
notice that these types of reflections are strongly saturated for bright light sources.  
 

 
A good example of real-life scene 
during the rain in Central Square in 
Cambridge is in Figure 16 on the right. 
There we see a number of store signs, 
car head and tail lights and street 
lights reflected in the street. Notice 
that the original shape of each 
reflector is only distinguishable by the 
blurred dominant colors (such as the 
reddish-orange glow of the taxi tail 
lights or the nearly white blobs of cars 
headlight reflections. Similarly, we 
want to preserve the brightest 
principal colors and create a blurry 
glowing reflection image for each light 
source or bright reflecting object in our 

scene.  

Figure 16. Real-life photograph of a rainy 
night in Central Square, Cambridge, MA.  

 
Realistic streaky reflections increase the feel of rain on wet streets and surfaces. In our 
environment we create reflections for all bright objects onto the paved streets and large 
flat surfaces, such as the rooftop ledge (see figure 18 for examples of reflections in our 
interactive scene). All objects that can be viewed as reflectors are identified as such by 
the artists a priori. Examples of the bright reflector objects in our environment are the 
neon lights (such as the toy shop sign, street and building lamps (such as the lamp on 
the rooftop), the car head and tail lights, and bright building windows).  Note that we 
render both bright light objects (such as street lamps), as well as the dark objects (such 
as the telephone poles and wires) (their colors are deepened). 
 
Rather than simply rendering these objects directly into the reflection buffer as they are 
in the final rendering pass, we improve performance by rendering proxy geometry into 
the reflection buffer instead. For each reflector object the artists generate a quad with a 
texture representing the object, which is slightly blurred out (since these reflections tend 
to be blurry in the end) (see Figure 17a). Note that we aren’t simply rendering the unlit 
proxy object texture into the reflection buffer. At run-time this proxy object is lit in a 
similar fashion to the original object (to make sure that the reflections appear to respond 

41 



Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments                
 

correctly to the environment lighting) during rendering into the reflection buffer. The 
reflection shader uses a simplified lighting model to preserve dominant colors, but does 
not waste performance on subtle effects of a particular material. This dynamic lighting 
allows us to represent reflected animated light sources (such as the flickering neon sign 
of the shop or the blinking traffic lights on the streets) correctly in the street reflections 
(which dim and light in sync with their corresponding reflector objects).  
  
The proxy reflection objects are dynamically stretched view-dependently toward the 
viewer in the vertex shader (you can see the reflection quad objects with wireframe 
displayed in Figures 17a and 17b). The amount of stretching varies depending on the 
distance of the object to the viewer.  
 

(a) Bright reflector objects rendered into 
the reflection buffer 

 
(b) Overlaid wireframe proxy reflector 

objects’ quads  

 
(c) Resulting scene using the above reflection buffer after processing 

 
Figure 17. View-dependent streaky reflection rendering 

 
One aspect that we want to mention for using the proxy objects is the issue of culling the 
objects if the original reflector objects are no longer in the view. Since the proxy objects 
are only rendered into the offscreen reflection buffer, they do not go through the visibility 
culling process in our rendering engine. Therefore, we ran into a situation where the taxi 
cab, turning around a corner, would disappear from the view, but even a few seconds 
later we could still notice the stretchy red tail light reflections. To work around this 
problem, we place separate reflector blocker objects, which act to hide the proxy 
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reflector objects from rendering into the reflection objects if the original reflector object is 
no longer in view.  
 

 
 

Figure 18. View-dependent streaky reflections in the ToyShop demo 
 
For performance reasons the reflection buffer is scaled to be half size of the original 
back buffer (and a separate quarter sized reflection buffer for the rooftop reflections). We 
utilize an expanded dynamic range for representing the rendered colors so that we can 
preserve the brightest and darkest colors for reflections (such as street lamps or taxi 
headlights or telephone poles) by using the 10-10-10-2 HDR format for the reflection 
buffer.  
 
Next we need to address the issue of making these view-dependent reflections appear 
blurry, glowing and streaky. For that, we turn to the post-processing system already in 
place (as described in section 3.3.1). We use a post-processing technique to 
dynamically streak the reflection buffer in the vertical direction only to simulate warping 
due to raindrops striking in the puddles. Note that this is done in separate passes from 
the regular scene post-processing.  
 
During rendering of the final scene prior to post-processing, we sample from the 
reflection buffer using screen space projection of the input vertex coordinate for each 
reflective material (such as the street pavement or the roof ledge granite, see Figure 18). 
Reflections are also distorted based on the normals of the surface they pass through. 
We use object’s per-pixel normal in tangent space to account for stretching of the 
reflection in view space and warp the reflection based on the surface normal. The post-
process-based blurring and this warping aid in removing specular aliasing and excessive 
flickering from reflections which would otherwise be highly distracting.  
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Since the number of draw calls in an interactive rendering application is an example of a 
typical rendering bottleneck of many games, we paid particular care to their optimization. 
Given the sheer number of various effects we designed to implement in our 
environment, we had very strict requirements for performance tuning and tried to save 
every percent of the frame rendering time. Since we rendered a large number of reflector 
objects, the goal was to render them in a single draw call. This was accomplished by 
specifying their world position in the skinning matrix using only a single bone. Therefore 
all objects with similar materials (such as the telephone poles or the street lamps) were 
rendered as one single big object using skinning to position them around the scene.  
 

3.5.2 Dynamic reflections for a reflective taxi  
 
While the taxi cab is moving through the streets of our interactive city, the environment is 
reflected in its metallic and glass surfaces (Figure 16a). We implement these reflections 
through the environment map reflection method (see [Akenine-Möller02], pages 153-166 
for more details). In order to generate dynamic reflections, we render our environment 
into a cubemap with the camera placed at the center of the taxi cab as its moving 
through the scene. This dynamic cubemap is used for reflection color lookup for the cab 
surfaces (Figure 19 below shows an example of the contents of this cubemap).  
 
Using the rendering script allows us to only render 
the environment cubemap for frames when the taxi 
was actually moving. At the same time, note that 
the environment gets rendered 6 times (for every 
face of the cubemap), so rendering the full scene is 
suboptimal. To improve that, we build a low 
resolution ‘billboard’ version of the city 
environment. We place the billboard quads along 
the taxi cab path. The quads contain textures of the 
buildings and environment as viewed from the point 
of view of the cab. These textures are created by 
taking in-engine snapshots by placing the camera 
on the taxi cab path while rendering the full scene 
(figure 20 contains an example of this billboard 
texture atlas). Similar to the approach for rendering 
reflector objects in section 3.5.1, we light these 
quads dynamically to get more accurate reflections 
in the final rendering. However, rendering just the 
billboard quads into the faces of the cubemap 
(rather than the full geometry) saves a great deal 
on performance. Instead of using the billboard 
versions of the environment, another suggestion for 
in-game rendering would be to use one of the lower 
levels of details of the scene, if the game contains support for level-of-detail rendering. 

Figure 19. An example of the 
dynamically rendered 
environment map for taxi cab 
reflections. 
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Figure 20. Billboard dynamic reflector 
texture atlas 

 
 

3.6 Rendering rain  
 
Rain is a complex visual phenomenon. It is composed of many visual components. 
Rainfall consists of specially distributed water drops falling at high velocity. Each 
individual drop refracts and reflects the environment. As the raindrops fall through the 
environment, they create the perception of motion blur and generate ripples and 
splashes in the puddles. Rain effects have been extensively examined in the context of 
atmospheric sciences ([Wang75] and [Mason75]), as well as in the field of computer 
vision ([Garg04]).  We developed a number of effects for rendering rain in our interactive 
environment in real time, consisting of a compositing effect to add rainfall into the final 
rendering, a number of particle-based effects and dynamic water effects, simulated 
directly on the GPU.  
  

3.6.1 Rendering multiple layers of rain with a post-processing 
composite effect 

 
We developed a novel post-processing rain effect simulating multiple layers of falling 
raindrops in a single compositing pass over the rendered scene. We create motion 
parallax for raindrops utilizing projective texture reads. The illumination for rain is 
computed using water-air refraction for individual raindrops as well as reflection due to 
surrounding light sources and the Fresnel effect. We provide a set of artist knobs for 
controlling rain direction and velocity, and the rainfall strength. The raindrop rendering 
receives dynamically-updated parameters such as lightning brightness and direction 
from the lightning system to allow correct illumination resulting from lightning strikes.  
 
Creating rainfall We render a composite layer of falling rain as a full-screen pass before 
the final post-processing of the scene. Rainfall is simulated with an 8 bit texture (see 
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Figure 20 for an example texture and the resulting rain scene). To simulate the strong 
mistiness of the raindrops, we blur the rain by using the post-processing system (as 
described in section 3.3.1).  The artists can specify the rain direction and speed in world-
space to simulate varied rainfall strength.  
 
Although so far this approach sounds rather straight-forward, there are several 
challenges with rendering rain through a composite layer. The first difficulty lies in 
minimizing repeating patters that are inevitable when using a single static texture to 
model dynamic textured patterns. The second concern lies with the consideration that 
the rain pass is a full-screen pass, and therefore every pixel on the screen will go 
through this shader. This has direct effect on performance, and we must design the 
composite rain rendering such that it gives pleasing visual results without an expensive 
shader. 
 

(a) Rainfall texture 
 

(b) Rendered scene using this rainfall texture. Note 
that the image intensities have been brightened for 
better contrast since this is a static capture of rain. 

 
Figure 20. Rainfall texture applied for a composite rain effect in the interactive scene 

 
Computer vision analysis of rain models ([Garg04]) and video rain synthesis ([Starik03]) 
helps us to observe that one cannot easily recognize rainfall from a single static frame; 
however, rain is easily noticeable in a dynamic simulation or a video. Perceptual analysis 
of rain video shows that the individual raindrop motion cannot be tracked by human 
perception accurately due to swift movement and density of raindrops, which allows us 
to assume temporal independence of rain frames. However, our empiric experiments 
showed that purely random movement of raindrops does not yield satisfactory results 
(generating excessive visual noise). Therefore to simulate strong rainfall, we 
simultaneously use the concepts of individual rain drop rendering and the principles 
stochastic distribution for simulation of dynamic textures (as in [Bar-Joseph01] and 
[Doretto03]). 
 
The first part of our algorithm simulates individual rainfall movement. The artist-specified 
rain direction vector is moved into clip space. We use this vector to determine a raindrop 
position in screen space by using the current position in clip space, specified rainfall 
velocity and current time. Given these parameters and computed the raindrop position, 
we can scroll the rainfall texture using the specified velocity vector. However, although 
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texture scrolling is a very straight-forward approach, even with several texture fetches in 
varied directions with slight randomization, repeating rain patterns become rather 
obvious in a full-screen pass.  
 
Multiple layers of rain Our goal is to simulate several layers of raindrops moving with 
different speeds at varied depths in a single rendering layer. This better approximates 
real-life rain movement and allows us to create a feeling of raindrop motion parallax (a 
strong visual cue in any dynamic environment). The artists can specify a rain parallax 
parameter which provides control for specifying the depth range for the rain layers in our 
scene. Using the concepts of stochastic distribution for simulation of dynamic textures, 
we compute a randomized value for an individual raindrop representation to use in the 
rain shader. Using the rain parallax value, the screen-space individual raindrop 
parameter and the distribution parameter, we can model the multiple layers of rain in a 
single pass with a single texture fetch. This allows us to simulate raindrops falling with 
different speed at different layers. The rain parallax value for the rain drop, multiplied by 
a distribution value, can be used as the w parameter for a projective texture fetch to 
sample from the rainfall texture. Note that we use a single directional vector for all of our 
raindrops which is crucial for creating a consistent rainfall effect. This creates excellent 
visual effects of random streaking for the raindrops.  
 
Rain appearance Given a moving raindrop, we need to shade it. Raindrops behave like 
lenses, refracting and reflecting scene radiances towards the camera. They refract light 
from a large solid angle of the environment (including the sky) towards the camera. 
Specular and internal reflections further add to the brightness of the drop. Thus, a drop 
tends to be much brighter than its background (the portion of the scene it occludes). The 
solid angle of the background occluded by a drop is far less than the total field of view of 
the drop itself. In spite of being transparent, the average brightness within a stationary 
drop (without motion-blur) does not depend strongly on its background. 
 
Falling raindrops produce motion-blurred intensities due to the finite integration time of a 
camera. Unlike a stationary drop, the intensities of a rain streak depend on the 
brightness of the (stationary) drop as well as the background scene radiances and 
integration time of the camera. We simulate the motion blur for the raindrops by applying 
blurring via post-processing after the rain pass has been blended onto the scene 
rendering. This simulates both raindrop motion-blur and multiple-scattering glow for 
individual raindrops. To shade an individual raindrop, we use a tangent-space normal 
map corresponding to the rainfall texture. Note that since this is a full-space pass, the 
tangent space is simply specified by the view matrix. For each pixel in the rain pass, we 
compute reflection based on the individual raindrop normal and air-to-water refraction. 
Both are attenuated toward the edges of the raindrop by using the Fresnel effect.  
 
Raindrop transparency An interesting observation is that as the lightning strikes, the 
raindrops should appear more transparent. In other words, the opacity of each individual 
raindrop must be a function of the lightning brightness; otherwise water surfaces appear 
too solid. As mentioned in section 3.3, our rendering script propagates the lightning 
system parameters to all of our rain shaders, as well as the material shaders. For the 
raindrop rendering, we use a combined lightning brightness parameter (mixing both 
lightning ‘light sources’ as they flash in the environment) to compute the bias value to 
adjust the amount of reflection and refraction.  
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Realistic rain is very faint in bright regions but tends to appear stronger when the light 
falls in a dark area. If this is modeled exactly, the rain appears too dim and unnoticeable 
in many regions of the scene. While this may be physically accurate, it doesn’t create a 
perception of strong rainfall. Instead of rendering a precise representation, we simulate a 
Hollywood film trick for cinematic rain sequences. The film crew adds milk to water or 
simply films milk to make the rain appear stronger and brighter on film. We can bias the 
computed rain drop color and opacity toward the white spectrum. Although this may 
seem exaggerated, it creates a perception of stronger rainfall 
 
Compositing rain via blending We would like to make a few notes on specifying the 
blending for the rain pass. The rain layer is rendered both as a transparent object and a 
glowing object (for further post-processing). However, since we wish to render the rain 
layer in a single pass, we are constrained to using a single alpha value. Controlling both 
opacity and glow with a single alpha blending setting can be rather difficult. Despite that, 
we want to render transparent objects that glow, controlling each state separately for 
better visual results. We found that we can use two sets blending parameters to control 
blending for glow and for transparency for all rain effects all rain effects (composite rain, 
raindrops, splashes). In the latest DirectX9.0c there is a rendering state for separate 
alpha blending called D3DRS_SEPARATEALPHABLENDENABLE. Using this state 
along with the regular alpha blending function (via D3DRS_ALPHATESTENABLE) 
allows us to specify two separate blending functions for the regular opacity blending and 
for the alpha used for glow for post-processing blurring pass.  
 
Finally, we would like to mention a few other considerations for including this composite 
post-processing rain layer effect in other interactive scenarios such as games. In many 
extensive environments which may include changing weather conditions as well as the 
changes between outdoor and indoor locations, the issue of controlling composite rain 
rendering can appear challenging. In reality it is not so – there is a number of ways to 
efficiently accomplish that goal. In our interactive scene, we use the rendering script to 
determine whether the camera is located inside the toy store or whether it is outside. 
This information is used to dynamically turn off composite rain rendering. A similar 
concept (an engine state specifying what environment the camera is located, for 
example) can be used in many game setups. Likewise, an engine state that specifies the 
current weather condition can be used to control rain rendering by turning on and off 
rendering of the rain quad. If there is no notion of the appropriate engine state, another 
approach may involve using a sky visibility overhead lightmap (see section 3.6.3 for 
more on overhead lightmap). One can encode a Boolean sky visibility value 
(precomputed for the entire environment at preprocessing time for every point in the 
scene, similar to the overhead lighting lightmap used in section 3.6.3 for raindrop 
splashes lighting). This value can be used directly in the rain quad pixel shader to turn 
off rendering pixels based on the current camera location.  However, we would like to 
note that this approach is far less efficient than the rendering script-based control of rain 
rendering.  
  

3.6.2 Raindrop Particles Rain 
 
To simulate raindrops falling off various objects in our scene, we use screen-aligned 
billboard particle systems with normal-mapped rain droplets (Figure 22a and 22b). In our 
scenes we found that using on the order of 10-15,000 particles gives excellent results. 
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We created a base template particle system that uses the physical forces of gravity, 
wind and several artist-animated parameters. The artists placed a number of separate 
particle systems throughout the environment, to generate raindrops falling off various 
surfaces, such as rooftop ledge, building lamps, and so on, onto the streets.  
 
To render an individual raindrop particle, we stretch the 
particle billboard based on the particle velocity (with slight 
randomization offsets to vary velocity per individual particle 
within a particle system).  The illumination model used for 
these particles is similar to that of the composite rain layer. 
We use a normal map for a water droplet for each individual 
raindrop. Instead of using an accurate droplet-shape 
representation, we pre-blurred and stretched the drop 
normal map to improve the perception of motion blur as the 
raindrops move through the environment (Figure 21).  Note that the tangent space for a 
billboard particle is defined by the view matrix.  

 

 
 

 
Figure 21. Pre-blurred 
droplet normal map (on 
the right) 

 
To shade the raindrop particle, we only compute specular reflection and air-to-water 
refraction effects, using the pre-blurred normal map. Since droplet should appear more 
reflective and refractive when a lightning flashes, biased lightning brightness value 
adjusts the refraction and reflection color contributions.  
 

 
(a)Raindrops pouring from a gutter pipe 

 

 
(b) Raindrops falling off the rooftop ledge 

Figure 22. Raindrops falling off objects in our environment.  
 
To control raindrop transparency, we attenuate raindrop opacity by its distance in the 
scene. We wish to make the individual raindrop particles appear less solid and billboard-
like as they move through the environment. This can be accomplished by attenuating the 
particle opacity value by Fresnel value, scaled and biased by two artist-specified 
parameters for droplet edge strength and bias (which could be specified per particle 
system). We used the observation that the raindrops should appear more transparent 
and water-like when the lightning strikes, and increased the raindrop transparency as a 
function of the lightning brightness to maintain physical illusion of water. This can be 
easily done by biasing droplet transparency by 1 – ½ * lightning brightness. The particles 
still maintain their artist-specified transparency in the regular lighting without any 
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lightning flashes. We used this approach for both regular raindrop rendering and for 
raindrop splash rendering.  
 

3.6.3 Rendering raindrop splashes 
 
 
We simulate raindrops splashing when hitting solid objects by colliding individual 
particles with objects in the scene (Figure 23c). In our system we use special collider 
proxy objects. In a different engine environment this may be done by colliding particles 
directly with game objects. We used on the order of 5-8,000 particles to render raindrop 
splashes each frame. Figures 23a and 23b show an example of raindrop splashes 
rendered with regular illumination (a) and lit by a lightning flash on the rooftop ledge (a).   
 

 
(a) Raindrop splashes on the rooftop 
ledge 

(b) Raindrop splashes on the rooftop ledge 
lit by a lightning flash 

 
(c) Raindrop splashing hitting the store awning 

 
Figure 23. Raindrop splash rendering 
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To shade these splashes, we use a pre-rendered high-quality splash sequence for a milk 
drop (Figure 24). A single filmed high-quality splash sequence for a milk drop was used 
to drive the raindrop splash event for all of the thousands of splashing raindrops. The 
challenge lied in reducing the noticeable repetition of the splash animation (especially 
considering that viewer could get rather close to the splashes). To address this concern 
we incorporated a high degree of randomization for particle parameters (particle size 
and transparency), and dynamically flipped horizontal texture sampling for the filmed 
sequence based on a randomly assigned particle vertex color.  
 

Figure 24. Milk drop sequence for raindrop splash animation 
 
Splashes should appear correctly lit by the environment lights. We added backlighting to 
the splashes so that they accurately respond to the environment lights (and thus display 
the subtle effects of raindrops splashing under a street light). If light sources are behind 
the rain splashes, we render the splash particles as brightened backlit objects; otherwise 
we only use ambient and specular lighting for simplicity. We compute specular lighting 
for all available dynamic lights in the vertex shader for performance reasons.  
 

Figure 24. Overhead lightmap 
example 

Aside from the dynamic lights, we wanted to 
simulate the splashes lit by all of the bright objects 
in the environment (such as street lamps, for 
example), even though those objects are not 
actual light sources in our system. Using a special 
‘overhead’ lightmap let us accomplish that goal 
(see Figure 25 for an example). We can encode 
the light from these pseudo light sources into a 
lightmap texture to simulate sky and street lamp 
lighting. We can then use the splash world-space 
position as coordinates to look up into this 
lightmap (with some scale and bias). The 
overhead lightmap value modulates otherwise 
computed splash illumination.   
 
 

3.7 GPU-Based water simulation for dynamic puddle rendering 
 
 
The raindrop particle collisions generate ripples in rain puddles in our scene. The goal 
was to generate dynamic realistic wave motion of interacting ripples over the water 
surface using the GPU for fast simulation. We use an implicit integration scheme to 
simulate fluid dynamics for rendering dynamically lit puddle ripples. Similar to real-life 
raindrops, in our system we generate multiple ripples from a single raindrop source 
which interact with other ripples on the water surface. The physics simulation for water 
movement is done entirely on the GPU. We treat the water surface as a thin elastic 
membrane, computing forces due to surface tension and displacing water sections 
based on the pressure exerted from the neighboring sections. Our system provides 
simple controls to the artists to specify water puddle placement and depth. Figure 25 
shows water puddle on the rooftop and in the streets using our system.  
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Figure 25. Dynamic puddles with ripples from rain drops  
 
Water ripples are generated as a result of raindrops falling onto the geometry in the 
scene. This can be a direct response from the actual raindrop particle system colliding 
with the scene objects. In our implementation we approximated this effect by 
stochastically rendering raindrops into a ‘wave seeding’ texture. In the case of direct 
particle response, the approach is similar; however, the initial wave texture must be 
rather large to accommodate raindrops falling throughout the entire environment. In 
order to conserve memory, we decided against that approach, and limited our simulation 
to 256 x 256 lattice. Raindrop seeds are rendered as points into the water simulation 
texture, where the color of the raindrop is proportional to its mass. The method can be 
extended to generate dynamic water surface response for arbitrary objects. This can be 
achieved by rendering an orthographic projection of the objects into the seeding texture, 
encoding object’s mass as the color of the object’s outline. This would generate a wake 
effect in the water surface.  
 
We render the raindrop seeds into the first water simulation buffer in the first pass. 
These rendered seeds act as the initial ripple positions. They ‘excite’ ripple propagation 
in the subsequent passes. In the next two passes we perform texture feedback approach 
for computing water surface displacements. In our case two passes are sufficient for the 
time step selected. If a larger time step is desired, more passes or a more robust 
integration scheme may be selected (we use Euler integration). In the fourth pass we 
use the Sobel filter ([Jain95]) on the final water displacement heights texture to generate 
water puddle normals.  
 
Real-life raindrops generate multiple ripples that interact with other ripples on the water 
surface. We implement the same model. We render a raindrop into a wave seed texture 
using a dampened sine wave as the function for raindrop mass. This approximates the 
concentric circular ripples generated by a typical raindrop in the water puddle.  
 
We approximate the water surface as a lattice of points. Each lattice point contains the 
information about the water surface in that location. In particular we store the current 
position as a height value and the previous time step position (see Figure 26).  Since we 
perform all of the water simulation computations directly on the GPU, the lattice 
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information is stored in a 32 bit floating point texture (with 16 bits per each position 
channel). A related approach was described in [Gomez00] where the lattice of water 
displacements was simulated with water mesh vertices displaced on the CPU.  
 

To compute water 
surface response 
we treat the water 
surface as a thin 
elastic membrane. 
This allows us to 
ignore gravity and 
other forces, and 
just account for the 
force due surface 
tension. At every time step, infinitesimal 
sections of the water surface are 
displaced due to tension exerted from 
their direct neighbors acting as spring 
forces to minimize space between them 
(Figure 27).  

Figure 27. Water 
neighbor cell 
acting on the 
current cell 

Figure 26. Water displacements encoded 
into the feedback texture. The red channel 
contains water heights at current time step, 
and the green channel contains previous 
time step displacements.  

Vertical height of each water surface 
point can be computed with partial 
differential equation:  
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where  
    z is the water displacement height,  
    v is the velocity of the water cell 
    x and y are the lattice coordinates of the water cell 
 
This PDE is solved with Euler integration in DirectX9.0 pixel shaders in real-time by 
using the texture feedback approach to determine water wave heights for each point on 
the lattice.  
 
Water puddles integration. We render a single 256 x 256 water simulation for the 
entire environment. Therefore we have to use a bit of cleverness when sampling from 
this simulation texture - since many different objects all use the same wave ripples 
simulation at the same time. We sample from the water membrane simulation using the 
object’s current position in world space, specifically the xz coordinates as a lookup 
texture coordinates into the wave normal map (Figure 28).  
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The artists control the sampling space per object with 
a scaling parameter that allows them to scale the size 
of water ripples at the same time (by essentially 
scaling the lookup coordinates). To reduce visual 
repetition for puddles, we rotate the water normals 
lookup coordinates by an angle specified per-object. 
Since we sample from the water normals texture when 
rendering an object with puddle, we do not require 
additional puddle geometry. It is even possible to 
dynamically turn water puddle rendering on and off by 
simply using a shader parameter and dynamic flow 
control. To render an object with water puddles, we 
perturb the original object’s normal from a bump map 
with the normal from the water membrane simulation.  

Figure 28. Dynamic ripples 
normals 

 
The artists can also specify a puddle ripple influence parameter per object. This 
parameter controls how much the water ripple normal perturbs the original bump map 
normal. This allows us create different water motion for various objects.  
 

Puddle Placement and Depth To render deep puddles, 
we use just the water puddle normal sampled as just 
described, along with the color and albedo attributes of 
the object. We wanted to mimic varied puddle depths of 
the real-world and allow artists creative control over the 
puddle placement. A puddle depth mask was our answer 
(Figure 29 on the left). Adding puddles with ripples to 
objects is straight-forward:  
 

- Define the ripple scale parameter and sample 
ripple normals using the world-space position 

 
- Sample puddle depth map 

 
- Interpolate between the object normal map and 

the water ripple surface normal  based on the 
puddle depth value and artist-specified puddle 
influence parameter 

 
 
 

 
 
 
 
 

 
Figure 29. Puddle depth 
and placement map.  
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Creating Swirling Water Puddle For the rooftop 
puddle, we want to create an impression of water, 
swiftly swirling toward the drain, with ripples from 
raindrops warping the surface (using the above 
approach). We used several wake normal maps to 
create the whirlpool motion. The first normal map 
(Figure 30a) was used to swirl water radially around 
the drain. Combined with it, we used the wake 
normal map from Figure 30b to create concentric 
circles toward the drain.  
 
 

3.8 Raindrop movement and 
rendering on glass surfaces in 
real time 

 
 
We adopted the offline raindrop simulation system 
[Kaneda99] to the GPU to convincingly simulate and 
render water droplets trickling down on glass planes 
in real-time. This system allows us to simulate the 
quasi-random meandering of raindrops due to surface tension and the wetting of the 
glass surfaces due to water trails left by droplets passing on the window. Our system 
produces a correctly lit appearance including refraction and reflection effects. 

 
(a) Radial movement wake map 

 
(b)  Concentric circles wake map
Figure 30. Wake normal maps 
 

 
Droplet movement. The 
glass surface is 
represented by a lattice of 
cells (Figure 31) where 
each cell stores the mass 
of water in that location, 
water x and y velocity, and 
the amount of droplet 
traversal within the cell. 
This information can be 
conveniently packed into a 
16 bit per channel RGBα 
texture. Additionally we 
store droplet mass and 
affinity information for each 
cell as well.  
 
The force of gravity 
depending on the mass of 
the droplet is used to 
compute the downward 

movement force on the droplet. Static friction for stationary droplets and dynamic friction 
for moving droplets is used to compute the competing upward force.  The static and 

 
Figure 31. Discrete lattice model for storing water 
droplet information at run-time 
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dynamic friction varies over the surface of the glass. This resultant force is applied to the 
initial velocity to determine the new velocity value for the droplet. 
 
At any given time, droplets can flow into the three cells below its current cell. New cell for 
the flow is randomly chosen, biased by the droplet directional velocity components, 
friction based affinity of current cell and the ‘wetness’ of the target cell. The glass friction 
coefficients are specified with a special texture map. Droplets have a greater affinity for 
wet regions of the surface. We update the droplet velocity based on the selected cell.  
 
Droplet rendering. First we render the background 
scene. Then we render the water droplet simulation 
on the window. This allows us to reflect and refract 
the scene through the individual water droplets. In 
order to do that, we use the water density for a given 
rendered pixels. If there is no water in a given pixel, 
we simply render the scene with regular properties. 
However, if the water is present, then we can use the 
water mass as an offset to refract through that water 
droplet. At the end of the droplet movement 
simulation, each cell contains a new mass value 
(Figure 32). Based on the mass values, we can 
dynamically derive a normal map for the water 
droplets. These normals are used to perturb the 
rendered scene to simulate reflection and refraction through water droplets on the glass 
surface (figure 33a).  

Figure 32. Water droplet mass 

The droplet mass is also used to render dynamic shadows of the simulation onto the 
objects in the toy store (using the mass texture as a projective shadow for the other 
objects). If the droplet mass is large enough, we render a pseudo-caustic highlight in the 
middle of the shadow for that droplet (Figure 33b) 
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(a) Water droplet rendering on the glass window 

(b) Bright pseudo-
caustic highlight for 

heavy droplets seen in 
the close-up 

Figure 33. Water droplets refracting the scene of the toy store interior through and 
reflecting external lights. Note the shadows from the water droplets on the toys inside 

 

3.8 Effects medley 
 
 
Aside from the main rain-related effects, we developed a number of secondary objects’ 
effects that we would like to briefly mention here since they help increase the realism of 
our final environment.  
 

3.8.1 Foggy lights in the street 
 
  
Our scene has many foggy lights with rain (Figure 34a). We used an approximation 
shader instead of an expensive volumetric technique to render the volume of light under 
each lamp. We can simulate these lights as pseudo-volumetric light cones by rendering 
noisy cloud-like fog on the light cone surface (light cone objects’ wireframes are shown 
in Figure 34b). This efficient approach uses a tangent space technique to control lit fog 
fading towards the edges of the light frustum (Figure 34c). In order to get smooth falloff 
on the silhouette edge of the cone, the view vector is transformed into tangent space 
and its angle is then used to attenuate the falloff.  In the pixel shader we simulate 
distance attenuation of a light by a square of the v texture coordinate. Then we perform 
two fetches from a noise map scrolled in different directions to create perception of 
participating media in this light’s frustum. 
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To render rain, falling under the bright light, we render an inserted quad plane in the 
middle of the light frustum with rain texture scrolling vertically matching the composite 
rain effect. The rain must fade out toward the edges of the frustum in the same fashion 
as the volumetric light. We use a map to match the cone light attenuation. For angled 
lamps, we orient the inserted rain quad around the up-axis in world-space in the vertex 
shader to ensure that the rain continues to respect the laws of gravity and falls 
downwards.  
 

(b) Light cone wireframe 

(a) Various foggy lights in our scene 

(c) Rooftop light cones 
Figure 34. Foggy volumetric light rendering  

 
 

3.8.3 Traffic light illumination 
  
 
The traffic lamps should dynamically illuminate the traffic light signal object. Computing 
the full global illumination effects to simulate color bleeding and inter-reflection is an 
expensive operation (see chapter 9 for a longer discussion of global illumination effects). 
As a different approach, we use the concept of lightmap to help us simulate these subtle 
effects in a more efficient manner at run-time. We precompute the global illumination 
lightmap for the traffic light object, animated in accordance with the blinking traffic light 
signal (Figure 35a). This lightmap stores color as a result of color bleeding and inter-
reflection effects computed with Maya®’s Mental Ray. Note that for a compact object 
such as the traffic light, this lightmap is very small. At rendering time, we sample the 
color of the lightmap using the traffic lamp animation parameter as a parameter for 
computing sampling texture coordinates.  
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We simulate the internal reflection through the colored reflective glass of the traffic lamp 
by fetching a normal from the glass normal map and using that normal vector to look-up 
into an environment map, coloring the resulting reflection color by the lamp color. These 
internal reflections will only appear when the lamp’s glow is faint. We reflect the other 
parts of the lamp on the outside surface of the glass by another environment map fetch 
to render external reflections. 
 

 

 
 
 
 
 

 
(a) Traffic light global-illumination 

lightmap atlas 
 
 

(b) Traffic light in off (above) and on 
(below) state 

Figure 35. Approximating color bleeding for traffic light illumination 
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3.8.4 Rendering Misty Rain Halos on Objects 
 

In a strong rainfall, as the 
raindrops strike solid objects, 
they generate not only the 
splashes, but also a misty halo 
outlines along the edges of 
objects. We created a similar 
effect using the fins and shells 
technique (similar to real-time fur 
rendering from [Isidoro02]) 
(Figure 36). The rain halos are 
rendered with fin quads with 
scrolling rain (similar to the 
composite rain effect). Note that 
this effect requires additional fin 

geometry. Using the shells approach, we render rain splatters on the surface of objects 
in the form of concentric circles. In each successive shell we expand the splash circle 
footprint with a series of animated texture fetches and blend onto the previous shells.  

 
Figure 36. Misty halos on the taxi with a fins effect 
and rain splatter via a shells effect 

 

3.8.5 Taxi windshield wipers effect for wiping off the droplets 
 
 
The taxi cab windshield wipers can dynamically wipe away the static raindrops on the 
windshield (Figure 37a). Computing collision with the wipers and affecting droplet 
movement as a function of that calculation was not practical in our scenario due to many 
other effects already in place. Since the windshield wasn’t prominent in the main fly path 
through our environment, we wanted an inexpensive approach to render this effect. As a 
solution, we use two wiper maps (Figures 37b and 37c) to determine which regions on 
the windshield were recently swiped clean by the wipers. The animation parameters 
from the wipers are used in the shaders in conjunction with the wiper maps to control the 
rendering of raindrops depending on which regions were wiped. We use two separate 
maps so that the wiped regions can overlap, similar to the real-life windshield wipers.  
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(b) Left wiper map 

 

(a) Windshield with dynamically cleaned raindrops 

 
(c) Right wiper map 

Figure 37. Taxi windshield rendering with animated windshield wipers  

 
3.9 Conclusions 
 
 
Rain is a very complex phenomenon and in this chapter we presented a number of 
effects that help to generate an extensive, detail-rich urban environment in stormy 
weather. Each technology applied to the ToyShop demo adds detail to the scene.  Each 
additional detail changes the way we experience the environment.  It is this attention to 
detail that seduces the viewer and delivers a lasting impression of the limitless 
expression of real time graphics. All of these combined effects allow us to create a very 
believable, realistic impression of a rainy night in a cityscape at highly interactive rates. 
Rich, complex environments demand convincing details. We hope that the new 
technology developed for this interactive environment can be successfully used in the 
next generation of games and real-time rendering.  
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