
 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Chapter 3

Artist-Directable Real-Time Rain
Rendering in City Environments

Natalya Tatarchuk5
ATI Research

Figure 1. Various rain effects seen in the state-of-the-art interactive demo “ToyShop”:
dynamic water puddle rendering with raindrops, raindrop splashes, and wet view-
dependent reflections of bright light sources.

5 natasha@ati.com

23

mailto:natasha@ati.com

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

3.1 Abstract

In this chapter we will cover approaches for creating visually complex, rich interactive
environments as a case study of developing the world of ATI “ToyShop” demo. We will
discuss the constraints for developing large immersive worlds in real-time, and go over
the considerations for developing lighting environments for such scene rendering. Rain-
specific effects in city environments will be presented. We will overview the lightning
system used to create illumination from the lightning flashes, the high dynamic range
rendering techniques used, various approaches for rendering rain effects and dynamic
water simulation on the GPU. Methods for rendering reflections in real-time will be
illustrated. Additionally, a number of specific material shaders for enhancing the feel of
the rainy urban environment will be examined.

3.2 Introduction

Our goal was to create a moment in a dark city, downtown, during a rainy night.
Fortunately, we had many opportunities for research, having started on the concept for
the demo in the middle of October in Boston. As a comparison, in Figure 2 we see a
snapshot of the theater district in Boston downtown compared with the final rendering in
the ToyShop demo.

(a) Rainy night in downtown Boston (b)Rainy night it the ToyShop town
Figure 2. Comparison of a photograph from a real city during a rainy night versus a
synthetic rendering of the interactive environment of ToyShop.

Some games which incorporate rain rendering in their worlds use a very straight-forward
approach: rendering stretched, alpha-blended particles to simulate falling raindrops. This
approach fails to create a truly convincing and interesting rain impression. Frequently,
the games only include one or two effects such as the stretched rain particles and
perhaps a simple CPU-based water puddle animation to simulate the impression of rainy
environment. This results in an unrealistic rendering with the rain not reacting accurately
to scene illumination, such as lightning or spotlights. Some notable exceptions to this are

24

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

the recently released Spinter Cell from Ubisoft and Need for Speed: Most Wanted (Xbox
360) with much improved rain rendering.

We present a number of novel techniques for rendering both particle-based rain and rain
based on a post-processing image-space technique, as well as many additional
secondary rain effects, without which one cannot generate an immersive rain
environment. Rain is a very complex atmospheric physical phenomenon and consists of
numerous visual cues:

• Strong rainfall
• Falling raindrops dripping off objects’ surfaces
• Raindrop splashes and splatters
• Various reflections in surface materials and puddles
• Misty halos around bright lights and objects due to light scattering and rain

precipitation
• Water, streaming off objects and on the streets
• Atmospheric light attenuation
• Water ripples and puddles on the streets

We have developed methods to render all of the above in a real-time environment. Our
techniques provide a variety of artist-directable controls and respect the rules of physics
for simulating rainfall. They utilize light reflection models to allow the rain to respond
dynamically and correctly to the lighting changes in the complex environment of the ATI
“ToyShop” demo due to illumination from atmospheric effects (such as lightning).

3.3 Rendering system requirements and constraints

We faced a number of strict constraints while developing this interactive environment.
First and foremost, the memory consumption needed to be in check – the goal was to fit
the entire world of this environment into less than 256 MB of video memory. This was
required for optimal performance on any graphics hardware, although this demo was
specifically targeted to push the limitations of ATI Radeon X1800 XT graphics card. This
memory requirement was a severe constraint for our development due to the large
scope of the environment we wanted to create. At the end of the production we
managed to fit the entire assets into 240 MB including 54 MB memory used for back
buffer and offscreen storage, 156 MB for texture memory (including many high resolution
textures) and 28 MB for vertex and index buffers.

We must note that the high performance interactivity of this environment would not be
achievable without using 3Dc texture compression. In order to create a realistic
environment, we used a great deal of high resolution textures to capture the extreme
detail of the represented world (for example, light maps and lightning maps, high
resolution normal maps and height maps, high resolution color maps and specular
maps). Using 3Dc technology allowed us to compress nearly half of a gigabyte of texture
assets (478 MB, to be exact) to 156 MB. Specifically, we used texture compression
formats such as ATI2N and ATI1N, DXT1 and DXT5 to compress majority of our
textures. Additionally, we recommend using vertex data format DEC3N, which allows 10-
bit per-channel data storage, to reduce memory footprint for geometry. This format gives

25

http://www.ati.com/developer/demos/rx1800.html

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

3:1 memory savings while maintaining reasonable precision. We used it for encoding
vertex normal, tangent and binormal data, as well as some miscellaneous vertex data.
Note that this format is available on a wide range of consumer hardware and will be
included as a first-class citizen in the upcoming DirectX10 API.

We would like to provide a visual comparison of what the usage of 3Dc texture
compression technology and the vertex compression format DEC3N allowed us to do in
our interactive environment: in Figure 3a, the scene is rendered using compressed
formats and in Figure 3b, only a portion of the original scene is rendered. This is due to
the fact that the entire scene would simply not fit into the graphics card memory, and
thus would not be rendered in real-time. Although this example is a bit contrived (since in
real-life productions, one would first reduce the resolution of texture maps and decimate
the geometric meshes), it serves the purpose of stressing the importance of high quality
compression technology for interactive environments.

(a) (b)

Figure 3. In (a) the entire scene is rendered with the use of 3Dc and DEC3N technology.
Without using this technology, we are only able to fit a small portion of the original
environment into the graphics card memory (b).

With the advances in programmability of the latest graphics cards and recent innovative
games such as FarCry® by Crytek and Half-Life 2 by Valve Software, everyone realizes
the need and the desire to create immersive interactive environments. In such worlds a
player has many options to explore the surroundings; and the complexity of the
environments helps make the experience truly multifaceted. However, that said, rich
detailed worlds require complex shaders, and require a variety of those.

In order to create the imagery of the ToyShop environment, we have developed a
number of custom unique material and effects shaders (more than 500 unique shaders).
Of course, approximately half were dedicated to rendering rain-related effects, including
dynamic water simulations and wet surface material shaders. Just about one third of the
entire shader database was used for rendering depth information or rendering proxy
geometry objects into reflection buffers (see section 3.5). Finally, a number of shaders
(roughly one sixth) were dedicated to rendering post-processing effects such as glow
and blurring, along with the many custom particle-based effects. We highly recommend
developing an extensive include framework for your projects. Separating shader sections
responsible for rendering specific materials or effects allowed us faster iteration. For

26

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

example, we used more than 20 include files containing functions to compute reflections,
shadows using shadow mapping, high dynamic range rendering including HDR lightmap
decoding and tone-mapping, mathematical helper functions and lighting helper functions.
In essence the include file system allows a game developer to emulate the richness of
shader programming languages such as RenderMan®.

3.3 Lighting system and high dynamic range rendering

Figure 4. In the dark stormy night in the ToyShop town, we see a large number of

apparent light sources

We set out to create a moment in a dark city in a stormy, rainy night. But even in the
midst of a night there is light in our somber downtown corner. Notice the large number of
perceived light sources visible while flying around the environment (see Figure 4), such
as the bright street lights, the blinking neon sign on the corner of the toy shop, various
street lamps and car head and tail lights, and, last but not least, the lightning flashes.
Every bright light source displays reflections in various wet materials found in this city.
The sky also appears to illuminate various objects, including the raindrops and their
splashes in the street puddles. While there are a number of different approaches that
were used for implementing specific effects, an overall lighting system was developed in
order to create a consistent look.

27

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

3.3.1 HDR rendering on a budget

Any current state-of-the-art rendering must be done using high dynamic range for
lighting and rendering6. Without using this range of colors, the resulting lighting in the
scene will feel dull. (See chapter 7, section 7.5 for an excellent review of the HDR
system in Valve’s Source engine). However, considering the memory constraints placed
on this production, strict care had to be taken with regards to the specific format and
precision selection for the rendering buffers. Additionally, since every rendered pixel on
the screen goes through the tone-mapping process, the choice of the tone-mapping
function directly affects the performance. Depending on the specific selection, it can
constitute a significant performance hit. Because of the multitude of effects desired for
the immersive environment rendering, both memory requirements and performance
considerations were very specific and stringent.

The goal lied in balancing performance and memory usage with an expanded dynamic
range and good precision results. Recent graphics hardware such as ATI Radeon X800
and above provides access to renderable surfaces which have 10 bits per channel. This
surface format provides excellent precision results at half the memory usage of 16 bit
floating point formats. All of the back buffers and auxiliary buffers were created with this
surface format, as well as the HDR lightmaps used to light the environment.

One challenge with using HDR for rendering in production environments currently lies in
the scarcity of publicly available tools to work with the HDR art assets. Aside from
previewing the lightmaps in-engine in real-time, there was a considerable difficulty for
visualizing the lightmaps outside of the engine. We recommend using [HDRShop] for
visualization of the light maps early on, as they take a considerable amount of time to
render and ideally should not be rendered multiple times.

3.3.2 Tone mapping and authoring HDR lightmaps

For our HDR lightmap decoding, we used the RGBS (fixed-point RGB with shader
Scale) approach for HDR lightmap decoding in shaders to maximize the available
dynamic range of the 10 bit surface format. Simply using the straight 10 bit format for
encoding and decoding light information in an expanded range results in the range
expanded from [0, 1] to [0, 4]. However, if we are able to use the extra two alpha bits as
a shared exponent, the range can be stretched to [0, 16]. See [Persson06] for a very
thorough overview of available texture formats in the context of HDR rendering.

The tone mapping curve was expressed as a four-point artist-editable spline for more
control of the lighting. Some suggestions for integrating HDR into a game engine or a
production pipeline:

• Start by applying a linear tone mapping curve

6 For an excellent introduction and overview of image-based lighting and high dynamic range rendering, see
[Reinhard05].

28

http://www.hdrshop.com/

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

• This allows you to make sure that the values that you are getting from lightmaps
in engine are correlated to the actual stored values in lightmaps

• Remember – lightmaps are extremely time-consuming to render (especially if
using any precomputed global illumination effects). Ideally the pipeline should be
thoroughly tested prior to starting the process of lightmap rendering. That means
testing the tone mapping curves first for accuracy

Let’s look at some examples of HDR lightmaps in the context of HDR rendering and tone
mapping. Figure 5 shows an example of the tone mapping curve incorrectly darkening
and significantly reducing the available range for lighting. Therefore all details in the
shadows are completely lost.

Figure 5. Example of a tone mapping curve set to excessively darken the scene

In Figure 6 we are seeing the opposite effect, where the tone mapping curve is over -
saturating the scene and all of the details in the bright regions are blown out and lost.

29

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

Figure 6. Example of a tone mapping curve set to excessively oversaturate the scene

We can see the tone mapping used in our interactive environment in Figure 7 where the
contrast is set to the artistic choice. In essence, the tone mapping process comes down
to being an aesthetic preference, and all of the three figures will look appealing in some
circumstances and undesirable in many others. Additionally, the tone mapping curves
can be dynamically animated depending on the scene intensity, location and timing. For
an example of dynamic tone mapping, see chapter 7 of this course for the description of
the HDR system in Valve’s Source engine.

Figure 7. The tone mapping settings used in our environment allowed us to preserve
desired amount of details in shadowed areas while maintaining overall contrast in the
scene. Note the details under the “Closed” sign of the store.

With respect to authoring lightmaps for any interactive rendering, the key notion to
remember is that the process of rendering lightmaps traditionally is rather time

30

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

consuming (in terms of the rendering time), since it is an offline process. Thus the goal is
to postpone this to the later parts of the development after iterating on some test
lightmaps as a proof of concept. And, naturally, rendering lightmaps can only happen
when the scene geometry and texturing, along with the lighting setup, has been
completed and approved for the final environment.

We chose to approximate global illumination effects with a less computationally-intensive
approach. Due to time constraints and hardware limitations, we could not render both
the final gather and global illumination in Maya® 6.0 Mental Ray for the lightmaps.
However, the visual results of global illumination are crucial for the impression of light
bouncing off nearby objects, and we needed a method to approximate it in the
lightmaps. As an alternative, we chose to render lightmaps into a 32 bit texture format
with final gather only using HDR light sources in Maya® (however, the light intensities for
these light sources were set such that the final lighting values never exceed 16). See
section 3.3.1 for the description of our HDR lighting and rendering setup. Additionally,
the light intensities varied depending on the falloff type and distance from surfaces. An
example of such a resulting lightmap render is in Figure 8a.

To help approximate the soft lighting of global illumination we rendered the ambient
occlusion map (in Figure 8b) into a 32 bit grayscale texture. This texture can be thought
of as a global illumination noise map, to provide us with the darkening of the lighting in
objects’ creases and in the areas where objects meet. To combine the ambient
occlusion map and the prerendered lightmap, we used the Digital Fusion software
package, first applying tone mapping to the ambient occlusion map to move the values
into the appropriate range for the rendered lightmap and then adding it to the lightmap
texture. The resulting final lightmap in Figure 8c displays an example of the actual art
asset used in the interactive environment. Note that we are able to preserve both the
hard contact shadows and the soft bounced lighting in the resulting lightmap.

(a)

(b)

(c)

Figure 8. An example of the lightmap asset creation process. We start out with the
lightmap rendered with the final gather process in Maya® 6.0 Mental Ray (a), and then
combine it with the ambient occlusion map from the same environment (b) to create the
final art asset (c) used in the real-time environment.

31

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

3.3.3 Shadowing system

In the heart of the night, shadows rule the darkness. Enhancing the dynamism of the
immersive environment of our interactive city meant having support for varied light
conditions including dynamic lights. The shadow mapping technology allowed us a good
balance between the final performance and the resulting quality of dynamic soft
shadows. Shadow mapping refers to the process of generating shadows by rendering
from the point of view of the light source and then using the resulting texture (called the
shadow map) during the shading phase to darken material properties depending on
whether they are occluded with the respect to a specific light source. For an excellent
overview of the shadow mapping and other shadowing techniques see chapter 6 in
[Akenine-Möller02].

(a)

(b)
Figure 9. Examples of shadow mapping technology used to render dynamic shadows on
varied surfaces in the ToyShop demo

We used a single animated shadowing light for our environment, which resulted in a
single shadow map. To conserve memory, we took advantage of the novel hardware
feature in the ATI Radeon series called ‘depth textures’. These are efficient and flexible
surfaces for shadow mapping and other algorithms (see [Isidoro06] for a meticulous
overview of these hardware features, and the efficient methods to implement shadow
mapping and soft shadow filtering). Since these surface formats do not mandate binding
of an identical sized color buffer, they provide excellent savings in memory for depth-
only rendering (we were able to bind a 1x1 color buffer to a 1024x1024 shadow map). A
16-bit DF16 texture format provided good precision for our depth complexity needs. In
Figures 9a and 9b we see some examples of shadow mapping applied in our
environment.

Shadow mapping has several important considerations that any developer needs to
address in order to obtain visually pleasing results. The actual resolution of the shadow
map will be directly proportional to the appearance of the shadows (as well as affect the
performance). If the shadow map resolution is not high enough for the desired scene
and viewer closeness to the shaded objects, potential aliasing artifacts may appear. We
used a relatively large shadow map of 1024x1024 to improve the results. Additionally, a
common bane of shadow maps is the need to filter the penumbral regions of the
shadows in order to create soft shadows without aliasing artifacts. A typical approach
includes using percentage closer filtering (PCF) ([Reeves87]) to soften the shadow

32

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

edges. However, simple PCF does not typically yield visually satisfactory results without
aliasing artifacts or visible filtering patterns. We improve on the approach by using a
randomized PCF offset sampling with custom filtering kernels ([Isidoro06]). For bright
materials (or regions, such as in Figure 9a) we used an 8-tap Poisson disk kernel with
random rotation offsets encoded into a lookup texture. Random rotation of the sampling
kernel is needed for bright surfaces with smooth albedo, since the shadowing artifacts
are most visible for these materials. For dark and noisy textured surfaces, we can relax
the sampling requirement and can use a fixed Poisson disk kernel for sampling the
shadow maps (as in Figure 9b).

3.3.4 Lightning System and Integration

Once we have the lighting and shadowing systems in place, we can start putting
together the other components in order to create the illusion of a dark stormy night.
Lightning and thunder increase the feel of a rainy, turbulent environment. Illumination
from the lightning flashes needs to affect every object in the scene. As such, uniformly
aligned shadows are crucial – we need to create a feeling that somewhere in the sky, a
lighting bolt just struck in a particular location. At the same time, we have to keep in mind
that we are using a single shadowing light and a single shadow map for our shadowing
solution. Computing lightning shadows for each additional lightning ‘light’ can
significantly impact performance and memory footprint (with additional shadow maps).

In Figure 10a the city corner is rendered with just the regular lighting and shadowing
system. In Figure 10b we captured the effect of a lightning flash on our environment –
note all of the objects are throwing uniformly aligned shadows onto the street, creating a
strong impression of actual lightning flash (combined with the sound effects of thunder).

Lightning is a strong directional light that affects every object in the scene. Creating a
convincing and realistic lightning effect is challenging for a variety of reasons. In our
interactive environment, the viewer can get very close to the objects when lightning
strikes. That means that the resolution of the shadows generated by the lightning flash
must hold up regardless of viewer’s distance from an object. Finally, the illumination from
the lightning must seamlessly integrate into the main lighting solution for our
environment, as we are using a consistent illumination model for all objects in our scene
(including shadow mapping).

For artistic reasons, we felt it was important to include lightning illumination in our
environment, despite the challenges – it heightens the mood. A dark night with rough
weather would not affect the viewer in the same manner without the sudden surprise of a
lightning flash followed by the inevitable thunder. Additionally, the extra illumination from
the lightning helped us show off the details of various effects in the scene, which may
have gone unnoticed in the pure darkness of the night.

33

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

(a) Scene rendered in the regular manner without a lightning flash

(b) Scene rendered during a lightning flash

Figure 10. Comparison of the regular environment rendering in (a) versus the same
environment lit by a lightning strike from the right (b). Notice the correctly aligned
object shadows in (b).

34

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Our solution lies in special lightning lightmaps for the illumination due to lightning
flashes. We can prerender the result of illuminating the environment from several
directions, mimicking the light from a lightning flash into a lightning lightmap texture.
Unlike a regular lightmap, this texture does not need to store full lighting color
information – we are only planning to use it to modulate the regular illumination
computed for each pixel (as an intensity multiplier of the underlying HDR lightmap).
Therefore we simply encode the value into a single channel 8 bit texture. In our case, we
found that computing the illumination for two unique lightning light locations was
sufficient and provided good results for the additional increase in memory consumption
(as a two-channel 8-bit-per-channel lightning lightmap, example in Figure 11). The scene
information is encoded in a manner similar to regular lightmaps. We provide the artists
an editable intensity parameter for custom mixing of the two lightmaps – which can be
animated and controlled dynamically on a per object basis by a rendering script in our
engine (we use the Lua programming language). The first lightmap contained the
illumination from a lightning flash at an angle from far away, and the second lightning
lightmap contained the illumination from a lightning flash directly above the center of the
scene. Mixing these two maps in different object- and time- specific ways creates an
illusion that we have a wider variety of lightning flash directions that we actually did.

Every shaded pixel in our
environment uses lightning
illumination information. The
rendering script propagates the
animation parameter for each of
the two lightning flashes to all of
the shaders in the form of uniform
parameters (floating point value of
lightning brightness and location).
In a specific material shader we
can either read the lightning
lightmap for the intensity value for
the specific lightning selection or
simply use the lightning brightness
parameter (controlled by the artists
from outside the script). (Or both
types of parameters can be used
simultaneously). The lightning
lightmap sample is added to the
regular lightmap sample before
tone mapping. The performance
cost for integrating this type of
lightning illumination computation is
very low – a single texture fetch
plus several ALU operations in the

shader to compute lightning flashes from varied locations. All objects in our real-time
environment use this scheme and thus appear to respond accurately to lightning
illumination in the scene.

Figure 11. An example of a lightning lightmap
where an individual lightning intensity value is
stored for two lightning light locations in red
and blue channels of the texture.

Additionally, note that in realistic scenes, translucency of water is affected by the
lightning flash illumination. We mimic this effect in our rendering. This can be
accomplished by using the lightning brightness value to adjust the pixel’s opacity (alpha

35

http://www.lua.org/

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

value) when the lightning flash occurs. We use this approach extensively in the rain
effects, improving the visual quality of those effects and making the lightning flash
appear more natural.

3.4 Post-processing effects for rain rendering

In recent years post-processing has become a popular approach for adding visual
variety to games, as well as approximate many camera or environment properties of the
world around us. For example, the post-processing pipeline is used to add the depth-of-
field effects (as described in [Riguer03] and [Scheuermann04]), enable high dynamic
range rendering by providing a tone mapping step in the end of the scene processing,
various image processing for artistic effects (some examples of post processing in a
game environment are covered in chapter 7 of this course). In the Toyshop demo we
used the flexible post-processing pipeline available in our engine to approximate
atmospheric effects such as misty glow due to light scattering, to perform tone mapping
for HDR rendering and for a variety of specific blurring effects for creation of rain effects.

3.3.1 Creating appearance of misty glow due to inclement weather

Water particles in the atmosphere during the rain increase the amount of light scattering
around objects. Multiple
scattering effects are responsible
for the appearance of glow
around light sources in stormy
weather ([Van de Hulst81]). In
order to approximate the effect of
halos around bright light sources,
we make use of the post-
processing pipeline available in
our engine and controllable
through the rendering script. See
Figure 12 below for an example
of misty glow in our environment.

To approximate the atmospheric
point spread function which can
be used to model multiple scattering around the light sources in the stormy weather (as
in [Narasimhan03]), we use the Kawase post-processing approach for rendering glows
in our scene ([Kawase03]). The main concept lies in blurring the original image to create
the glow halos around the objects and bright light sources. Blur is a ‘magic’ tool: it adds
softness to the scene, and successfully hides some artifacts (similar to the depth of
effects).

Figure 12. Misty glow in the ToyShop environment

First we render our environment into an offscreen buffer, where the alpha channel is
used to specify the amount of glow for each pixel. Since we use 10-10-10-2 buffers for

36

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

rendering, we only use 2 bits of alpha for glow amount. This is not ideal for many
scenes; however, with sufficient attention to details for material rendering we are able to
achieve very good quality of the resulting effects even with just mere two bits of
information and clever usage of blending states. Once the scene is rendered into an
offscreen buffer (using 10-10-10-2 format), we downsample the rendering by a quarter in
each dimension (giving a total of ¼ x ¼ = 1/16 reduction). We apply small blur filters
(shown in Figure 13 below) repeatedly to the downsampled image, performing four
feedback ping-pong passes for computing blurring.

Figure 13. Kawase bloom filter. The weights for each sample are provided. (from
[Kawase03]

Each iteration of blurring ‘ping-pongs’ between two renderable textures used for storing
the intermediate results. Each successive application of the bloom filter to the
downsampled image takes the previous results as input and applies a new, larger kernel
(as illustrated in Figure 14) to increase blurriness. The final blurring result is combined
as described in [Kawase03]. More iterations will allow higher levels of blurriness; but we
determined empirically that four passes give good visual results.

To model fog attenuation due to water scattered in the atmosphere we implemented light
attenuation based on distance in shaders. We attenuate the light information based on
distance in shaders. In the vertex shader (Listing 1) we compute the distance of the
object to the observer and then compute the linear fog value which is then sent to the
interpolator for rasterization.

Figure 14. Two successive applications of the bloom filter on a texture grid. (from

[Kawase03]

2nd 3rd

1/16 2/16 1/16

2/16 4/16 2/16
Pixel being rendered

1/16 2/16 1/16

37

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

 float4x4 mViewFog;
 float2 vFogParams;

 float ComputeFogFactor(float4 vWorldPos)
 {
 // Compute distance to eye
 float4 vViewPos = mul (vWorldPos, mViewFog);
 float fDepth = sqrt(dot(vViewPos.xyz, vViewPos.xyz));

 // Compute linear fog = (d - end) / (end - start)
 float fFog = (fDepth - vFogParams.x) /
 (vFogParams.y - vFogParams.x);
 fFog = saturate(fFog);

 return fFog;
 }
Listing 1. Vertex shader fog segment

In the pixel shader (Listing 2), we use the computed and interpolated fog value to
attenuate pixel color value before tone mapping.

 float3 cFogColor;
 float4 vFogParams;

 float4 ComputeFoggedColor(float3 cFinalColor, // Pixel color
 float glow, // Glow amount
 float fFog) // Vertex shader computed fog
 {
 float4 cOut;

 // Foggy factor
 float fogFactor = fFog * (1-(SiGetLuminance(cFinalColor)/10));
 fogFactor = min (fogFactor, vFogParams.z);

 // First figure out color
 cOut.rgb = lerp(cFinalColor, cFogColor, fogFactor);

 // Then alpha (which is the glow)
 cOut.a = lerp(glow, fogFactor*vFogParams.w + glow, fogFactor);

 return cOut;
 }
Listing 2. Pixel shader fog segment

3.5 Wet reflective world

Realistic streaky reflections increase the feel of rain on wet streets and various object
surfaces. These reflections are very prominent in any rainy scene and appear to stretch
toward the viewer. Wet environments display a great deal of reflectivity – without realistic
reflections the illusion is broken. Therefore, adding convincing reflections is a must for

38

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

any rainy environment. To simulate the appearance of a wet city street in the rainy night,
we render a number of various reflection effects in our scene:

(a)Wet surface materials (b) Glass reflections of the store from the inside

(c)Wet metallic objects

(d) Glass reflections from the outside as well as
raindrop reflection

Figure 15. A selection of reflection effects in the ToyShop environment.

• Stretchy warped water reflections in the street, puddles and other wet surfaces
(Figures 16b, 16c)

• Various wet surface materials (wet granite, pavement, cobblestones, plastic,
metal grates, etc) (Figures 15a and 15c above)

• All of the rain effects used reflection and refraction effects (see section 3.6)
(Figure 15d)

• The inside of the toy shore and the outside scene reflected in the glass panes of
the store windows (Figures 15b and 15d)

• The drenched taxi cab turning around the corner displayed dynamic reflections of
the scene around it (Figure 16a)

Depending on the polygonal properties of a particular object, highly specular surfaces
can display a great deal of aliasing if one is not careful. We dedicated a significant
amount of effort to ensuring that these artifacts are reduced, if not completely removed,
from our interactive environment. The solution was to attenuate both reflection

39

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

illumination and specular highlights at the objects’ edges using a Fresnel term of varied
powers.

(a)

(c)

(b)

Figure 16.Dynamic reflection effects for rendering a wet taxi cab (a) and streets (b) in
our interactive environment.

40

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

3.5.1 View-Dependent Streaky Reflections

When moving around any city streets late night during a rain, one of rain’s strongest
visual cues are the stretched reflections of bright light sources (such as street lamps,
cars lamps, and store signs in the streets and sidewalks). These reflections are very
prominent in any rainy scene. They appear to stretch very strongly toward the viewer,
distorting the original reflecting object vertically proportional to the distance from the
viewer. Water in the puddles and on the streets further warp the reflections, increasing
the feeling of wetness in the environment (especially during the actual rain, the falling
raindrops hitting the puddles create dynamic warping of the reflections). It is also easy to
notice that these types of reflections are strongly saturated for bright light sources.

A good example of real-life scene
during the rain in Central Square in
Cambridge is in Figure 16 on the right.
There we see a number of store signs,
car head and tail lights and street
lights reflected in the street. Notice
that the original shape of each
reflector is only distinguishable by the
blurred dominant colors (such as the
reddish-orange glow of the taxi tail
lights or the nearly white blobs of cars
headlight reflections. Similarly, we
want to preserve the brightest
principal colors and create a blurry
glowing reflection image for each light
source or bright reflecting object in our

scene.

Figure 16. Real-life photograph of a rainy
night in Central Square, Cambridge, MA.

Realistic streaky reflections increase the feel of rain on wet streets and surfaces. In our
environment we create reflections for all bright objects onto the paved streets and large
flat surfaces, such as the rooftop ledge (see figure 18 for examples of reflections in our
interactive scene). All objects that can be viewed as reflectors are identified as such by
the artists a priori. Examples of the bright reflector objects in our environment are the
neon lights (such as the toy shop sign, street and building lamps (such as the lamp on
the rooftop), the car head and tail lights, and bright building windows). Note that we
render both bright light objects (such as street lamps), as well as the dark objects (such
as the telephone poles and wires) (their colors are deepened).

Rather than simply rendering these objects directly into the reflection buffer as they are
in the final rendering pass, we improve performance by rendering proxy geometry into
the reflection buffer instead. For each reflector object the artists generate a quad with a
texture representing the object, which is slightly blurred out (since these reflections tend
to be blurry in the end) (see Figure 17a). Note that we aren’t simply rendering the unlit
proxy object texture into the reflection buffer. At run-time this proxy object is lit in a
similar fashion to the original object (to make sure that the reflections appear to respond

41

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

correctly to the environment lighting) during rendering into the reflection buffer. The
reflection shader uses a simplified lighting model to preserve dominant colors, but does
not waste performance on subtle effects of a particular material. This dynamic lighting
allows us to represent reflected animated light sources (such as the flickering neon sign
of the shop or the blinking traffic lights on the streets) correctly in the street reflections
(which dim and light in sync with their corresponding reflector objects).

The proxy reflection objects are dynamically stretched view-dependently toward the
viewer in the vertex shader (you can see the reflection quad objects with wireframe
displayed in Figures 17a and 17b). The amount of stretching varies depending on the
distance of the object to the viewer.

(a) Bright reflector objects rendered into
the reflection buffer

(b) Overlaid wireframe proxy reflector

objects’ quads

(c) Resulting scene using the above reflection buffer after processing

Figure 17. View-dependent streaky reflection rendering

One aspect that we want to mention for using the proxy objects is the issue of culling the
objects if the original reflector objects are no longer in the view. Since the proxy objects
are only rendered into the offscreen reflection buffer, they do not go through the visibility
culling process in our rendering engine. Therefore, we ran into a situation where the taxi
cab, turning around a corner, would disappear from the view, but even a few seconds
later we could still notice the stretchy red tail light reflections. To work around this
problem, we place separate reflector blocker objects, which act to hide the proxy

42

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

reflector objects from rendering into the reflection objects if the original reflector object is
no longer in view.

Figure 18. View-dependent streaky reflections in the ToyShop demo

For performance reasons the reflection buffer is scaled to be half size of the original
back buffer (and a separate quarter sized reflection buffer for the rooftop reflections). We
utilize an expanded dynamic range for representing the rendered colors so that we can
preserve the brightest and darkest colors for reflections (such as street lamps or taxi
headlights or telephone poles) by using the 10-10-10-2 HDR format for the reflection
buffer.

Next we need to address the issue of making these view-dependent reflections appear
blurry, glowing and streaky. For that, we turn to the post-processing system already in
place (as described in section 3.3.1). We use a post-processing technique to
dynamically streak the reflection buffer in the vertical direction only to simulate warping
due to raindrops striking in the puddles. Note that this is done in separate passes from
the regular scene post-processing.

During rendering of the final scene prior to post-processing, we sample from the
reflection buffer using screen space projection of the input vertex coordinate for each
reflective material (such as the street pavement or the roof ledge granite, see Figure 18).
Reflections are also distorted based on the normals of the surface they pass through.
We use object’s per-pixel normal in tangent space to account for stretching of the
reflection in view space and warp the reflection based on the surface normal. The post-
process-based blurring and this warping aid in removing specular aliasing and excessive
flickering from reflections which would otherwise be highly distracting.

43

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

Since the number of draw calls in an interactive rendering application is an example of a
typical rendering bottleneck of many games, we paid particular care to their optimization.
Given the sheer number of various effects we designed to implement in our
environment, we had very strict requirements for performance tuning and tried to save
every percent of the frame rendering time. Since we rendered a large number of reflector
objects, the goal was to render them in a single draw call. This was accomplished by
specifying their world position in the skinning matrix using only a single bone. Therefore
all objects with similar materials (such as the telephone poles or the street lamps) were
rendered as one single big object using skinning to position them around the scene.

3.5.2 Dynamic reflections for a reflective taxi

While the taxi cab is moving through the streets of our interactive city, the environment is
reflected in its metallic and glass surfaces (Figure 16a). We implement these reflections
through the environment map reflection method (see [Akenine-Möller02], pages 153-166
for more details). In order to generate dynamic reflections, we render our environment
into a cubemap with the camera placed at the center of the taxi cab as its moving
through the scene. This dynamic cubemap is used for reflection color lookup for the cab
surfaces (Figure 19 below shows an example of the contents of this cubemap).

Using the rendering script allows us to only render
the environment cubemap for frames when the taxi
was actually moving. At the same time, note that
the environment gets rendered 6 times (for every
face of the cubemap), so rendering the full scene is
suboptimal. To improve that, we build a low
resolution ‘billboard’ version of the city
environment. We place the billboard quads along
the taxi cab path. The quads contain textures of the
buildings and environment as viewed from the point
of view of the cab. These textures are created by
taking in-engine snapshots by placing the camera
on the taxi cab path while rendering the full scene
(figure 20 contains an example of this billboard
texture atlas). Similar to the approach for rendering
reflector objects in section 3.5.1, we light these
quads dynamically to get more accurate reflections
in the final rendering. However, rendering just the
billboard quads into the faces of the cubemap
(rather than the full geometry) saves a great deal
on performance. Instead of using the billboard
versions of the environment, another suggestion for
in-game rendering would be to use one of the lower
levels of details of the scene, if the game contains support for level-of-detail rendering.

Figure 19. An example of the
dynamically rendered
environment map for taxi cab
reflections.

44

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Figure 20. Billboard dynamic reflector
texture atlas

3.6 Rendering rain

Rain is a complex visual phenomenon. It is composed of many visual components.
Rainfall consists of specially distributed water drops falling at high velocity. Each
individual drop refracts and reflects the environment. As the raindrops fall through the
environment, they create the perception of motion blur and generate ripples and
splashes in the puddles. Rain effects have been extensively examined in the context of
atmospheric sciences ([Wang75] and [Mason75]), as well as in the field of computer
vision ([Garg04]). We developed a number of effects for rendering rain in our interactive
environment in real time, consisting of a compositing effect to add rainfall into the final
rendering, a number of particle-based effects and dynamic water effects, simulated
directly on the GPU.

3.6.1 Rendering multiple layers of rain with a post-processing
composite effect

We developed a novel post-processing rain effect simulating multiple layers of falling
raindrops in a single compositing pass over the rendered scene. We create motion
parallax for raindrops utilizing projective texture reads. The illumination for rain is
computed using water-air refraction for individual raindrops as well as reflection due to
surrounding light sources and the Fresnel effect. We provide a set of artist knobs for
controlling rain direction and velocity, and the rainfall strength. The raindrop rendering
receives dynamically-updated parameters such as lightning brightness and direction
from the lightning system to allow correct illumination resulting from lightning strikes.

Creating rainfall We render a composite layer of falling rain as a full-screen pass before
the final post-processing of the scene. Rainfall is simulated with an 8 bit texture (see

45

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

Figure 20 for an example texture and the resulting rain scene). To simulate the strong
mistiness of the raindrops, we blur the rain by using the post-processing system (as
described in section 3.3.1). The artists can specify the rain direction and speed in world-
space to simulate varied rainfall strength.

Although so far this approach sounds rather straight-forward, there are several
challenges with rendering rain through a composite layer. The first difficulty lies in
minimizing repeating patters that are inevitable when using a single static texture to
model dynamic textured patterns. The second concern lies with the consideration that
the rain pass is a full-screen pass, and therefore every pixel on the screen will go
through this shader. This has direct effect on performance, and we must design the
composite rain rendering such that it gives pleasing visual results without an expensive
shader.

(a) Rainfall texture

(b) Rendered scene using this rainfall texture. Note
that the image intensities have been brightened for
better contrast since this is a static capture of rain.

Figure 20. Rainfall texture applied for a composite rain effect in the interactive scene

Computer vision analysis of rain models ([Garg04]) and video rain synthesis ([Starik03])
helps us to observe that one cannot easily recognize rainfall from a single static frame;
however, rain is easily noticeable in a dynamic simulation or a video. Perceptual analysis
of rain video shows that the individual raindrop motion cannot be tracked by human
perception accurately due to swift movement and density of raindrops, which allows us
to assume temporal independence of rain frames. However, our empiric experiments
showed that purely random movement of raindrops does not yield satisfactory results
(generating excessive visual noise). Therefore to simulate strong rainfall, we
simultaneously use the concepts of individual rain drop rendering and the principles
stochastic distribution for simulation of dynamic textures (as in [Bar-Joseph01] and
[Doretto03]).

The first part of our algorithm simulates individual rainfall movement. The artist-specified
rain direction vector is moved into clip space. We use this vector to determine a raindrop
position in screen space by using the current position in clip space, specified rainfall
velocity and current time. Given these parameters and computed the raindrop position,
we can scroll the rainfall texture using the specified velocity vector. However, although

46

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

texture scrolling is a very straight-forward approach, even with several texture fetches in
varied directions with slight randomization, repeating rain patterns become rather
obvious in a full-screen pass.

Multiple layers of rain Our goal is to simulate several layers of raindrops moving with
different speeds at varied depths in a single rendering layer. This better approximates
real-life rain movement and allows us to create a feeling of raindrop motion parallax (a
strong visual cue in any dynamic environment). The artists can specify a rain parallax
parameter which provides control for specifying the depth range for the rain layers in our
scene. Using the concepts of stochastic distribution for simulation of dynamic textures,
we compute a randomized value for an individual raindrop representation to use in the
rain shader. Using the rain parallax value, the screen-space individual raindrop
parameter and the distribution parameter, we can model the multiple layers of rain in a
single pass with a single texture fetch. This allows us to simulate raindrops falling with
different speed at different layers. The rain parallax value for the rain drop, multiplied by
a distribution value, can be used as the w parameter for a projective texture fetch to
sample from the rainfall texture. Note that we use a single directional vector for all of our
raindrops which is crucial for creating a consistent rainfall effect. This creates excellent
visual effects of random streaking for the raindrops.

Rain appearance Given a moving raindrop, we need to shade it. Raindrops behave like
lenses, refracting and reflecting scene radiances towards the camera. They refract light
from a large solid angle of the environment (including the sky) towards the camera.
Specular and internal reflections further add to the brightness of the drop. Thus, a drop
tends to be much brighter than its background (the portion of the scene it occludes). The
solid angle of the background occluded by a drop is far less than the total field of view of
the drop itself. In spite of being transparent, the average brightness within a stationary
drop (without motion-blur) does not depend strongly on its background.

Falling raindrops produce motion-blurred intensities due to the finite integration time of a
camera. Unlike a stationary drop, the intensities of a rain streak depend on the
brightness of the (stationary) drop as well as the background scene radiances and
integration time of the camera. We simulate the motion blur for the raindrops by applying
blurring via post-processing after the rain pass has been blended onto the scene
rendering. This simulates both raindrop motion-blur and multiple-scattering glow for
individual raindrops. To shade an individual raindrop, we use a tangent-space normal
map corresponding to the rainfall texture. Note that since this is a full-space pass, the
tangent space is simply specified by the view matrix. For each pixel in the rain pass, we
compute reflection based on the individual raindrop normal and air-to-water refraction.
Both are attenuated toward the edges of the raindrop by using the Fresnel effect.

Raindrop transparency An interesting observation is that as the lightning strikes, the
raindrops should appear more transparent. In other words, the opacity of each individual
raindrop must be a function of the lightning brightness; otherwise water surfaces appear
too solid. As mentioned in section 3.3, our rendering script propagates the lightning
system parameters to all of our rain shaders, as well as the material shaders. For the
raindrop rendering, we use a combined lightning brightness parameter (mixing both
lightning ‘light sources’ as they flash in the environment) to compute the bias value to
adjust the amount of reflection and refraction.

47

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

Realistic rain is very faint in bright regions but tends to appear stronger when the light
falls in a dark area. If this is modeled exactly, the rain appears too dim and unnoticeable
in many regions of the scene. While this may be physically accurate, it doesn’t create a
perception of strong rainfall. Instead of rendering a precise representation, we simulate a
Hollywood film trick for cinematic rain sequences. The film crew adds milk to water or
simply films milk to make the rain appear stronger and brighter on film. We can bias the
computed rain drop color and opacity toward the white spectrum. Although this may
seem exaggerated, it creates a perception of stronger rainfall

Compositing rain via blending We would like to make a few notes on specifying the
blending for the rain pass. The rain layer is rendered both as a transparent object and a
glowing object (for further post-processing). However, since we wish to render the rain
layer in a single pass, we are constrained to using a single alpha value. Controlling both
opacity and glow with a single alpha blending setting can be rather difficult. Despite that,
we want to render transparent objects that glow, controlling each state separately for
better visual results. We found that we can use two sets blending parameters to control
blending for glow and for transparency for all rain effects all rain effects (composite rain,
raindrops, splashes). In the latest DirectX9.0c there is a rendering state for separate
alpha blending called D3DRS_SEPARATEALPHABLENDENABLE. Using this state
along with the regular alpha blending function (via D3DRS_ALPHATESTENABLE)
allows us to specify two separate blending functions for the regular opacity blending and
for the alpha used for glow for post-processing blurring pass.

Finally, we would like to mention a few other considerations for including this composite
post-processing rain layer effect in other interactive scenarios such as games. In many
extensive environments which may include changing weather conditions as well as the
changes between outdoor and indoor locations, the issue of controlling composite rain
rendering can appear challenging. In reality it is not so – there is a number of ways to
efficiently accomplish that goal. In our interactive scene, we use the rendering script to
determine whether the camera is located inside the toy store or whether it is outside.
This information is used to dynamically turn off composite rain rendering. A similar
concept (an engine state specifying what environment the camera is located, for
example) can be used in many game setups. Likewise, an engine state that specifies the
current weather condition can be used to control rain rendering by turning on and off
rendering of the rain quad. If there is no notion of the appropriate engine state, another
approach may involve using a sky visibility overhead lightmap (see section 3.6.3 for
more on overhead lightmap). One can encode a Boolean sky visibility value
(precomputed for the entire environment at preprocessing time for every point in the
scene, similar to the overhead lighting lightmap used in section 3.6.3 for raindrop
splashes lighting). This value can be used directly in the rain quad pixel shader to turn
off rendering pixels based on the current camera location. However, we would like to
note that this approach is far less efficient than the rendering script-based control of rain
rendering.

3.6.2 Raindrop Particles Rain

To simulate raindrops falling off various objects in our scene, we use screen-aligned
billboard particle systems with normal-mapped rain droplets (Figure 22a and 22b). In our
scenes we found that using on the order of 10-15,000 particles gives excellent results.

48

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

We created a base template particle system that uses the physical forces of gravity,
wind and several artist-animated parameters. The artists placed a number of separate
particle systems throughout the environment, to generate raindrops falling off various
surfaces, such as rooftop ledge, building lamps, and so on, onto the streets.

To render an individual raindrop particle, we stretch the
particle billboard based on the particle velocity (with slight
randomization offsets to vary velocity per individual particle
within a particle system). The illumination model used for
these particles is similar to that of the composite rain layer.
We use a normal map for a water droplet for each individual
raindrop. Instead of using an accurate droplet-shape
representation, we pre-blurred and stretched the drop
normal map to improve the perception of motion blur as the
raindrops move through the environment (Figure 21). Note that the tangent space for a
billboard particle is defined by the view matrix.

Figure 21. Pre-blurred
droplet normal map (on
the right)

To shade the raindrop particle, we only compute specular reflection and air-to-water
refraction effects, using the pre-blurred normal map. Since droplet should appear more
reflective and refractive when a lightning flashes, biased lightning brightness value
adjusts the refraction and reflection color contributions.

(a)Raindrops pouring from a gutter pipe

(b) Raindrops falling off the rooftop ledge

Figure 22. Raindrops falling off objects in our environment.

To control raindrop transparency, we attenuate raindrop opacity by its distance in the
scene. We wish to make the individual raindrop particles appear less solid and billboard-
like as they move through the environment. This can be accomplished by attenuating the
particle opacity value by Fresnel value, scaled and biased by two artist-specified
parameters for droplet edge strength and bias (which could be specified per particle
system). We used the observation that the raindrops should appear more transparent
and water-like when the lightning strikes, and increased the raindrop transparency as a
function of the lightning brightness to maintain physical illusion of water. This can be
easily done by biasing droplet transparency by 1 – ½ * lightning brightness. The particles
still maintain their artist-specified transparency in the regular lighting without any

49

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

lightning flashes. We used this approach for both regular raindrop rendering and for
raindrop splash rendering.

3.6.3 Rendering raindrop splashes

We simulate raindrops splashing when hitting solid objects by colliding individual
particles with objects in the scene (Figure 23c). In our system we use special collider
proxy objects. In a different engine environment this may be done by colliding particles
directly with game objects. We used on the order of 5-8,000 particles to render raindrop
splashes each frame. Figures 23a and 23b show an example of raindrop splashes
rendered with regular illumination (a) and lit by a lightning flash on the rooftop ledge (a).

(a) Raindrop splashes on the rooftop
ledge

(b) Raindrop splashes on the rooftop ledge
lit by a lightning flash

(c) Raindrop splashing hitting the store awning

Figure 23. Raindrop splash rendering

50

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

To shade these splashes, we use a pre-rendered high-quality splash sequence for a milk
drop (Figure 24). A single filmed high-quality splash sequence for a milk drop was used
to drive the raindrop splash event for all of the thousands of splashing raindrops. The
challenge lied in reducing the noticeable repetition of the splash animation (especially
considering that viewer could get rather close to the splashes). To address this concern
we incorporated a high degree of randomization for particle parameters (particle size
and transparency), and dynamically flipped horizontal texture sampling for the filmed
sequence based on a randomly assigned particle vertex color.

Figure 24. Milk drop sequence for raindrop splash animation

Splashes should appear correctly lit by the environment lights. We added backlighting to
the splashes so that they accurately respond to the environment lights (and thus display
the subtle effects of raindrops splashing under a street light). If light sources are behind
the rain splashes, we render the splash particles as brightened backlit objects; otherwise
we only use ambient and specular lighting for simplicity. We compute specular lighting
for all available dynamic lights in the vertex shader for performance reasons.

Figure 24. Overhead lightmap
example

Aside from the dynamic lights, we wanted to
simulate the splashes lit by all of the bright objects
in the environment (such as street lamps, for
example), even though those objects are not
actual light sources in our system. Using a special
‘overhead’ lightmap let us accomplish that goal
(see Figure 25 for an example). We can encode
the light from these pseudo light sources into a
lightmap texture to simulate sky and street lamp
lighting. We can then use the splash world-space
position as coordinates to look up into this
lightmap (with some scale and bias). The
overhead lightmap value modulates otherwise
computed splash illumination.

3.7 GPU-Based water simulation for dynamic puddle rendering

The raindrop particle collisions generate ripples in rain puddles in our scene. The goal
was to generate dynamic realistic wave motion of interacting ripples over the water
surface using the GPU for fast simulation. We use an implicit integration scheme to
simulate fluid dynamics for rendering dynamically lit puddle ripples. Similar to real-life
raindrops, in our system we generate multiple ripples from a single raindrop source
which interact with other ripples on the water surface. The physics simulation for water
movement is done entirely on the GPU. We treat the water surface as a thin elastic
membrane, computing forces due to surface tension and displacing water sections
based on the pressure exerted from the neighboring sections. Our system provides
simple controls to the artists to specify water puddle placement and depth. Figure 25
shows water puddle on the rooftop and in the streets using our system.

51

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

Figure 25. Dynamic puddles with ripples from rain drops

Water ripples are generated as a result of raindrops falling onto the geometry in the
scene. This can be a direct response from the actual raindrop particle system colliding
with the scene objects. In our implementation we approximated this effect by
stochastically rendering raindrops into a ‘wave seeding’ texture. In the case of direct
particle response, the approach is similar; however, the initial wave texture must be
rather large to accommodate raindrops falling throughout the entire environment. In
order to conserve memory, we decided against that approach, and limited our simulation
to 256 x 256 lattice. Raindrop seeds are rendered as points into the water simulation
texture, where the color of the raindrop is proportional to its mass. The method can be
extended to generate dynamic water surface response for arbitrary objects. This can be
achieved by rendering an orthographic projection of the objects into the seeding texture,
encoding object’s mass as the color of the object’s outline. This would generate a wake
effect in the water surface.

We render the raindrop seeds into the first water simulation buffer in the first pass.
These rendered seeds act as the initial ripple positions. They ‘excite’ ripple propagation
in the subsequent passes. In the next two passes we perform texture feedback approach
for computing water surface displacements. In our case two passes are sufficient for the
time step selected. If a larger time step is desired, more passes or a more robust
integration scheme may be selected (we use Euler integration). In the fourth pass we
use the Sobel filter ([Jain95]) on the final water displacement heights texture to generate
water puddle normals.

Real-life raindrops generate multiple ripples that interact with other ripples on the water
surface. We implement the same model. We render a raindrop into a wave seed texture
using a dampened sine wave as the function for raindrop mass. This approximates the
concentric circular ripples generated by a typical raindrop in the water puddle.

We approximate the water surface as a lattice of points. Each lattice point contains the
information about the water surface in that location. In particular we store the current
position as a height value and the previous time step position (see Figure 26). Since we
perform all of the water simulation computations directly on the GPU, the lattice

52

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

information is stored in a 32 bit floating point texture (with 16 bits per each position
channel). A related approach was described in [Gomez00] where the lattice of water
displacements was simulated with water mesh vertices displaced on the CPU.

To compute water
surface response
we treat the water
surface as a thin
elastic membrane.
This allows us to
ignore gravity and
other forces, and
just account for the
force due surface
tension. At every time step, infinitesimal
sections of the water surface are
displaced due to tension exerted from
their direct neighbors acting as spring
forces to minimize space between them
(Figure 27).

Figure 27. Water
neighbor cell
acting on the
current cell

Figure 26. Water displacements encoded
into the feedback texture. The red channel
contains water heights at current time step,
and the green channel contains previous
time step displacements.

Vertical height of each water surface
point can be computed with partial
differential equation:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂
∂

2

2

2

2
2

2

2

y
z

x
zv

t
z

where
 z is the water displacement height,
 v is the velocity of the water cell
 x and y are the lattice coordinates of the water cell

This PDE is solved with Euler integration in DirectX9.0 pixel shaders in real-time by
using the texture feedback approach to determine water wave heights for each point on
the lattice.

Water puddles integration. We render a single 256 x 256 water simulation for the
entire environment. Therefore we have to use a bit of cleverness when sampling from
this simulation texture - since many different objects all use the same wave ripples
simulation at the same time. We sample from the water membrane simulation using the
object’s current position in world space, specifically the xz coordinates as a lookup
texture coordinates into the wave normal map (Figure 28).

53

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

The artists control the sampling space per object with
a scaling parameter that allows them to scale the size
of water ripples at the same time (by essentially
scaling the lookup coordinates). To reduce visual
repetition for puddles, we rotate the water normals
lookup coordinates by an angle specified per-object.
Since we sample from the water normals texture when
rendering an object with puddle, we do not require
additional puddle geometry. It is even possible to
dynamically turn water puddle rendering on and off by
simply using a shader parameter and dynamic flow
control. To render an object with water puddles, we
perturb the original object’s normal from a bump map
with the normal from the water membrane simulation.

Figure 28. Dynamic ripples
normals

The artists can also specify a puddle ripple influence parameter per object. This
parameter controls how much the water ripple normal perturbs the original bump map
normal. This allows us create different water motion for various objects.

Puddle Placement and Depth To render deep puddles,
we use just the water puddle normal sampled as just
described, along with the color and albedo attributes of
the object. We wanted to mimic varied puddle depths of
the real-world and allow artists creative control over the
puddle placement. A puddle depth mask was our answer
(Figure 29 on the left). Adding puddles with ripples to
objects is straight-forward:

- Define the ripple scale parameter and sample
ripple normals using the world-space position

- Sample puddle depth map

- Interpolate between the object normal map and

the water ripple surface normal based on the
puddle depth value and artist-specified puddle
influence parameter

Figure 29. Puddle depth
and placement map.

54

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Creating Swirling Water Puddle For the rooftop
puddle, we want to create an impression of water,
swiftly swirling toward the drain, with ripples from
raindrops warping the surface (using the above
approach). We used several wake normal maps to
create the whirlpool motion. The first normal map
(Figure 30a) was used to swirl water radially around
the drain. Combined with it, we used the wake
normal map from Figure 30b to create concentric
circles toward the drain.

3.8 Raindrop movement and
rendering on glass surfaces in
real time

We adopted the offline raindrop simulation system
[Kaneda99] to the GPU to convincingly simulate and
render water droplets trickling down on glass planes
in real-time. This system allows us to simulate the
quasi-random meandering of raindrops due to surface tension and the wetting of the
glass surfaces due to water trails left by droplets passing on the window. Our system
produces a correctly lit appearance including refraction and reflection effects.

(a) Radial movement wake map

(b) Concentric circles wake map
Figure 30. Wake normal maps

Droplet movement. The
glass surface is
represented by a lattice of
cells (Figure 31) where
each cell stores the mass
of water in that location,
water x and y velocity, and
the amount of droplet
traversal within the cell.
This information can be
conveniently packed into a
16 bit per channel RGBα
texture. Additionally we
store droplet mass and
affinity information for each
cell as well.

The force of gravity
depending on the mass of
the droplet is used to
compute the downward

movement force on the droplet. Static friction for stationary droplets and dynamic friction
for moving droplets is used to compute the competing upward force. The static and

Figure 31. Discrete lattice model for storing water
droplet information at run-time

55

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

dynamic friction varies over the surface of the glass. This resultant force is applied to the
initial velocity to determine the new velocity value for the droplet.

At any given time, droplets can flow into the three cells below its current cell. New cell for
the flow is randomly chosen, biased by the droplet directional velocity components,
friction based affinity of current cell and the ‘wetness’ of the target cell. The glass friction
coefficients are specified with a special texture map. Droplets have a greater affinity for
wet regions of the surface. We update the droplet velocity based on the selected cell.

Droplet rendering. First we render the background
scene. Then we render the water droplet simulation
on the window. This allows us to reflect and refract
the scene through the individual water droplets. In
order to do that, we use the water density for a given
rendered pixels. If there is no water in a given pixel,
we simply render the scene with regular properties.
However, if the water is present, then we can use the
water mass as an offset to refract through that water
droplet. At the end of the droplet movement
simulation, each cell contains a new mass value
(Figure 32). Based on the mass values, we can
dynamically derive a normal map for the water
droplets. These normals are used to perturb the
rendered scene to simulate reflection and refraction through water droplets on the glass
surface (figure 33a).

Figure 32. Water droplet mass

The droplet mass is also used to render dynamic shadows of the simulation onto the
objects in the toy store (using the mass texture as a projective shadow for the other
objects). If the droplet mass is large enough, we render a pseudo-caustic highlight in the
middle of the shadow for that droplet (Figure 33b)

56

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

(a) Water droplet rendering on the glass window

(b) Bright pseudo-
caustic highlight for

heavy droplets seen in
the close-up

Figure 33. Water droplets refracting the scene of the toy store interior through and
reflecting external lights. Note the shadows from the water droplets on the toys inside

3.8 Effects medley

Aside from the main rain-related effects, we developed a number of secondary objects’
effects that we would like to briefly mention here since they help increase the realism of
our final environment.

3.8.1 Foggy lights in the street

Our scene has many foggy lights with rain (Figure 34a). We used an approximation
shader instead of an expensive volumetric technique to render the volume of light under
each lamp. We can simulate these lights as pseudo-volumetric light cones by rendering
noisy cloud-like fog on the light cone surface (light cone objects’ wireframes are shown
in Figure 34b). This efficient approach uses a tangent space technique to control lit fog
fading towards the edges of the light frustum (Figure 34c). In order to get smooth falloff
on the silhouette edge of the cone, the view vector is transformed into tangent space
and its angle is then used to attenuate the falloff. In the pixel shader we simulate
distance attenuation of a light by a square of the v texture coordinate. Then we perform
two fetches from a noise map scrolled in different directions to create perception of
participating media in this light’s frustum.

57

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

To render rain, falling under the bright light, we render an inserted quad plane in the
middle of the light frustum with rain texture scrolling vertically matching the composite
rain effect. The rain must fade out toward the edges of the frustum in the same fashion
as the volumetric light. We use a map to match the cone light attenuation. For angled
lamps, we orient the inserted rain quad around the up-axis in world-space in the vertex
shader to ensure that the rain continues to respect the laws of gravity and falls
downwards.

(b) Light cone wireframe

(a) Various foggy lights in our scene

(c) Rooftop light cones
Figure 34. Foggy volumetric light rendering

3.8.3 Traffic light illumination

The traffic lamps should dynamically illuminate the traffic light signal object. Computing
the full global illumination effects to simulate color bleeding and inter-reflection is an
expensive operation (see chapter 9 for a longer discussion of global illumination effects).
As a different approach, we use the concept of lightmap to help us simulate these subtle
effects in a more efficient manner at run-time. We precompute the global illumination
lightmap for the traffic light object, animated in accordance with the blinking traffic light
signal (Figure 35a). This lightmap stores color as a result of color bleeding and inter-
reflection effects computed with Maya®’s Mental Ray. Note that for a compact object
such as the traffic light, this lightmap is very small. At rendering time, we sample the
color of the lightmap using the traffic lamp animation parameter as a parameter for
computing sampling texture coordinates.

58

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

We simulate the internal reflection through the colored reflective glass of the traffic lamp
by fetching a normal from the glass normal map and using that normal vector to look-up
into an environment map, coloring the resulting reflection color by the lamp color. These
internal reflections will only appear when the lamp’s glow is faint. We reflect the other
parts of the lamp on the outside surface of the glass by another environment map fetch
to render external reflections.

(a) Traffic light global-illumination

lightmap atlas

(b) Traffic light in off (above) and on
(below) state

Figure 35. Approximating color bleeding for traffic light illumination

59

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

3.8.4 Rendering Misty Rain Halos on Objects

In a strong rainfall, as the
raindrops strike solid objects,
they generate not only the
splashes, but also a misty halo
outlines along the edges of
objects. We created a similar
effect using the fins and shells
technique (similar to real-time fur
rendering from [Isidoro02])
(Figure 36). The rain halos are
rendered with fin quads with
scrolling rain (similar to the
composite rain effect). Note that
this effect requires additional fin

geometry. Using the shells approach, we render rain splatters on the surface of objects
in the form of concentric circles. In each successive shell we expand the splash circle
footprint with a series of animated texture fetches and blend onto the previous shells.

Figure 36. Misty halos on the taxi with a fins effect
and rain splatter via a shells effect

3.8.5 Taxi windshield wipers effect for wiping off the droplets

The taxi cab windshield wipers can dynamically wipe away the static raindrops on the
windshield (Figure 37a). Computing collision with the wipers and affecting droplet
movement as a function of that calculation was not practical in our scenario due to many
other effects already in place. Since the windshield wasn’t prominent in the main fly path
through our environment, we wanted an inexpensive approach to render this effect. As a
solution, we use two wiper maps (Figures 37b and 37c) to determine which regions on
the windshield were recently swiped clean by the wipers. The animation parameters
from the wipers are used in the shaders in conjunction with the wiper maps to control the
rendering of raindrops depending on which regions were wiped. We use two separate
maps so that the wiped regions can overlap, similar to the real-life windshield wipers.

60

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

(b) Left wiper map

(a) Windshield with dynamically cleaned raindrops

(c) Right wiper map

Figure 37. Taxi windshield rendering with animated windshield wipers

3.9 Conclusions

Rain is a very complex phenomenon and in this chapter we presented a number of
effects that help to generate an extensive, detail-rich urban environment in stormy
weather. Each technology applied to the ToyShop demo adds detail to the scene. Each
additional detail changes the way we experience the environment. It is this attention to
detail that seduces the viewer and delivers a lasting impression of the limitless
expression of real time graphics. All of these combined effects allow us to create a very
believable, realistic impression of a rainy night in a cityscape at highly interactive rates.
Rich, complex environments demand convincing details. We hope that the new
technology developed for this interactive environment can be successfully used in the
next generation of games and real-time rendering.

3.10 Acknowledgements

We would like to thank the ATI ToyShop team whose hard work and dedication resulted
in the striking images of this interactive environment. The artists: Dan Roeger, Daniel

61

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

Szecket, Abe Wiley and Eli Turner, the programmers: John Isidoro (who has been a
crucial part of the development of many effects described in this chapter and to whom
we are deeply thankful for his insightful ideas), Daniel Ginsburg, Thorsten Scheuermann,
Chris Oat, David Gosselin, and the producers (Lisa Close and Callan McInally).
Additionally, we want to thank Jason L. Mitchell from Valve Software and Chris Oat for
their help reviewing this chapter and overall encouragement and good humor.

3.11 Bibliography

AKENINE-MÖLLER, T., HEINES, E. 2002. Real-Time Rendering, 2nd Edition, A.K. Peters

BAR-JOSEPH, Z., EL-YANIV, R., LISCHINSKI, D., AND M. WERMAN. 2001. Texture mixing and

texture movie synthesis using statistical learning. IEEE Transactions on Visualization
and Computer Graphics, 7(2):120-135.

DORETTO, G., CHIUSO, A., WU, Y. N., SOATTO, S. 2003. Dynamic textures. International

Journal of Computer Vision, 51(2):91-109.

HDRSHOP: HIGH DYNAMIC RANGE IMAGE PROCESSING AND MANIPULATION, version 2.0.

Available from http://www.hdrshop.com/

GARG, K., NAYAR, S. K., 2004. Detection and Removal of Rain from Videos. IEEE

Conference on Computer Vision and Pattern Recognition, pp. 528-535

GOMEZ, M. 2000. Interactive Simulation of Water Surfaces, Game Programming Gems.

De Loura, Marc (Ed.), Charles River Media.

ISIDORO, J. 2006. Shadow Mapping Tricks and Techniques. In the proceedings of Game

Developer Conference, San Jose, CA
https://www.cmpevents.com/sessions/GD/S1616i1.ppt

JAIN, R., KASTURI, R., SCHUNK, B. G. 1995. Machine Vision. McGraw-Hill.

KANEDA K., IKEDA S., YAMASHITA H. 1999 Animation of Water Droplets Moving Down a

Surface, Journal of Visualization and Computer Animation, pp. 15-26

KAWASE, M. 2003. Frame Buffer Postprocessing Effects in DOUBLE-S.T.E.A.L

(Wreckless), GDC 2003 lecture. San Jose, CA.

MASON, B. J. 1975. Clouds, Rain and Rainmaking. Cambridge Press.

ISIDORO, J. 2002. User Customizable Real-Time Fur. SIGGRAPH 2002 Technical sketch.

NARASIMHAN, S.G. AND NAYAR, S.K., Shedding Light on the Weather. IEEE CVPR, 2003.

62

http://www.hdrshop.com/
https://www.cmpevents.com/sessions/GD/S1616i1.ppt
http://www.ri.cmu.edu/people/narasimhan_srinivasa.html

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

PERSSON E. 2006. HDR Texturing. ATI Technologies Technical Report, ATI SDK, March
2006. http://www2.ati.com/misc/sdk/ati_sdk(mar2006).exe

REINHARD E., WARD G., PATTANAIK S., DEBEVEC P., 2005, High Dynamic Range Imaging:

Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann

REEVES, W. T., SALESIN, D. H., COOK, R. L. 1987. Rendering Antialiased Shadows with

Depth Maps. Computer Graphics (SIGGRAPH ’87 Proceedings), pp. 238-291.

RIGUER, G., TATARCHUK, N., ISIDORO, J. 2003. Real-Time Depth of Field Simulation.

ShaderX2: Shader Programming Tips and Tricks With DirectX 9.0. W., Ed. Wordware

SCHEUERMANN, T., TATARCHUK, N. 2004. Improved Depth of Field Rendering. ShaderX3:

Advanced Rendering with DirectX and OpenGL. Engel, W., Ed. Charles River Media

STARIK, S., AND WERMAN, M., 2003. Simulation of Rain in Videos. Texture 2003 (The 3rd

international workshop on texture analysis and synthesis)

TOYSHOP DEMO, 2005. ATI Research, Inc. Can be downloaded from

http://www.ati.com/developer/demos/rx1800.html

VAN DE HULST, H. C. 1981. Light Scattering by Small Particles. Dover Publications.

WANG, T. AND CLIFFORD, R. S. 1975. Use of Rainfall-Induced Optical Scintillations to

Measure Path-Averaged Rain Parameters. JOSA, pp. 8-927-237.

63

http://www2.ati.com/misc/sdk/ati_sdk(mar2006).exe
http://www.amazon.com/gp/product/0125852630/qid=1145696267/sr=2-1/ref=pd_bbs_b_2_1/102-5334438-8450558?s=books&v=glance&n=283155
http://www.amazon.com/gp/product/0125852630/qid=1145696267/sr=2-1/ref=pd_bbs_b_2_1/102-5334438-8450558?s=books&v=glance&n=283155
http://www.amazon.com/exec/obidos/tg/detail/-/1556229887/qid%3d1065298195/sr%3d1-2/ref%3dsr_1_2/104-5853032-1521508?v=glance&s=books
http://www.ati.com/developer/demos/rx1800.html

Chapter 3: Artist-Directable Real-Time Rain Rendering in City Environments

64

	Artist-Directable Real-Time Rain Rendering in City Environme
	3.1 Abstract
	3.2 Introduction
	3.3 Rendering system requirements and constraints
	3.3 Lighting system and high dynamic range rendering
	3.3.1 HDR rendering on a budget
	3.3.2 Tone mapping and authoring HDR lightmaps
	3.3.3 Shadowing system
	3.3.4 Lightning System and Integration

	3.4 Post-processing effects for rain rendering
	3.3.1 Creating appearance of misty glow due to inclement wea

	3.5 Wet reflective world
	3.5.1 View-Dependent Streaky Reflections
	3.5.2 Dynamic reflections for a reflective taxi

	3.6 Rendering rain
	3.6.1 Rendering multiple layers of rain with a post-processi
	3.6.2 Raindrop Particles Rain
	3.6.3 Rendering raindrop splashes

	3.7 GPU-Based water simulation for dynamic puddle rendering
	To compute water surface response we treat the water surface
	Vertical height of each water surface point can be computed

	3.8 Raindrop movement and rendering on glass surfaces in rea
	The droplet mass is also used to render dynamic shadows of t
	3.8 Effects medley
	3.8.1 Foggy lights in the street
	3.8.3 Traffic light illumination
	�
	3.8.4 Rendering Misty Rain Halos on Objects
	3.8.5 Taxi windshield wipers effect for wiping off the dropl

	3.9 Conclusions
	3.10 Acknowledgements
	3.11 Bibliography

