
 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Chapter 5

Practical Parallax Occlusion Mapping
with Approximate Soft Shadows for

Detailed Surface Rendering

Natalya Tatarchuk7

ATI Research

(a) (b)

Figure 1. Realistic city scene rendered using parallax occlusion mapping applied to the cobblestone
sidewalk in (a) and using the normal mapping technique in (b).

7 natasha@ati.com

81

mailto:natasha@ati.com

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

5.1 Abstract

This chapter presents a per-pixel ray tracing algorithm with dynamic lighting of surfaces in
real-time on the GPU. First, we will describe a method for increased precision of the
critical ray-height field intersection and adaptive height field sampling. We achieve higher
quality results than the existing inverse displacement mapping algorithms. Second, soft
shadows are computed by estimating light visibility for the displaced surfaces. Third, we
describe an adaptive level-of-detail system which uses the information supplied by the
graphics hardware during rendering to automatically manage shader complexity. This
LOD scheme maintains smooth transitions between the full displacement computation and
a simplified representation at a lower level of detail without visual artifacts. Finally,
algorithm limitations will be discussed along with the practical considerations for
integration into game pipelines. Specific attention will be given to the art asset authoring,
providing guidelines, tips and concerns. The algorithm performs well for animated objects
and supports dynamic rendering of height fields for a variety of interesting displacement
effects. The presented method is scalable for a range of consumer grade GPU products. It
exhibits a low memory footprint and can be easily integrated into existing art pipelines for
games and effects rendering.

5.2 Introduction

The advances in the programmability of commodity GPUs in the recent years have
revolutionized the visual complexity of interactive worlds found in games or similar real-
time applications. However, the balance between the concept and realism dictates that in
order to make the objects in these virtual worlds appear photorealistic, the visual intricacy
demands a significant amount of detail. Simply painting a few broken bricks will not serve
the purpose of displaying a dilapidated brick wall in a forlorn city any longer. With the
raised visual fidelity of the latest games, the player wants to be immersed in these worlds
– they want to experience the details of their environments. That demands that each
object maintains its three-dimensional appearance accurately regardless of the viewing
distance or angle.

Which brings us to an age-old problem of computer graphics - how do we render detailed
objects with complex surface detail without paying the price on performance? We must
balance the desire to render intricate surfaces with the cost of the millions of triangles
associated with high polygonal surfaces typically necessary to represent that geometry.
Despite the fact that the geometric throughput of the graphics hardware has increased
immensely in recent years, there still exist many obstacles in throwing giant amounts of
geometry onto the GPU. There is an associated memory footprint for storing large meshes
(typically measured in many megabytes of vertex and connectivity data), and the
performance cost for vertex transformations and animations of those meshes.

If we want the players to think they’re near a brick wall, it should look and behave like one.
The bricks should have deep grooves, an assortment of bumps and scratches. There
should be shadows between individual bricks. As the player moves around the object, it

82

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

needs to maintain its depth and volume. We wish to render these complex surfaces, such
as this mythical brick wall, accurately – which means that we must do the following:

• Preserve depth at all angles
• Support dynamic lighting
• Self occlusions on the surface must result in correct self-shadowing on the surface

without aliasing.

Throughout history, artists specialized in creating the illusion of detail and depth without
actually building a concrete model of reality on the canvas. Similarly, in computer graphics
we frequently want to create a compelling impression of a realistic scene without the full
cost of complex geometry. Texture mapping is essential for that purpose - it allows
generation of detail-rich scenes without the full geometric content representation. Bump
mapping was introduced in the early days of computer graphics in [Blinn 1978] to avoid
rendering high polygonal count models.

Bump mapping is a technique for making surfaces appear detailed and uneven by
perturbing the surface normal using a texture. This approach creates a visual illusion of
the surface detail that would otherwise consume most of a project’s polygon budget (such
as fissures and cracks in terrain and rocks, textured bark on trees, clothes, wrinkles, etc).
Since the early days, there have been many extensions to the basic bump mapping
technique including emboss bump mapping, environment map bump mapping, and the
highly popular dot product bump mapping (normal mapping). See [Akenine-Möller02] for a
more detailed description of these techniques. In Figure 1b above, we can see the per-
pixel bump mapping technique (also called normal mapping) applied to the cobblestone
sidewalk.

Despite its low computational cost and ease of use, bump mapping fails to account for
important visual cues such as shading due to interpenetrations and self-occlusion, nor
does it display perspective-correct depth at all angles. Since the bump mapping technique
doesn’t take into consideration the geometric depth of the surface, it does not exhibit
parallax. This technique displays various visual artifacts, and thus several approaches
have been introduced to simulate parallax on bump mapped geometry. However, many of
the existing parallax generation techniques cannot account for self-occluding geometry or
add shadowing effects. Indeed, shadows provide a very important visual cue for surface
detail.

The main contribution of this chapter is an advanced technique for simulating the illusion
of depth on uneven surfaces without increasing the geometric complexity of rendered
objects. This is accomplished by computing a perspective-correct representation
maintaining accurate parallax by using an inverse displacement mapping technique. We
also describe a method for computing self-shadowing effects for self-occluding objects.
The resulting approach allows us to simulate pseudo geometry displacement in the pixel
shader instead of modeling geometric details in the polygonal mesh. This allows us to
render surface detail providing a convincing visual impression of depth from varying
viewpoints, utilizing the programmable pixel pipelines of commercial graphics hardware.
The results of applying parallax occlusion mapping can be seen in Figure 1a above, where
the method is used to render the cobblestone sidewalk.

83

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

We perform per-pixel ray tracing for inverse displacement mapping with an easy-to-
implement, efficient algorithm. Our method allows interactive rendering of displaced
surfaces with dynamic lighting, soft shadows, self-occlusions and motion parallax.
Previous methods displayed strong aliasing at grazing angles, thus limiting potential
applications’ view angles, making these approaches impractical in realistic game
scenarios. We present a significant improvement in the rendering quality necessary for
production level results. This work has been originally presented in [Tatarchuk06].

Our method’s contributions include:

• A high precision computation algorithm for critical height field-ray intersection and
an adaptive height field sampling scheme, well-designed for a range of consumer
GPUs (Section 6.5.1). This method significantly reduces visual artifacts at oblique
angles.

• Estimation of light visibility for displaced surfaces allowing real-time computation of
soft shadows due to self-occlusion (Section 6.5.2).

• Adaptive level-of-detail control system with smooth transitions (Section 6.5.3) for
controlling shader complexity using per-pixel level-of-detail information.

The contributions presented in this chapter are desired for easy integration of inverse
displacement mapping into interactive applications such as games. They improve resulting
visual quality while taking full advantage of programmable GPU pixel and texture
pipelines’ efficiency. Our technique can be applied to animated objects and fits well within
established art pipelines of games and effects rendering. The algorithm allows scalability
for a range of existing GPU products.

5.3 Why reinvent the wheel? Common artifacts and related work

Although standard bump mapping offers a relatively inexpensive way to add surface
detail, there are several downsides to this technique. Common bump mapping
approaches lack the ability to represent view-dependent unevenness of detailed surfaces,
and therefore fail to represent motion parallax—the apparent displacement of the object
due to viewpoint change. In recent years, new approaches for simulating displacement on
surfaces have been introduced. [Kaneko01] and [Welsh03] describe an approach for
parallax mapping for representing surface detail using normal maps, while [Wang03]
introduced a technique for view-dependent displacement mapping which improved on
displaying surface detail as well as silhouette detail.

Displacement mapping, introduced by [Cook84], addressed the issues above by actually
modifying the underlying surface geometry. Ray-tracing based approaches dominated in
the offline domain [Pharr and Hanrahan 1996; Heidrich and Seidel 1998]. These methods
adapt poorly to current programmable GPUs and are not applicable to the interactive
domain due to high computational costs. Additionally, displacement mapping requires
fairly highly tessellated models in order achieve satisfactory results, negating the polygon-
saving effect of bump mapping.

84

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Other approaches included software-based image-warping techniques for rendering
perspective-correct geometry [Oliveira et al. 2000] and precomputed visibility information
[Wang et al. 2003; Wang et al. 2004; Donnelly 2005]. [Wang03] describes a per-pixel
technique for self-shadowing view-dependent rendering capable of handling occlusions
and correct display of silhouette detail. The precomputed surface description is stored in
multiple texture maps (the data is precomputed from a supplied height map). The view-
dependent displacement mapping textures approach displays convincing parallax effect
by storing the texel relationship from several viewing directions. However, the cost of
storing multiple additional texture maps for surface description is prohibitive for most real-
time applications. Our proposed method requires a low memory footprint and can be used
for dynamically rendered height fields.

Recent inverse displacement mapping approaches take advantage of the parallel nature
of GPU pixel pipelines to render displacement directly on the GPU ([Doggett and Hirche
2000; Kautz and Seidel 2001; Hirche et al. 2004; Brawley and Tatarchuk 2004; Policarpo
et al. 2005]. One of the significant disadvantages of these approaches is the lack of
correct object silhouettes since these techniques do not modify the actual geometry.
Accurate silhouettes can be generated by using view-dependent displacement data as in
[Wang et al. 2003; Wang et al. 2004] or by encoding the surface curvature information
with quadric surfaces as in [Oliveira and Policarpo 2005].

Another limitation of bump mapping techniques is the inability to properly model self-
shadowing of the bump mapped surface, adding an unrealistic effect to the final look. The
horizon mapping technique ([Max 1988], [Sloan and Cohen 2000]) allows shadowing
bump mapped surfaces using precomputed visibility maps. With this approach, the height
of the shadowing horizon at each point on the bump map for eight cardinal directions is
encoded in a series of textures which are used to determine the amount of self-shadowing
for a given light position during rendering. A variety of other techniques were introduced
for this purpose, again, the reader may refer to an excellent survey in [Akenine-Möller02].

A precomputed three-dimensional distance map for a rendered object can be used for
surface extrusion along a given view direction ([Donnelly 2005]). This technique stores a
‘slab’ of distances to the height field in a volumetric texture. It then uses this distance field
texture to perform ray “walks” along the view ray to arrive at the displaced point on the
extruded surface. The highly prohibitive cost of a 3D texture and dependent texture
fetches’ latency make this algorithm less attractive and in many cases simply not
applicable in most real-time applications. Additionally, as this approach does not compute
an accurate intersection of the rays with the height field, it suffers from aliasing artifacts at
a large range of viewing angles. Since the algorithm requires precomputed distance fields
for each given height field, it is not amenable for dynamic height field rendering
approaches.

Mapping relief data in tangent space for per-pixel displacement mapping in real-time was
proposed in [Brawley and Tatarchuk 2004; Policarpo et al. 2005; McGuire and McGuire
2005] and further extended in [Oliveira and Policarpo et al. 2005] to support silhouette
generation. The latter work was further extended to support rendering with non-height field
data in [Policarpo06]. These methods take advantage of the programmable pixel pipeline
efficiency by performing height field-ray intersection in the pixel shader to compute the
displacement information. These approaches generate dynamic lighting with self-
occlusion, shadows and motion parallax. Using the visibility horizon to compute hard
shadows as in [Policarpo et al. 2005; McGuire and McGuire 2005; Oliveira and Policarpo

85

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

2005] can result in shadow aliasing artifacts. All of the above approaches exhibit strong
aliasing and excessive flattening at steep viewing angles. No explicit level of detail
schemes were provided with these approaches, relying on the texture filtering capabilities
of the GPUs.

Adaptive level-of-detail control systems are beneficial any computationally intensive
algorithm and there have been many contributors in the field of rendering. A level of detail
system for bump mapped surfaces using pre-filtered maps was presented in [Fournier 92].
RenderMan® displacement maps were automatically converted to bump maps and BRDF
representations in [Becker and Max 1993]. An automatic shader simplification system
presented in [Olano et al. 2003] uses controllable parameters to manage system
complexity. The resulting level-of-detail shader appearance is adjustable based on
distance, size, and importance and given hardware limits.

5.4 Parallax Occlusion Mapping

This section will provide a brief overview of concepts of the parallax occlusion mapping
method. We encode the displacement information for the surface in a height map as
shown in Figure 2b. The inherent planarity of the tangent space allows us to compute
displacement for arbitrary polygonal surfaces. Height field-ray intersections are performed
in tangent space. The lighting can be computed in any space using a variety of
illumination models. Efficient GPU implementation allows us to compute per-pixel shading,
self-occlusion effects, and soft shadows, dynamically scaling the computations.

(a) (b)
Figure 2. (a) Tangent space normal map used to render the cobblestone sidewalk in
Figure 1a. (b) Corresponding height field encoding the displacement information in the
range [0;1] for that sidewalk object and a close-up view of the rendered sidewalk

86

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

The effect of motion parallax for a surface can be computed by applying a height map and
offsetting each pixel in the height map using the geometric normal and the view vector. As
we move the geometry away from its original position using that ray, the parallax is
obtained by the fact that the highest points on the height map would move the farthest
along that ray and the lower extremes would not appear to be moving at all. To obtain
satisfactory results for true perspective simulation, one would need to displace every pixel
in the height map using the view ray and the geometric normal. We trace a ray through the
height field to find the closest visible point on the surface.

The input mesh provides the reference plane for displacing the surface downwards. The
height field is normalized for correct ray-height field intersection computation (0
representing the reference polygon surface values and 1 representing the extrusion
valleys).

The parallax occlusion mapping algorithm execution can be summarized as follows:

• Compute the tangent-space viewing direction and the light direction per-
vertex, interpolate and normalize in the pixel shader

tsV̂ tsL̂

• Compute the parallax offset vector P (either per-vertex or per-pixel) to determine
the maximum visual offset in texture-space for the current level (as described in
[Brawley and Tatarchuk 2004])

In the pixel shader:

• Ray cast the view ray along P to compute the height profile–ray intersection
point. We sample the height field profile along P to determine the correct displaced
point on the extruded surface. This yields the texture coordinate offset necessary
to arrive at the desired point on the extruded surface as shown in Figure 3. We add
this parallax offset amount to the original sample coordinates to yield the shifted
texture coordinates toff

tsV̂

Figure 3. Displacement based on sampled height
field and current view direction.

87

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

• Estimate the light visibility coefficient v by casting the light direction ray and
sampling the height profile for occlusions.

tsL̂

• Shade the pixel using v, and the pixel’s attributes (such as the albedo, color
map, normal, etc.) sampled at the texture coordinate offset toff.

tsL̂

Figure 6 later in the chapter illustrates the process above for a given pixel on a polygonal
face. We will now discuss each of the above steps in greater detail.

5.4.1 Height Field – Ray Intersection

Techniques such as [Policarpo et al. 2005; Oliveira and Policarpo 2005] determine the
intersection point by a combination of linear and binary search routines. These
approaches sample the height field as a piecewise constant function. The linear search
allows arriving at a point below the extruded surface intersection with the view ray. The
following binary search helps finding an approximate height field intersection utilizing
bilinear texture filtering to interpolate the intersection point.

Figure 4a. Relief mapping rendered with both
linear and binary search but without depth
bias applied. Notice the visual artifacts due to
sampling aliasing at grazing angles.

Figure 4b. Relief mapping rendered with both
linear and binary search and with depth bias
applied. Notice the flattening of surface
features towards the horizon.

88

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Figure 4c. Parallax occlusion mapping rendered with the high precision height field intersection
computation. Notice the lack of aliasing artifacts or feature flattening toward the horizon.

The intersection of the surface is approximated with texture filtering, thus only using 8 bits
of precision for the intersection computation. This results in visible stair-stepping artifacts
at steep viewing angles (as seen in Figure 4a). Depth biasing toward the horizon hides
these artifacts but introduces excessive feature flattening at oblique angles (Figure 4b).

The binary search from [Policarpo et al. 2005] requires dependent texture fetches for
computation. These incur a latency cost which is not offset by any ALU computations in
the relief mapping ray-height field intersection routine. Increasing the sampling rate during
the binary search increases the latency of each fetch by increasing the dependency depth
for each successive fetch.

Using a linear search from [Policarpo et al. 2005] without an associated binary search
exacerbates the stair-stepping artifacts even with a high sampling rate (as in Figure 5a).

(a) (b)
Figure 5. Comparison of height field intersection precision using the linear search
only (same assets). (a) Relief mapping. (b) Parallax occlusion mapping

89

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

The advantage of a linear search for intersection root finding lies in an effective use of
texturing hardware with low latency as it does not require dependent texture fetches.
Simply using a linear search requires higher precision for the root-finding.

We sample the height field using a linear search and approximating the height profile as a
piecewise linear curve (as illustrated in Figure 6). This allows us to combine the 8 bit
precision due to bilinear texture filtering with the full 32 bit precision for root finding during
the line intersection. Figure 4c displays the improved visual results with the lack of aliasing
with using our approach.

Figure 6. We start at the input texture coordinates to and sample the height field profile
for each linear segment of the green piecewise linear curve along parallax offset vector P.
The height field profile-view ray intersection yields parallax-shifted texture coordinate
offset toff. δ is the interval step size. Then we perform the visibility tracing. We start at
texture offset toff and trace along the light direction vector Lts to determine any occluding
features in the height field profile.

Since we do not encode feature information into additional look-up tables, the accuracy of
our technique corresponds to the sampling interval δ (as well as for [Policarpo et al.
2005]). Both algorithms suffer from some amount of aliasing artifacts if too few samples
are used for a relatively high-frequency height field, though the amount will differ between
the techniques.

Automatically determining δ by using the texture resolution is currently impractical. At
grazing angles, the parallax amount is quite large and thus we must march along a long
parallax offset vector in order to arrive at the actual displaced point. In that case, the step
size is frequently much larger than a texel, and thus unrelated to the texture resolution. To
solve this, we provide both directable and automatic controls.

The artists can control the sampling size bounds with artist-editable parameters. This is
convenient in real game scenarios as it allows control per texture map. If dynamic flow
control (DFC) is available, we can automatically adjust the sampling rate during ray

90

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

tracing. We express the sampling rate as a linear function of the angle between the
geometric normal and the view direction ray:

)(ˆˆ
minmaxmin nnVNnn ts −•+= (1)

where and are the artist-controlled sampling rate bounds, is the interpolated
geometric unit normal vector at the current pixel. This assures that we increase the
sampling rate along the steep viewing angles. We increase the efficiency of the linear
search by using the early out functionality of DFC to stop sampling the height field when a
point below the surface is found.

minn maxn N̂

5.4.2 Soft Shadows

The height map can in fact cast shadows on itself. This is accomplished by substituting
the light vector for the view vector when computing the intersection of the height profile to
determine the correct displaced texel position during the reverse height mapping step.
Once we arrive at the point on the displaced surface (the point C in figure 6) we can
compute its visibility from the any light source. For that, we cast a ray toward the light
source in question and perform horizon visibility queries of the height field profile along the
light direction ray . tsL̂

If there are intersections of the height field profile with , then there are occluding
features and the point in question will be in shadow. This process allows us to generate
shadows due to the object features’ self-occlusions and object interpenetration.

tsL̂

If we repeated the process for the height field profile – view direction ray tracing for the
visibility query by stopping sampling at the very first intersection, we would arrive at the
horizon shadowing value describing whether the displaced pixel is in shadow. Using this
value during the lighting computation (as in [Policarpo et al. 2005]) generates hard
shadows which can display aliasing artifacts in some scenes (Figure 7a).

Figure 7a. Hard shadows generated with
the relief mapping horizon visibility
threshold computation.

Figure 7b. Soft shadows generated with the
parallax occlusion mapping penumbra
approximation technique.

91

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

With our approach, we sample n samples h1 - hn along the light direction ray (Figure 8).
We assume that we are lighting the surface with an area light source and, similar to [Chan
and Durand 2003] and [Wyman and Hansen 2003], we heuristically approximate the size
of penumbra for the occluded pixel. Figure 9 demonstrates the penumbra size
computation given an area light source, a blocker and a receiver surface.

We can use the height field profile
samples hi along the light direction ray to
determine the occlusion coefficient. We
sample the height value h0 at the shifted
texture coordinate toff. Starting at this
offset ensures that the shadows do not
appear floating on top of the surface. The
sample h0 is our reference (“surface”)
height. We then sample n other samples
along the light ray, subtracting h0 from
each of the successive samples hi. This
allows us to compute the blocker-to-
receiver ratio as in figure 9. The closer the blocker is to the surface, the sma
resulting penumbra. We compute the penumbra coefficient (the visibility coefficie
scaling the contribution of each sample by the distance of this sample from h0, an
the maximum value sampled. Additionally we can weight each visibility sample to s
the blur kernel for shadow filtering.

Figure 8. Sampling the height field p
along the light ray direction Lts to ob
height samples h1 – h8 (n=8)

h8 h6 h5

h4
h3

h7

h2 h1

Lts

We apply the visibility coeff
during the lighting computa
generation of smooth soft sh
This allows us to obtain well-b
soft shadows without any
aliasing or filtering artifacts. Fig
and 10 demonstrate exam
smooth shadows using our tec
One limitation of our techniqu
lack of hard surface contact
for extremely high frequency
maps.

Remember that estimating
visibility increases shader com
We perform the visibility query
areas where the dot product b
the geometric normal and t

vector is non-negative by utilizing dynamic branching (see the actual pixel sh
Listing 2 in the Appendix). This allows us to compute soft shadows only for area
are actually facing the light source.

Figure 9. Penumbra size approximation for
area light sources, where ws is the light source
width, wp is the penumbra width, dr is the
receiver depth and db is the blocker depth from
the light source.

w

dr

db
w

b

brs
p d

)dd(ww −
= Light source

Blocker

Surface

92
1.0
n

r
t

i
t

p

e
s

h

0.0
ller the
t v) by

d using
imulate

ofile
ain

cient v
ion for
adows.
ehaved
 edge
ures 7b
les of
hnique.
 is the
hadow

 height

 light
plexity.
only for
etween
e light
ader in
s which

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Figure 10. Smooth soft shadows and perspective-correct depth details generated with the
parallax occlusion rendering algorithm

5.4.3 Adaptive Level-of-Detail Control System

We compute the current mip level explicitly in the pixel shader and use this information to
transition between different levels of detail from the full effect to bump mapping. Simply
using mip-mapping for LOD management is ineffective since it does not reduce shader
complexity during rendering. Using the full shader for the height field profile intersection
with the view ray and the light ray, the visibility and lighting is expensive. Although at lower
mip levels the fill is reduced, without our level-of-detail system, the full shader will be
executed for each pixel regardless of its proximity to the viewer. Instead, with our
algorithm, only a simple bump mapping shader is executed for mip levels higher than the
specified threshold value.

This in-shader LOD system provides a significant rendering optimization and smooth
transitions between the full parallax occlusion mapping and a simplified representation
without visual artifacts such as ghosting or popping. Since all calculations are performed
per pixel, the method robustly handles extreme close-ups of the object surface, thus
providing an additional level of detail management.

We compute the mip level directly in the pixel shader (as described in [Shreiner et al.
2005]) on SM 3.0 hardware (see the actual pixel shader in Listing 2 in the Appendix). The
lowest level of detail is rendered using bump mapping. As we determine that the currently
rendered level of detail is close enough to the threshold, we interpolate the parallax
occlusion-mapped lit result with the bump-mapped lit result using the fractional part of the
current mip level as the interpolation parameter. There is almost no associated visual
quality degradation as we move into a lower level of detail and the transition appears quite
smooth (Figure 11).

93

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

Figure 11. A complex scene with parallax occlusion mapping on the sidewalk and the
brick wall. The strength of the blue tint in (b) denotes the decreasing level of detail
(deepest blue being bump mapping and no blue displays full computation). Note the
lack of visual artifacts and smooth transition due to the level-of-detail transition
discernable in (a). The transition region is very small.

We expose the threshold level parameter to the artists in order to provide directability for
game level editing. In our examples we used a threshold value of 4. Thus even at steep
grazing angles the close-up views of surfaces will maintain perspective correct depth.

5.5 Results

We have implemented the techniques described in this paper using DirectX 9.0c shader
programs on a variety of graphics cards. An example of an educational version of this
shader is shown in listings 1 (for the vertex shader implementation using DirectX 9.0c
shader model 3.0) and listing 2 (for the pixel shader implementation using DirectX 9.0c
shader model 3.0). We use different texture sizes selected based on the desired feature
resolution. For Figures 1, 2, 11, 16, and 17 we apply 1024x1024 RGBα textures with non-
contiguous texture coordinates. For Figures 4 and 7 we apply repeated 256x256 RGBα
textures, and for Figures 5 and 10 we use repeated 128x128 RGBα textures.

We applied parallax occlusion mapping to a 1,100 polygon soldier character shown in
figure 12a. We compared this result to a 1.5 million polygon version of the soldier model
used to generate normal maps for the low resolution version (Figure 12b). (Note that the
two images in figure 12 are from slightly different viewpoints though extracted from a
demo sequence with similar viewpoint paths.) We apply a 2048x2048 RGBα texture map
to the low resolution object. We render the low resolution soldier using DirectX on ATI

94

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Radeon X1600 XL at 255 fps. The sampling rate bounds were set to the range of [8, 50]
range. The memory requirement for this model was 79K for the vertex buffer, 6K for the
index buffer, and 13MB of texture memory (using 3DC texture compression).

Figure 12a. An 1,100 polygon
game soldier character with
parallax occlusion mapping

Figure 12b. A 1.5 million polygon soldier
character with diffuse lighting

The high resolution soldier model is rendered on the same hardware at a rate of 32 fps.
The memory requirement for this model was 31MB for the vertex buffer and 14MB for the
index buffer. Due to memory considerations, vertex transform cost for rendering,
animation, and authoring issues, characters matching the high resolution soldier are
impractical in current game scenarios. However, using our technique on an extremely low
resolution model provided significant frame rate increase with 32MB of memory being
saved, at a comparable quality of rendering.

This demonstrates the usefulness of the presented technique for texture-space
displacement mapping via parallax occlusion mapping. In order to render the same
objects interactively with equal level of detail, the meshes would need an extremely
detailed triangle subdivision, which is impractical even with the currently available GPUs.

Our method can be used with a dynamically rendered height field and still produce
perspective-correct depth results. In that case, the dynamically updated displacement
values can be used to derive the normal vectors at rendering time by convolving the
height map with a Sobel operator in the horizontal and vertical direction (as described in
detail in [Tatarchuk06a]). The rest of the algorithm does not require any modification.

We used this technique extensively in the interactive demo called “ToyShop” [Toyshop05]
for a variety of surfaces and effects. As seen in Figure 1 and 16, we’ve rendered the
cobblestone sidewalk using this technique (using sampling range from 8 to 40 samples per
pixel), in Figure 13 we have applied it to the brick wall (with the same sampling range),

95

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

and in Figure 17 we see parallax occlusion mapping used to render extruded wood-block
letters of the ToyShop store sign. We were able to integrate a variety of lighting models
with this technique, ranging from a single diffusely lit material in Figure 13, to shadows and
specular illumination in Figure 17, and shadow mapping integrated and dynamic view-
dependent reflections in Figure 1a.

5.6 Considerations for practical use of parallax occlusion
mapping and game integration

5.6.1 Algorithm limitations and relevant considerations

Although parallax occlusion mapping is a very powerful and flexible technique for
computing and lighting extruded surfaces in real-time, it does have its limitations. Parallax
occlusion mapping is a sampling-based algorithm at its core, and as such, it can exhibit
aliasing. The frequencies of the height field will determine the required sampling rate for
the ray tracing procedures – otherwise aliasing artifacts will be visible (as seen in Figures
4a and 5a). One must increase the sampling rate significantly if the height field contains
very sharp features (as visible in the text and sharp conic features in Figure 13 below).
However, as we can note from the images in Figures 13a and 13b, the visual quality of the
results rendered with parallax occlusion mapping is high enough to render such
traditionally difficult objects as extruded text or sharp peaks at highly interactive rates (fps
> 15fps on ATI Radeon X1600 XL rendering at 1600x1200 resolution). In order to render
the same objects interactively with equal level of detail, the meshes would need an
extremely detailed triangle subdivision (with triangles being nearly pixel-sized), which is
impractical even with the currently available GPUs.

96

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

(a)

(b)

Figure 13. Rendering extruded text objects in (a) and sharp conic features in (b) with
parallax occlusion mapping

The sampling limitation is particularly evident in the DirectX 9.0c shader model 2.0
implementation of the parallax occlusion mapping algorithm if the height field used has
high spatial frequency content. This specific shader model suffers from a small instruction
count limit, and thus we are unable to compute more than 8 samples during ray tracing in
a single pass. However, several passes can be used to compute the results of ray tracing
by using offscreen buffer rendering to increase the resulting precision of computations
using SM 2.0 shaders. As in the analog-to-digital sound conversion process, sampling
during the ray tracing at slightly more than twice the frequency of the height map features
will make up for not modeling the surfaces with implicit functions and performing the exact
intersection of the ray with the implicit representation of the extruded surface.

Another limitation of our technique is the lack of detailed silhouettes, betraying the low
resolution geometry actually rendered with our method. This is an important feature for
enhancing the realism of the effect and we are investigating ideas for generating correct
silhouettes. However, in many scenarios, the artists can work around this issue by placing
specific ‘border’ geometry to hide the artifacts. One can notice this at work in the
“ToyShop” demo as the artists placed the curb stones at the edge of the sidewalk object
with parallax occlusion mapped cobblestones or with a special row of bricks at the corner
of the brick building seen in Figure 14 below.

97

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

Figure 14. Additional brick geometry placed at the corners of parallax occlusion
mapped brick objects to hide inaccurate silhouettes in an interactive environment of the
“ToyShop” demo.

The parallax occlusion mapping algorithm will not automatically produce surfaces with
correct depth buffer values (since it simply operates in screen-space on individual pixels).
This means that in some situations this will result in apparent object interpenetration or
incorrect object collision. The algorithm can be extended to output accurate depth quite
easily. Since we know the reference surface’s geometric depth, we can compute the
displacement amount by sampling the height field at the toff location and adding or
subtracting this displacement amount to the reference depth value (as described in
[Policarpo05]) by outputting it as the depth value from the pixel shader.

5.6.1 Art Content Authoring Suggestions for Parallax Occlusion
Mapping

Adding art asset support for parallax occlusion mapping requires a minimal increase in
memory footprint (for an additional 8-bit height map) if the application already supports
normal mapping and contains appropriate assets. There are many reliable methods for
generating height maps useful for this technique:

• Normal maps can be generated from a combination of a low- and high-resolution
models with the NormalMapper software [NormalMapper03]. The tool has an
option to simultaneously output the corresponding displacement values in a height
map

• A height map may be painted in a 3D painting software like ZBrushTM
• It also can be created in a 2D painting software such as Adobe® PhotoshopTM

98

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

The parallax occlusion mapping technique is an efficient and compelling technique for
simulating surface details. However, as with other bump mapping techniques, its quality
depends strongly on the quality of its art content. Empirically, we found that lower-
frequency height map textures result in higher performance (due to less samples required
for ray tracing) and better quality results (since less height field features are missed). For
example, if creating height maps for rendering bricks or cobblestones, one may widen the
grout region and apply a soft blur to smooth the transition and thus lower the height map
frequency content. As discussed in the previous section, when using high frequency
height maps (such as those in Figure 13a or 13b), we must increase the range of
sampling for ray tracing.

An important consideration for authoring art assets for use with this algorithm lies in the
realization that the algorithm always extrudes surfaces “pushing down” – unlike the
traditional displacement mapping. This affects the placement of the original low resolution
geometry – the surfaces must be placed slightly higher than where the anticipated
extruded surface should be located. Additionally this means that the peaks in the extruded
surface will correspond to the brightest values in the height map (white) and the valleys
will be corresponding to the darkest (black).

5.7 Conclusions

We have presented a pixel-driven displacement mapping technique for rendering detailed
surfaces under varying light conditions, generating soft shadows due to self-occlusion. We
have described an efficient algorithm for computing intersections of the height field profile
with rays with high precision. Our method includes estimation of light visibility for
generation of soft shadows. An automatic level-of-detail control system manages shader
complexity efficiently at run-time, generating smooth LOD transitions without visual
artifacts. Our technique takes advantage of the programmable GPU pipeline resulting in
highly interactive frame rates coupled with a low memory footprint.

Parallax occlusion mapping can be used effectively to generate an illusion of very detailed
geometry exhibiting correct motion parallax as well as producing very convincing self-
shadowing effects. We provide a high level of directability to the artists and significantly
improved visual quality over the previous approaches. We hope to see more games
implementing compelling scenes using this technique.

5.7 Acknowledgements

We would like to thank Dan Roeger, Daniel Szecket, Abe Wiley and Eli Turner for their
help with the artwork, and Zoë Brawley from Relic Entertainment for her ideas in the
original implementation of the 2004 technique. We also would like to thank Pedro Sander,
John Isidoro, Thorsten Scheuermann, and Chris Oat of ATI Research, Inc., Jason L.
Mitchell of Valve Software, and Eric Haines, of Autodesk for their help, suggestions and
review of this work.

99

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

5.8 Bibliography

BECKER, B. G., AND MAX, N. L. 1993. Smooth Transitions between Bump Rendering

Algorithms. In ACM Transactions on Graphics (Siggraph 1993 Proceedings), ACM
Press, pp. 183-190

BLINN, J. F. 1978. “Simulation of Wrinkled Surfaces”. In Proceedings of the 5th annual

conference on Computer graphics and interactive techniques, ACM Press, pp. 286-
292.

BRAWLEY, Z., AND TATARCHUK, N. 2004. Parallax Occlusion Mapping: Self-Shadowing,

Perspective-Correct Bump Mapping Using Reverse Height Map Tracing. In ShaderX3:
Advanced Rendering with DirectX and OpenGL, Engel, W., Ed., Charles River Media,
pp. 135-154.

CHAN, E., AND DURAND, F. 2003. Rendering fake soft shadows with smoothies, In

Eurographics Symposium on Rendering Proceedings, ACM Press, pp. 208-218.

COOK, R. L. 1984. Shade Trees, In Proceedings of the 11th annual conference on

Computer graphics and interactive techniques, ACM Press, pp. 223-231.

DOGGETT, M., AND HIRCHE, J. 2000. Adaptive View Dependent Tessellation of

Displacement Maps. In HWWS ’00: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics Hardware, ACM Press, pp. 59-
66.

DONNELLY, W. 2005. Per-Pixel Displacement Mapping with Distance Functions. In GPU

Gems 2, M. Pharr, Ed., Addison-Wesley, pp. 123 – 136.

FOURNIER, A. 1992. Filtering Normal Maps and Creating Multiple Surfaces, Technical

Report, University of British Columbia.

HEIDRICH, W., AND SEIDEL, H.-P. 1998. Ray-tracing Procedural Displacement Shaders, In

Graphics Interface, pp. 8-16.

HIRCHE, J., EHLERT, A., GUTHE, S., DOGGETT, M. 2004. Hardware Accelerated Per-Pixel

Displacement Mapping. In Graphics Interface, pp. 153-158.

KANEKO, T., TAKAHEI, T., INAMI, M., KAWAKAMI, N., YANAGIDA, Y., MAEDA, T., TACHI, S.

2001. Detailed Shape Representation with Parallax Mapping. In Proceedings of ICAT
2001, pp. 205-208.

KAUTZ, J., AND SEIDEL, H.-P. 2001. Hardware accelerated displacement mapping for

image based rendering. In Proceedings of Graphics Interface 2001, B.Watson and
J.W. Buchanan, Eds., pp. 61–70.

100

http://research.microsoft.com/users/blinn/
http://www.amazon.com/exec/obidos/tg/detail/-/1584503572/104-6997643-5626368?v=glance
http://www.amazon.com/exec/obidos/tg/detail/-/1584503572/104-6997643-5626368?v=glance
http://graphics.csail.mit.edu/~ericchan/papers/smoothie/
http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch08.pdf
http://www.amazon.com/exec/obidos/tg/detail/-/0321335597/104-6997643-5626368?v=glance
http://www.amazon.com/exec/obidos/tg/detail/-/0321335597/104-6997643-5626368?v=glance
http://www.cs.ubc.ca/~heidrich/Papers/GI.98.pdf
http://www.gris.uni-tuebingen.de/publics/paper/Hirche-2004-Hardware.pdf
http://www.gris.uni-tuebingen.de/publics/paper/Hirche-2004-Hardware.pdf

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

MAX, N. 1988. Horizon mapping: shadows for bump-mapped surfaces. The Visual
Computer 4, 2, pp. 109–117.

MCGUIRE, M. AND MCGUIRE, M. 2005. Steep Parallax Mapping. I3D 2005 Poster.

AKENINE-MÖLLER, T., HEINES, E. 2002. Real-Time Rendering, 2nd Edition, A.K. Peters,

July 2002

OLANO, M., KUEHNE, B., SIMMONS, M. 2003. Automatic Shader Level of Detail. In

Siggraph/Eurographics Workshop on Graphics Hardware Proceedings, ACM Press,
pp. 7-14.

OLIVEIRA, M. M, AND POLICARPO, F.. 2005. An Efficient Representation for Surface Details.

UFRGS Technical Report RP-351.

OLIVEIRA, M. M., BISHOP, G., AND MCALLISTER, D. 2000. Relief texture mapping. In

Siggraph 2000, Computer Graphics Proceedings, ACM Press / ACM SIGGRAPH /
Addison Wesley Longman, K. Akeley, Ed., pp. 359–368.

PHARR, M., AND HANRAHAN, P. 1996. Geometry caching for ray-tracing displacement

maps. In Eurographics Rendering Worshop 1996, Springer Wien, New York City, NY,
X. Pueyo and P. Schröder, Eds., pp. 31–40.

POLICARPO, F., OLIVEIRA, M. M., COMBA, J. 2005. Real-Time Relief Mapping on Arbitrary

Polygonal Surfaces. In ACM SIGGRAPH Symposium on Interactive 3D Graphics
Proceedings, ACM Press, pp. 359-368.

POLICARPO, F., OLIVEIRA, M. M. 2006. Relief Mapping of Non-Height-Field Surface

Details. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
Proceedings, ACM Press, pp. 55-52.

SHREINER, D., WOO, M., NEIDER, J., DAVIS, T.. 2005. OpenGL® Programming Guide:

The Official Guide to Learning OpenGL®, version 2, Addison-Wesley.

SLOAN, P-P. J., AND COHEN, M. F. 2000. Interactive Horizon Mapping. In 11th

Eurographics Workshop on Rendering Proceedings, ACM Press, pp. 281-286.

TATARCHUK, N. 2006. Dynamic Parallax Occlusion Mapping with Approximate Soft

Shadows. In the proceedings of ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, pp. 63-69

TATARCHUK, N. 2006a. Practical Parallax Occlusion Mapping for Highly Detailed Surface

Rendering. In the proceedings of Game Developer Conference

WANG, L., WANG, X., TONG, X., LIN, S., HU, S., GUO, B., AND SHUM, H.-Y. 2003. View-

dependent displacement mapping. ACM Trans. Graph. 22, 3, pp. 334–339.

WANG, X., TONG, X., LIN, S., HU, S., GUO, B., AND SHUM, H.-Y. 2004. Generalized

displacement maps. In Eurographics Symposium on Rendering 2004,

101

http://www.cs.unc.edu/~olano/papers/aslod.pdf
http://www.inf.ufrgs.br/%7Eoliveira/pubs_files/Oliveira_Policarpo_RP-351_Jan_2005.pdf
http://www.inf.ufrgs.br/~comba/papers/2005/rtrm-i3d05.pdf
http://www.inf.ufrgs.br/~comba/papers/2005/rtrm-i3d05.pdf
http://research.microsoft.com/~cohen/bs.pdf

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

EUROGRAPHICS, Keller and Jensen, Eds., EUROGRAPHICS, pp. 227–233.

WELSH, T. 2004. Parallax Mapping, ShaderX3: Advanced Rendering with DirectX and

OpenGL, Engel, W. Ed., A.K. Peters, 2004

WYMAN, C., AND HANSEN, C. 2002. Penumbra maps: approximate soft shadows in real-

time. In Eurographics workshop on Rendering 2003, EUROGRAPHICS, Keller and
Jensen, Eds., EUROGRAPHICS, pp. 202-207.

TOYSHOP DEMO, 2005. ATI Research, Inc. Can be downloaded from
http://www.ati.com/developer/demos/rx1800.html

NORMALMAPPER TOOL, 2003. ATI Research, Inc. Can be downloaded from
http://www2.ati.com/developer/NormalMapper-3_2_2.zip

102

http://www.ati.com/developer/demos/rx1800.html
http://www2.ati.com/developer/NormalMapper-3_2_2.zip

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

(a)

(b)

Figure 15. Simple cube model rendered with detailed surface detailed from the same
viewpoint. In (a), relief mapping is used to create surface complexity. In (b), parallax
occlusion mapping is used to render perspective-correct extruded surfaces. Notice the
differences on the left face of the cube as the surface is viewed at a steep angle.

103

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

Figure 16. A portion of a realistic city environment with the cobblestone sidewalk
and the brick wall rendered with parallax occlusion mapping (left) and bump
mapping (right). We are able to use shadow mapping on the surfaces and
dynamically rendered reflections from objects in the scene.

Figure 17. Displaced text rendering with the sign rendered using parallax occlusion
mapping technique

104

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Appendix. DirectX shader code implementation of Parallax
Occlusion Mapping.

float4x4 matViewInverse;
float4x4 matWorldViewProjection;
float4x4 matView;

float fBaseTextureRepeat;
float fHeightMapRange;
float4 vLightPosition;

struct VS_INPUT
{
 float4 positionWS : POSITION;
 float2 texCoord : TEXCOORD0;
 float3 vNormalWS : NORMAL;
 float3 vBinormalWS : BINORMAL;
 float3 vTangentWS : TANGENT;
};

struct VS_OUTPUT
{
 float4 position : POSITION;
 float2 texCoord : TEXCOORD0;

 // Light vector in tangent space, not normalized
 float3 vLightTS : TEXCOORD1;

 // View vector in tangent space, not normalized
 float3 vViewTS : TEXCOORD2;

 // Parallax offset vector in tangent space
 float2 vParallaxOffsetTS : TEXCOORD3;

 // Normal vector in world space
 float3 vNormalWS : TEXCOORD4;

 // View vector in world space
 float3 vViewWS : TEXCOORD5;
};

VS_OUTPUT vs_main(VS_INPUT i)
{
 VS_OUTPUT Out = (VS_OUTPUT) 0;

 // Transform and output input position
 Out.position = mul(matWorldViewProjection, i.positionWS);

 // Propagate texture coordinate through:
 Out.texCoord = i.texCoord;

 // Uncomment this to repeat the texture
 // Out.texCoord *= fBaseTextureRepeat;

 // Propagate the world vertex normal through:

105

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

 Out.vNormalWS = i.vNormalWS;

 // Compute and output the world view vector:
 float3 vViewWS = mul(matViewInverse,
 float4(0,0,0,1)) - i.positionWS;

 Out.vViewWS = vViewWS;

 // Compute denormalized light vector in world space:
 float3 vLightWS = vLightPosition - i.positionWS;

 // Normalize the light and view vectors and transform
 // it to the tangent space:
 float3x3 mWorldToTangent =
 float3x3(i.vTangentWS, i.vBinormalWS, i.vNormalWS);

 // Propagate the view and the light vectors (in tangent space):
 Out.vLightTS = mul(mWorldToTangent, vLightWS);
 Out.vViewTS = mul(mWorldToTangent, vViewWS);

 // Compute the ray direction for intersecting the height field
 // profile with current view ray. See the above paper for derivation
 // of this computation.

 // Compute initial parallax displacement direction:
 float2 vParallaxDirection = normalize(Out.vViewTS.xy);

 // The length of this vector determines the furthest amount
 // of displacement:
 float fLength = length(Out.vViewTS);
 float fParallaxLength = sqrt(fLength * fLength - Out.vViewTS.z
 * Out.vViewTS.z) / Out.vViewTS.z;

 // Compute the actual reverse parallax displacement vector:
 Out.vParallaxOffsetTS = vParallaxDirection * fParallaxLength;

 // Need to scale the amount of displacement to account for
 // different height ranges in height maps. This is controlled by
 // an artist-editable parameter:
 Out.vParallaxOffsetTS *= fHeightMapRange;

 return Out;

} // End of VS_OUTPUT vs_main(..)

Listing 1. Parallax occlusion mapping algorithm implementation. Vertex shader,
DirectX 9.0c shader model 3.0

106

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

// NOTE: Since for this particular example want to make convenient ways
// to turn features rendering on and off (for example, for turning on /
// off visualization of current level of details, shadows, etc), the
// shader presented uses extra flow control instructions than it would
// in a game engine.

// Uniform shader parameters declarations
bool bVisualizeLOD;
bool bVisualizeMipLevel;
bool bDisplayShadows;

// This parameter contains the dimensions of the height map / normal map
// pair and is used for determination of current mip level value:
float2 vTextureDims;

int nLODThreshold;
float fShadowSoftening;
float fSpecularExponent;
float fDiffuseBrightness;
float fHeightMapRange;

float4 cAmbientColor;
float4 cDiffuseColor;
float4 cSpecularColor;

int nMinSamples;
int nMaxSamples;

sampler tBaseMap;
sampler tNormalMap;

// Note: centroid sampling should be specified if multisampling is
// enabled
struct PS_INPUT
{
 float2 texCoord : TEXCOORD0;

 // Light vector in tangent space, denormalized
 float3 vLightTS : TEXCOORD1_centroid;

 // View vector in tangent space, denormalized
 float3 vViewTS : TEXCOORD2_centroid;

 // Parallax offset vector in tangent space
 float2 vParallaxOffsetTS : TEXCOORD3_centroid;

 // Normal vector in world space
 float3 vNormalWS : TEXCOORD4_centroid;

 // View vector in world space
 float3 vViewWS : TEXCOORD5_centroid;
};

107

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

//..
// Function: ComputeIllumination
//
// Description: Computes phong illumination for the given pixel using
// its attribute textures and a light vector.
//..
float4 ComputeIllumination(float2 texCoord, float3 vLightTS,
 float3 vViewTS, float fOcclusionShadow)
{
 // Sample the normal from the normal map for the given texture sample:
 float3 vNormalTS = normalize(tex2D(tNormalMap, texCoord) * 2 - 1);

 // Sample base map:
 float4 cBaseColor = tex2D(tBaseMap, texCoord);

 // Compute diffuse color component:
 float4 cDiffuse = saturate(dot(vNormalTS, vLightTS)) *
 cDiffuseColor;

 // Compute specular component:
 float3 vReflectionTS = normalize(2 * dot(vViewTS, vNormalTS) *
 vNormalTS - vViewTS);

 float fRdotL = dot(vReflectionTS, vLightTS);

 float4 cSpecular = saturate(pow(fRdotL, fSpecularExponent)) *
 cSpecularColor;

 float4 cFinalColor = ((cAmbientColor + cDiffuse) * cBaseColor +
 cSpecular) * fOcclusionShadow;

 return cFinalColor;
}

//...
// Function: ps_main
//
// Description: Computes pixel illumination result due to applying
// parallax occlusion mapping to simulation of view-
// dependent surface displacement for a given height map
//...
float4 ps_main(PS_INPUT i) : COLOR0
{
 // Normalize the interpolated vectors:
 float3 vViewTS = normalize(i.vViewTS);
 float3 vViewWS = normalize(i.vViewWS);
 float3 vLightTS = normalize(i.vLightTS);
 float3 vNormalWS = normalize(i.vNormalWS);

 float4 cResultColor = float4(0, 0, 0, 1);

 // Adaptive in-shader level-of-detail system implementation.
 // Compute the current mip level explicitly in the pixel shader
 // and use this information to transition between different levels
 // of detail from the full effect to simple bump mapping.

 // Compute the current gradients:

108

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

 float2 fTexCoordsPerSize = i.texCoord * vTextureDims;

 // Compute all 4 derivatives in x and y in a single instruction
 // to optimize:
 float2 dxSize, dySize;
 float2 dx, dy;

 float4(dxSize, dx) = ddx(float4(fTexCoordsPerSize, i.texCoord));
 float4(dySize, dy) = ddy(float4(fTexCoordsPerSize, i.texCoord));

 float fMipLevel;
 float fMipLevelInt; // mip level integer portion
 float fMipLevelFrac; // mip level fractional amount for
 // blending in between levels

 float fMinTexCoordDelta;
 float2 dTexCoords;

 // Find min of change in u and v across quad: compute du and dv
 // magnitude across quad
 dTexCoords = dxSize * dxSize + dySize * dySize;

 // Standard mipmapping uses max here
 fMinTexCoordDelta = max(dTexCoords.x, dTexCoords.y);

 // Compute the current mip level (* 0.5 is effectively
 // computing a square root before)
 fMipLevel = max(0.5 * log2(fMinTexCoordDelta), 0);

 // Start the current sample located at the input texture
 // coordinate, which would correspond to computing a bump
 // mapping result:
 float2 texSample = i.texCoord;

 // Multiplier for visualizing the level of detail
 float4 cLODColoring = float4(1, 1, 3, 1);

 float fOcclusionShadow = 1.0;

 if (fMipLevel <= (float) nLODThreshold)
 {
 //===//
 // Parallax occlusion mapping offset computation //
 //===//

 // Utilize dynamic flow control to change the number of samples
 // per ray depending on the viewing angle for the surface.
 // Oblique angles require smaller step sizes to achieve
 // more accurate precision for computing displacement.
 // We express the sampling rate as a linear function of the
 // angle between the geometric normal and the view direction ray:
 int nNumSteps = (int) lerp(nMaxSamples, nMinSamples,
 dot(vViewWS, vNormalWS));

 // Intersect the view ray with the height field profile along
 // the direction of the parallax offset ray (computed in the
 // vertex shader. Note that the code is designed specifically

109

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

 // to take advantage of the dynamic flow control constructs in HLSL
 // and is very sensitive to the specific language syntax.
 // When converting to other examples, if still want to use dynamic
 // flow control in the resulting assembly shader, care must be
 // applied.
 // In the below steps we approximate the height field profile
 // as piecewise linear curve. We find the pair of endpoints
 // between which the intersection between the height field
 // profile and the view ray is found and then compute line segment
 // intersection for the view ray and the line segment formed by
 // the two endpoints. This intersection is the displacement
 // offset from the original texture coordinate.

 float fCurrHeight = 0.0;
 float fStepSize = 1.0 / (float) nNumSteps;
 float fPrevHeight = 1.0;
 float fNextHeight = 0.0;

 int nStepIndex = 0;
 bool bCondition = true;

 float2 vTexOffsetPerStep = fStepSize * i.vParallaxOffsetTS;
 float2 vTexCurrentOffset = i.texCoord;
 float fCurrentBound = 1.0;
 float fParallaxAmount = 0.0;

 float2 pt1 = 0;
 float2 pt2 = 0;

 float2 texOffset2 = 0;

 while (nStepIndex < nNumSteps)
 {
 vTexCurrentOffset -= vTexOffsetPerStep;

 // Sample height map which in this case is stored in the
 // alpha channel of the normal map:
 fCurrHeight = tex2Dgrad(tNormalMap, vTexCurrentOffset,
 dx, dy).a;

 fCurrentBound -= fStepSize;

 if (fCurrHeight > fCurrentBound)
 {
 pt1 = float2(fCurrentBound, fCurrHeight);
 pt2 = float2(fCurrentBound + fStepSize, fPrevHeight);

 texOffset2 = vTexCurrentOffset - vTexOffsetPerStep;

 nStepIndex = nNumSteps + 1;
 }
 else
 {
 nStepIndex++;
 fPrevHeight = fCurrHeight;
 }
 } // End of while (nStepIndex < nNumSteps)

110

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

 float fDelta2 = pt2.x - pt2.y;
 float fDelta1 = pt1.x - pt1.y;
 fParallaxAmount = (pt1.x * fDelta2 - pt2.x * fDelta1) /
 (fDelta2 - fDelta1);
 float2 vParallaxOffset = i.vParallaxOffsetTS *
 (1 - fParallaxAmount);

 // The computed texture offset for the displaced point
 // on the pseudo-extruded surface:
 float2 texSampleBase = i.texCoord - vParallaxOffset;
 texSample = texSampleBase;

 // Lerp to bump mapping only if we are in between,
 // transition section:
 cLODColoring = float4(1, 1, 1, 1);

 if (fMipLevel > (float)(nLODThreshold - 1))
 {
 // Lerp based on the fractional part:
 fMipLevelFrac = modf(fMipLevel, fMipLevelInt);

 if (bVisualizeLOD)
 {
 // For visualizing: lerping from regular POM-
 // resulted color through blue color for transition layer:
 cLODColoring = float4(1, 1, max(1, 2 * fMipLevelFrac), 1);
 }

 // Lerp the texture coordinate from parallax occlusion
 // mapped coordinate to bump mapping smoothly based on
 // the current mip level:
 texSample = lerp(texSampleBase, i.texCoord, fMipLevelFrac);

 } // End of if (fMipLevel > fThreshold - 1)

 if (bDisplayShadows == true)
 {
 float2 vLightRayTS = vLightTS.xy * fHeightMapRange;

 // Compute the soft blurry shadows taking into account
 // self-occlusion for features of the height field:

 float sh0 = tex2Dgrad(tNormalMap, texSampleBase, dx, dy).a;
 float shA = (tex2Dgrad(tNormalMap, texSampleBase + vLightRayTS
 * 0.88, dx, dy).a - sh0 - 0.88) * 1 * fShadowSoftening;
 float sh9 = (tex2Dgrad(tNormalMap, texSampleBase + vLightRayTS *
 0.77, dx, dy).a - sh0 - 0.77) * 2 * fShadowSoftening;
 float sh8 = (tex2Dgrad(tNormalMap, texSampleBase + vLightRayTS *
 0.66, dx, dy).a - sh0 - 0.66) * 4 * fShadowSoftening;
 float sh7 = (tex2Dgrad(tNormalMap, texSampleBase + vLightRayTS *
 0.55, dx, dy).a - sh0 - 0.55) * 6 * fShadowSoftening;
 float sh6 = (tex2Dgrad(tNormalMap, texSampleBase + vLightRayTS *
 0.44, dx, dy).a - sh0 - 0.44) * 8 * fShadowSoftening;
 float sh5 = (tex2Dgrad(tNormalMap, texSampleBase + vLightRayTS *
 0.33, dx, dy).a - sh0 - 0.33) * 10 * fShadowSoftening;
 float sh4 = (tex2Dgrad(tNormalMap, texSampleBase + vLightRayTS *

111

Chapter 5: Practical Parallax Occlusion Mapping with Approximate Soft Shadows
 for Detailed Surface Rendering

 0.22, dx, dy).a - sh0 - 0.22) * 12 * fShadowSoftening;

 // Compute the actual shadow strength:
 fOcclusionShadow = 1 - max(max(max(max(max(max(shA, sh9),
 sh8), sh7), sh6), sh5), sh4);

 // The previous computation overbrightens the image, let's adjust
 // for that:
 fOcclusionShadow = fOcclusionShadow * 0.6 + 0.4;

 } // End of if (bAddShadows)

 } // End of if (fMipLevel <= (float) nLODThreshold)

 // Compute resulting color for the pixel:
 cResultColor = ComputeIllumination(texSample, vLightTS,
 vViewTS, fOcclusionShadow);

 if (bVisualizeLOD)
 {
 cResultColor *= cLODColoring;
 }

 // Visualize currently computed mip level, tinting the color blue
 // if we are in the region outside of the threshold level:
 if (bVisualizeMipLevel)
 {
 cResultColor = fMipLevel.xxxx;
 }

 // If using HDR rendering, make sure to tonemap the result color
 // prior to outputting it. But since this example isn't doing that,
 // we just output the computed result color here:
 return cResultColor;

} // End of float4 ps_main(..)

Listing 2. Parallax occlusion mapping algorithm implementation. Pixel shader, DirectX
9.0c shader model 3.0

112

	5.1 Abstract
	5.2 Introduction
	5.3 Why reinvent the wheel? Common artifacts and related wor
	5.4 Parallax Occlusion Mapping
	�
	5.4.1 Height Field – Ray Intersection
	5.4.2 Soft Shadows
	5.4.3 Adaptive Level-of-Detail Control System
	5.5 Results
	5.6 Considerations for practical use of parallax occlusion m
	5.6.1 Algorithm limitations and relevant considerations
	5.6.1 Art Content Authoring Suggestions for Parallax Occlusi
	5.7 Conclusions
	5.7 Acknowledgements
	5.8 Bibliography
	Appendix. DirectX shader code implementation of Parallax Occ

