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6.1 Motivation 
 
Atmospheric effects, especially for outdoor scenes in games and other interactive 
applications, have always been subject to coarse approximations due to the 
computational expense inherent to their mathematical complexity. However, the ever 
increasing power of GPUs allows more sophisticated models to be implemented and 
rendered in real-time. This chapter will demonstrate several ways how developers 
can improve the level of realism and sense of immersion in their games and 
applications. The work presented here heavily takes advantage of research done by 
the graphics community in recent years and combines it with novel ideas developed 
within Crytek to realize implementations that efficiently map onto graphics hardware. 
In that context, integration issues into game production engines will be part of the 
discussion. 

 

6.2 Scene depth based rendering 
 
Scene depth based rendering can be described as a hybrid rendering approach 
borrowing the main idea from deferred shading [Hargreaves04], namely providing 
access to the depth of each pixel in the scene to be able to recover its original 
position in world space. This does not imply that deferred shading is a requirement. 
Rendering in CryEngine2 for example still works in the traditional sense (i.e. forward 
shading) yet applies a lot of scene depth based rendering approaches in various 
scenarios as will be demonstrated in this chapter. What is done instead is decoupling 
of the actual shading of (opaque) pixels from later application of atmospheric effects, 
post processing, etc. This allows complex models to be applied while keeping the 
shading cost relatively moderate as features are implemented in separate shaders. 
This limits the chances of running into of current hardware shader limits and allows 
broader use of these effects as they can often be mapped to older hardware as well. 
 
One reoccurring problem in the implementation of scene depth based rendering 
effects is handling of alpha transparent objects. Just like in deferred shading, you run 
into the problem of not actually knowing what a pixel’s color / depth really is since 
generally only one color / depth pair is stored but pixel overdraw is usually greater 
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than one and potentially unbounded (pathologic case but troublesome for hardware 
designers). Essentially it comes down to the problem of order independent 
transparency (OIT) for which to date no solution exists on consumer hardware. 
Possible approaches like A-Buffers are very memory intensive and not 
programmable. At this point, it is up to the developer to work around the absence of 
OIT depending on the effect to be implemented (see below). 
 
To make per-pixel depth available for rendering purposes, there are several options. 
Ideally, depth is laid out in an early Z-Pass (encouraged by the IHVs in order to 
improve efficiency of early Z-Culling which can tremendously cut down subsequent 
pixel shading cost) filling the Z-Buffer. Since scene depth based rendering 
approaches don’t modify scene depth, the Z-Buffer could be bound as a texture to 
gain access to a pixel’s depth (though this would require a remapping of the Z-Buffer 
value fetched from post perspective space into eye space) or more conveniently it 
could be an input to a pixel shader automatically provided by the GPU. Due to 
limitations in current APIs, GPUs and shading models, this is unfortunately not 
possible for the sake of compatibility but should be a viable, memory saving option in 
the near future. For the time being, it is necessary to explicitly store scene depth in 
an additional texture. In CryEngine2 this depth texture is stored as linear, normalized 
depth (0 at camera, 1 at far clipping plane) which will be important later when 
recovering the pixel’s world space position. The format can be either floating point or 
packed RGBA8. On DirectX9 with no native packing instructions defined in the 
shader model, the use of RGBA8 although precision-wise comparable to floating 
point, is inferior in terms of rendering speed due to the cost of encoding / decoding 
depth. However, it might be an option on OpenGL where vendor specific packing 
instructions are available. An issue arises in conjunction with multisample anti-
aliasing (MSAA). In this case, laying out depth requires rendering to a multi-sampled 
buffer. To be able to bind this as a texture, it needs to be resolved. Currently there’s 
no way to control that down-sampling process. As a result depth values of object 
silhouettes will merge with the background producing incorrect depth values which 
will later be noticeable as seams. 
 
Given the depth of a pixel, recovering its world space position is quite simple. A lot of 
deferred shading implementations transform the pixel’s homogenous coordinates 
from post perspective space back into world space. This takes three instructions 
(three dp4’s or mul / mad assembly instructions) since we don’t care about w (it’s 1 
anyway). However there’s often a simpler way, especially when implementing effects 
via full screen quads. Knowing the camera’s four corner points at the far clipping 
plane in world space, a full screen quad is set up using the distance of each of these 
points from the camera position as input texture coordinates. During rasterization, 
this texture coordinate contains the current direction vector from the camera to the far 
clipping plane. Scaling this vector by the linear, normalized pixel depth and adding 
the camera position yields the pixel’s position in world space. This only takes one 
mad instruction and the direction vector comes in for free thanks to the rasterizer. 
 
A lot of the techniques described in this chapter exploit the availability of scene depth 
at any stage after the actual scene geometry has been rendered to map pixels back 
to their source location in world space for various purposes. 
 

6.3 Sky light rendering 
 
Probably the most fundamental part of rendering outdoor scenes is a believable sky 
that changes over time. Several methods with varying quality and complexity have 

114 



                   Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006 
 

been developed over the years. To accurately render sky light in CryEngine2, the 
model proposed in [Nishita93] was implemented as it enables rendering of great 
looking sunsets and provides several means for artist controllability over the output. 
Unfortunately, it is also one of the most computationally expensive models around. 
[O’Neil05] presents an implementation for the general case (flight simulator) which 
runs entirely on the GPU which required several simplifications and tradeoffs to make 
it work. Using these, it was possible to squeeze Nishita’s model into the limits of 
current hardware but it came at the price of rendering artifacts (color gradients 
occasionally showed “layer-like” discontinuities). 
 
The goal for CryEngine2 was to get the best quality possible at reasonable runtime 
cost by trading in flexibility in camera movement using the following assumption. The 
viewer is always on the ground (zero height) which is fairly reasonable for any type of 
game where it’s not needed to reach into upper atmosphere regions. This means the 
sky only ever needs to update when time changes and the update is completely 
independent of camera movement. The implementation used the acceleration 
structures suggested by the original paper. That is, we assume sun light comes in 
parallel and can hence build a 2D lookup table storing the angle between incoming 
sunlight and the zenith and the optical depth for the height of a given atmosphere 
layer (exponentially distributed according to characteristics of atmosphere). A mixed 
CPU / GPU rendering approach was chosen since solving the scattering integral 
involves executing a loop to compute intermediate scattering results for the 
intersections of the view ray with n atmosphere layers for each point sampled on the 
sky hemisphere. On the CPU, we solve the scattering integral for 128x64 sample 
points on the sky hemisphere using the current time of day, sunlight direction as well 
as Mie and Rayleigh scattering coefficients and store the result in a floating point 
texture. A full update of that texture is distributed over several fames to prevent any 
runtime impact on the engine. One distributed update usually takes 15 to 20 
seconds. On CPU architectures providing a vectorized expression in their instruction 
set (e.g. consoles such as Xbox360 and PS3) the computation cost can be 
significantly reduced. This texture is used each frame by the GPU to render the sky. 
However, since the texture resolution would result in very blocky images, a bit of 
work is offloaded to the pixel shader to improve quality. By computing the phase 
function on the fly per pixel (i.e. not pre-baking it into the low resolution texture) and 
multiplying it to the scattering result for a given sample point on the sky hemisphere 
(a filtered lookup from the texture) it is possible to remove the blocky artifacts 
completely even around the sun where luminance for adjacent pixel varies very 
rapidly. 
 
On GPUs with efficient dynamic branching it might be possible to move the current 
approach to solving the scattering integral completely over to GPU. Thanks to the 2D 
lookup table, the code is already quite compact. Initial test of porting the C++ version 
of the solver over to HLSL showed that, using loops, it would translate to approx. 200 
shader instructions. Currently the loop executes n = 32 times. This number of 
exponentially distributed atmosphere layers was found sufficient to produces precise 
enough integration results to yield a good looking sky even for “stress tests” like 
rendering a sunset. Considering that approx. 32 * 200 = 6400 instructions would 
have to be executed to solve the scattering integral for each sample point on the sky 
hemisphere, it seems necessary to distribute the update over several frames (e.g. 
consecutively rendering part of a subdivided quad into the texture updating individual 
parts). But still the update rate should be significantly shorter than it is right now. 
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6.4 Global volumetric fog 
 
Even though Nishita’s model indisputably produces nice results, it is still way too 
expensive to be applied to everything in a scene (i.e. to compute in and out 
scattering along view ray to the point in world space representing the current pixel in 
order to model aerial perspective). 
 
Still, it was desired to provide an atmosphere model that can apply its effects on 
arbitrary objects with the scene. This section will first propose the solution 
implemented in CryEngine2. How to make it interact with the way sky light is 
computed will be described in the next section. It follows the derivation of an 
inexpensive formula to compute height/distance based fog with exponential falloff. 
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f - fog density distribution function 
b - global density 
c - height falloff 
v - view ray from camera (o) to world space pos of pixel (o+d), t=1 
F - fog density along v 

 
This translates to the following piece of HLSL code (Listing 1). Care must be taken in 
case the view ray looks precisely horizontal into the world (as dz is zero in that case). 
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float ComputeVolumetricFog( in float3 worldPos, in float3 
cameraToWorldPos) 
{ 
  // NOTE:  
  // cVolFogHeightDensityAtViewer = exp( -cHeightFalloff *   
  //                                     vfViewPos.z ); 
  float fogInt = length( cameraToWorldPos ) *  
                 cVolFogHeightDensityAtViewer; 
 
  const float cSlopeThreshold = 0.01; 
  if( abs( cameraToWorldPos.z ) > cSlopeThreshold ) 
  { 
     float t = cHeightFalloff * cameraToWorldPos.z; 
     fogInt *= ( 1.0 - exp( -t ) ) / t; 
  }  
  
  return exp( -cGlobalDensity * fogInt ); 
} 
Listing 1. Computing volumetric fog in a DirectX 9.0c HLSL shader code block 

 
The “if” condition which translates into a cmp instruction after compiling the shader 
code prevents floating point specials from being propagated which would otherwise 
wreak havoc at later stages (tone mapping, post processing, etc). The code 
translates into 18 instructions using the current version of the HLSL compiler and 
shader model 2.0 as the target. 
 
Calling this function returns a value between zero and one which can be used to 
blend in fog. For all opaque scene geometry, this model can be applied after the 
opaque geometry rendering pass by simply drawing a screen size quad setting up 
texture coordinates as described in Section 7.2 and invoking that function per pixel. 
What remains to be seen is how to calculate a fog color that is a good match to blend 
with the sky. This will be topic of the next section. 
 

6.5 Combining sky light and global volumetric fog 
 
 
We create a slight problem by implementing a separate model for sky light and global 
volumetric fog. Now we have two models partially solving the same problem: How to 
render atmospheric fog / haze. The question is whether it is possible for these two 
models be combined to work together. We certainly wish to achieve halos around the 
sun when setting up hazy atmosphere conditions, realize nice color gradients to get a 
feeling of depth in the scene, be able to see aerial perspective (i.e. the color gradient 
of a mountain in the distance which is partiality in fog should automatically correlate 
with the colors of the sky for a given time and atmospheric settings). Nishita’s model 
would allow rendering that but is too expensive to be used in the general case.  The 
global volumetric fog model presented in the previous section is suitable for real-time 
rendering but far more restrictive. 
 
To make the two models cooperate, we need a way to determine a fog color that can 
be used with accompanied volumetric fog value to blend scene geometry nicely into 
the sky. For that purpose, Nishita’s model was enhanced slightly to allow a low cost 
per-pixel computation of a fog color matching the sky’s color at the horizon for a 
given direction. To do this, all samples taken during the sky texture update for 
directions resembling the horizon are additionally averaged and stored for later use in 

117 



Chapter 6: Real-Time Atmospheric Effects in Games 

a pixel shader (using all of the horizon samples to produce a better matching fog 
color seems tempting but it was found that the difference to the average of all horizon 
samples is barely noticeable and doesn’t justify the additional overhead in shading 
computations). When rendering the fog, the same code that calculated the final sky 
color can be used to gain a per-pixel fog color. The phase function result is computed 
as before but instead of accessing the low resolution texture containing the scattering 
results, we use the average of the horizon samples calculated on the CPU. Now 
using the volumetric fog value computed for a given pixel the color stored in the 
frame buffer can be blended against the fog color just determined. This may not be 
physically correct but gives pleasing results at very little computational cost.  
 

6.6 Locally refined fog via volumes 
 
For game design purposes, it is often necessary to locally hide or disguise certain 
areas in the game world and global fog is not really suited for that kind of purpose. 
Instead fog volumes come into play. The implementation goal was to be able to apply 
the same kind of fog model as described in Section 7.4 to a locally refined area. The 
model was slightly enhanced to allow the fog gradient to be arbitrarily oriented. We 
support two types of fog volume primitives, namely ellipsoids and boxes. 

 
As can be seen in the derivation of the formula for global volumetric fog, a start and 
end point within the fog volume are needed to solve the fog integral.  (Note that the 
global fog can be thought of as an infinite volume where the start point represents the 
camera position and end point is equal to the world space position of current pixel.)  
To determine these two points, we actually render the bounding hull geometry of the 
fog volume, i.e. a box whose front faces are rendered with Z-Test enabled as long as 
the camera is outside the fog volume and whose back faces are rendered with Z-Test 
disabled once the camera is inside the volume. This way it is possible to trace a ray 
for each pixel to find out if and where the view ray intersects the fog volume. Ray 
tracing for both primitive types happens in object space for simplicity and efficiency 
(i.e. transforming the view ray into object space and checking against either a unit 
sphere or unit cube and transforming the results back into world space). If no 
intersection occurs, that pixel is discarded via HLSL’s clip instruction. Doing that 
has the additional side effect of simplifying the code for shader models and/or 
hardware not supporting (efficient) branching (i.e. it compiles to less instructions) 
since it avoids the need to consider “if / else” cases for which otherwise all 
branches would have to be executed and a final result picked. If an intersection 
occurs, an additional check using the pixel’s depth value is necessary to determine if 
scene geometry is hit before exiting the fog volume. In that case this point overrides 
the end point. Also, in case we’re inside the volume, we need to ensure that the start 
point is always the camera point. With the start and end point known, these can be 
plugged into the volumetric fog formula earlier to compute a fog value per pixel. 
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Terrain scene at morning, same sky light settings, with increased global density (right) 

  
Same terrain scene at sun set observed from a different position, (left) default settings 
for sky light and global volumetric fog, (right) based on settings for upper left but 
increased global density (notice how the sun's halo shines over parts of the terrain) 

  
Based on settings for upper right but stronger height falloff (left), based on settings for 
upper right but decreased height falloff and increase global density (right) 

 
 

Various sunset shots with different setting for global density, height falloff, Mie- and 
Rayleigh scattering 

Figure 1. Atmospheric scattering effects. 
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Figure 2. GPU ray traced fog volume (ellipsoid), observed from inside (left) and 
outside (right) 
 
Other approaches to implementing fog volumes were also considered. Polygonal fog 
volumes seemed like a good idea at first (depth of all back faces is accumulated and 
subtracted from depth of all front faces to get length traveled through volume along 
pixel direction). They also don’t suffer from clipping artifacts at the near clip plane 
since a depth of zero doesn’t have any impact while accumulating front / back face 
depth. Their advantage over the fog volume primitives described above is that they 
can be arbitrarily complex and convex. In order to do efficient ray tracing one is 
currently still stuck with rather simplistic primitives like ellipsoids and boxes. 
However, polygonal fog volumes also exhibit a few disadvantages which have to be 
taken into account and outweigh their advantages (at least for the purpose of 
CryEngine2). First they really allow depth based fog only. Currently they need to be 
rendered in two passes to accumulate back face depth and subtract front face depth. 
Moreover to do so they need additional texture storage and floating point blending 
support which is kind of prohibitive when fog volume support is required for older 
hardware as well. Implementations of polygonal fog volumes exist that use clever bit-
twiddling to make them work with standard RGBA8 textures but then it is necessary 
volumes do not exceed a certain depth complexity or size to prevent overflow which 
creates another limitation and kind of defeats their usefulness in the first place. 
 

 
Figure 3. GPU ray traced fog volume (box), observed from inside (left) and outside 
(right) 
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6.7 Fogging alpha transparent objects 
 
As mentioned in the introduction, scene depth based rendering approaches often 
cause problems with alpha transparent objects, in this case the global/local 
volumetric fog model. Since currently there’s no feasible hardware solution available 
to tackle this problem, it is up to the developer to find suitable workarounds, as will be 
shown in this section. 
 

6.7.1 Global fog 
 

Global volumetric fog for alpha transparent objects is computed per vertex. Care 
needs to be taken to properly blend the fogged transparent object into the frame 
buffer already containing the fogged opaque scene. It proves to be very useful that 
the entire fog computation (fog density as well as fog color) is entirely based on math 
instructions and doesn’t require lookup tables of any sort. The use of textures would 
be prohibitive as lower shader models don’t allow texture lookups in the vertex 
shader but need to be supported for compatibility reasons. 
 

6.7.2 Fog volumes 
 
Applying fog volumes on alpha transparent objects is more complicated. Currently, 
the contribution of fog volumes on alpha transparent objects is computed per object. 
This appears to be the worst approximation of all but it was found that if designers 
know about the constraints implied they can work around it. Usually they need to 
make sure alpha transparent objects don’t become too big. Also, the gradient of fog 
volumes should be rather soft as sharp gradients make the aliasing problem more 
obvious (i.e. one sample per object). The ray tracing code done per pixel on the GPU 
can be easily translated back to C++ and invoked for each alpha transparent 
objected pushed into the pipeline. A hierarchical structure storing the fog volumes is 
beneficial to reduce the number of ray/volume traces as much as possible. To 
compute the overall contribution of all fog volumes (partially) in front of an alpha 
transparent object the ray tracing results are weighted to a single contribution value 
in back to front order (i.e. farthest fog volumes gets weighted in first). Another 
approach that was investigated involved building up a volume texture containing fog 
volume contributions for sample points around or in front of the camera (i.e. world 
space or camera space respectively). Both a uniform and non-uniform distribution of 
sampling points was tried but aliasing was just too bad to deem this approach useful. 
 
One potential extension to the computation of the overall contribution of fog volumes 
on alpha transparent objects is to compute values for all corners of an object’s 
bounding box and in the vertex shader  lerp between them based on the vertex’ 
relative position.  
 

6.8 Soft particles 
 

Particles are commonly used to render various natural phenomena like fire, smoke, 
clouds, etc. Unfortunately, at least on consumer hardware available today (even with 
MSAA enabled), they usually suffer from clipping artifacts at their intersection with 
opaque scene geometry. By having the depth of all opaque objects in the world laid 
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out and accessible in the pixel shader, it is possible to tweak a particle’s alpha value 
per pixel to remove jaggy artifacts as shown in the figure below.  
 

 

Particles drawn as hard billboards Soft particles 
Figure 4. Billboard and soft particle rendering comparison 

 
Each particle is treated as a screen aligned volume with a certain size. For each 
pixel, the particle shader determines how much the view ray travels through the 
particle volume until it hits opaque scene geometry. Dividing that value by the particle 
volume size and clamping the result to [0, 1] yields a relative percentage of how 
much opaque scene geometry penetrates the particle volume for the given pixel. It 
can be multiplied with the original alpha value computed for the current particle pixel 
to softly fade out the particle wherever it’s getting close to touching opaque 
geometry. 
 

6.9 Other effects benefiting from per pixel depth access 

 
6.9.1 Clouds 
 
The cloud rendering subsystem in CryEngine2 is based on [Wang03]. Shading is 
gradient-based and scene depth used to implement soft clipping, especially with 
terrain (e.g. rain clouds around mountains) and both the near and far clipping plane. 
It borrows the main idea from the soft particle implementation. Additionally back 
lighting with respect to the sun was added to achieve the effect of glowing edges 
when looking at clouds partially covering the sun.   
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Figure 5. Backlighting of clouds, showing different values for backlighting threshold 
(with respect to cloud alpha), and backlighting softness 

 
Cloud shadows are cast in single full screen pass using the scene depth to recover 
world space position to be able to transform into shadow map space. 
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Island scene without cloud shadows 

 

 
Same scene with cloud shadows. Notice how it breaks up the regularity of shading 

giving a more natural look 
 

 
Same scene with cloud shadows viewed from a different position 

Figure 6. Cloud shadow rendering 
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6.9.2 Volumetric lightning 
 
Modeling volumetric lightning is similar to the global volumetric fog model postulated 
earlier. Only this time it is light emitted from a point falling off radially. The attenuation 
function needs to be chosen carefully in order to be able to integrate it in a closed 
form. 
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f - light attenuation function 
i - source light intensity 
a - global attenuation control value 
v - view ray from camera (o) to world space pos of pixel (o+d), t=1 
F - amount of light gathered along v 
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This lightning model can be applied just like global volumetric fog by rendering a full 
screen pass. By tweaking the controlling variables a and i volumetric lightning 
flashes can be modeled. F represents the amount of light emitted from the lightning 
source that gets scattered into the view ray. Additionally, when rendering scene 
geometry the lightning source needs to be taken into account when computing 
shading results.  
 

(a) Scene at night (b) Same scene rendering as the lightning 
strikes 

 
Figure 7. Volumetric lightning rendering. 

 

6.10 Conclusion 
 
 
GPUs nowadays offer a lot of possibilities to realize complex visual effects in real-
time. This chapter has shown a few examples of atmospheric effects implemented 
within CryEngine2, how scene depth based rendering was utilized in them, what 
integration issues had to be faced and how they got solved.  
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Internal replica of Na Pali Coast on Hawaii (Kauai)  - real world photo(left), CryEngine2 shot 
(right) 

Internal replica of Kualoa Ranch on Hawaii - real world photo(left), CryEngine2 shot (right) 

Figure 8. In-game rendering comparisons with the real-world photographs.  
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