
Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

Chapter 8

Ambient Aperture Lighting

Chris Oat12 and Pedro Sander13

ATI Research

Figure 1: A terrain is rendered in real-time and shaded using the Ambient Aperture
Lighting technique described in this chapter.

8.1 Abstract

A new real-time shading model is presented that uses spherical cap intersections to
approximate a surface’s incident lighting from dynamic area light sources. This method
uses precomputed visibility information for static meshes to compute illumination, with
approximate shadows, from dynamic area light sources at run-time. Because this
technique relies on precomputed visibility data, the mesh is assumed to be static at
render-time (i.e. it is assumed that the precomputed visibility data remains valid at run-
time). The ambient aperture shading model was developed with real-time terrain
rendering in mind (see Figure 1 for an example) but it may be used for other applications
where fast, approximate lighting from dynamic area light sources is desired.

12 coat@ati.com
13 psander@ati.com

143

mailto:coat@ati.com
mailto:psander@ati.com

Chapter 8: Ambient Aperture Lighting

8.2 Introduction

Shadow mapping large terrains is frequently impractical for real-time applications
because it requires transforming and rasterizing the terrain data multiple times per
frame. Additionally, shadow maps are ill suited for terrain rendering as they don’t allow
for area light sources such as the sun and the sky. Finally, shadow maps exhibit
aliasing artifacts particularly when used with large scenes such as terrains. Horizon
mapping techniques for rendering self-shadowing terrains in real-time only allow point or
directional light sources [Max88]. Precomputed Radiance Transfer allows for area light
sources but assumes low-frequency lighting environments [Sloan02].

Figure 2: [Left] A spherical cap is used to approximate a contiguous region of visibility
(an aperture) on a point’s upper hemisphere. [Right] The visible region acts as an
aperture which restricts light such that it only reaches the point from visible
(unoccluded) directions.

Our approach allows for object self-shadowing from dynamic area light sources with the
caveat that the object is not deformable (only rigid transformations are supported). Our
technique stores a small amount of precomputed visibility data for each point on the
mesh. The visibility data approximates contiguous regions of visibility over a point’s
upper hemisphere using a spherical cap (see Figure 2). This spherical cap acts as a
circular aperture for incident lighting. The aperture is oriented on the hemisphere in the
direction of average visibility and prevents light originating from occluded directions from
reaching the point being rendered. At render time, area light sources are projected onto
the point’s upper hemisphere and are also approximated as spherical caps. Direct
lighting from the area light source is computed by determining the area of intersection
between the visible aperture’s spherical cap and the projected area light’s spherical cap.
The overall diffuse response at the point is computed by combining the area of
intersection with a diffuse falloff term described later.

The algorithm comprises of two stages. In a preprocessing stage, a contiguous circular
region of visibility is approximated for each point on the surface of the model (Section
8.3). The data can be computed per texel and stored in a texture map, or per vertex and
incorporated into the model’s vertex buffer. Then, at rendering time, a pixel shader
computes the amount of light that enters this region of visibility, and uses this result to
shade the model (Section 8.4).

144

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

8.3 Preprocessing

Given a point – represented by a vertex on a mesh or by a texel in texture space – we
wish to find its approximate visible region. The visible area at a point x is found by
integrating a visibility function over the hemisphere. The visibility function evaluates to 1
for rays that don’t intersect the scene and 0 otherwise. The percentage of visibility is
then scaled by the area of a unit hemisphere and results in the solid angle of the visible
region:

This visible area is used as our aperture area. We do not store the area directly but
instead store the arc length of a spherical cap of equivalent area (since this is what we
need at run-time):

The spherical cap’s radius is a single floating point number that must be stored with the
mesh (either per-vertex or per-texel).

The visible region’s orientation on the hemisphere is determined by finding the average
direction for which the visibility function evaluates to 1 (a.k.a. bent normal):

This gives us an average direction of visibility and serves as our aperture’s orientation
on the surrounding hemisphere. This direction is stored as three floating point values (a
three component vector) either per-vertex or per-texel.

8.4 Rendering

First we describe our rendering algorithm which, for each pixel, seeks to compute the
intersection between the precomputed circular visibility region and the circular light
source (projected area light). Then, we describe an optimization which significantly
reduces computation time while achieving nearly identical qualitative results.

145

Chapter 8: Ambient Aperture Lighting

8.4.1 Intersecting Spherical caps

At rendering time, the spherical area light sources are projected onto the hemisphere
and the radius of the light’s enclosing spherical cap is computed. The amount of light
that reaches a point is determined by computing the area of intersection between the
precomputed spherical cap representing the aperture of visibility and the spherical light
source as shown in Figure 3.

Figure 3: The intersection area of two spherical caps is a function of the arc length of
their radii (r0, r1) and arc length of the distance (d) between their centroids.

The area of intersection for two spherical caps is computed as follows:

The first case, when min(r0,r1) <= max(r0,r1)-d occurs, the caps are fully intersected.
This means that one cap is entirely inside of the other cap (or both caps are the same
size and are perfectly aligned) and so we know the intersection area must be equal to
the area of the smaller of the two caps. The next case occurs when the caps are far
enough away from each other that we know that no intersection can possible occur
(r0+r1 <= d), in this case the intersection area must be zero. Finally, if neither of the
previous cases apply, there must be some partial intersection occurring so we must
solve for the intersection area using our IntersectArea function which solves the
following:

146

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

which is a simplified form of the result from [Tovchigrechko01]. Once the area of
intersection is found, the net diffuse response is approximated by scaling the area of
intersection by a Lambertian coefficient (cosine of the angle between the intersection
centroid and the geometric surface normal, explained in section 8.4.3).

8.4.2 Optimization

The spherical cap intersection function (IntersectArea) may be too expensive to
solve directly for many mid-range GPUs. Instead of solving this expensive function
directly it may be desirable to use a less expensive approximation. Because the
intersection function exhibits a smooth falloff with respect to increasing cap distance
(see Figure 4) a smoothstep function is an appropriate approximation:

The smoothstep function here returns 1.0 when a full intersection occurs and 0.0
when no intersection occurs. The result of the smoothstep is then scaled by the area
of the smaller of the two spherical caps so that the end result is a smooth transition
between full intersection and no intersection. Empirically, we did not notice any
significant qualitative difference between using the smoothstep approximation and
the actual intersection function. Figures 5 and 6 compare the exact intersection function
and its approximation for both small and large circular light source radii. Note that the
differences, which can only occur in the penumbra region, are imperceptible.

Figure 4: Spherical cap intersection as a function of distance between spherical cap
centers. Case 1: One cap entirely overlaps the over, full intersection occurs. Case 2:
The full intersection function is evaluated to find the area of intersection between
partially overlapping spherical caps. Case 3: The caps are too far apart for any
intersection to occur, their intersection area is zero.

147

Chapter 8: Ambient Aperture Lighting

(a) Exact result

(b) Approximate results

(c) Penumbra region color-coded in white

Figure 5: Rendering results using a light source with a small radius.

148

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

(a) Exact result

(b) Approximate results

(c) Penumbra region color-coded in white

Figure 6: Rendering results using a light source with a large radius.

149

Chapter 8: Ambient Aperture Lighting

// Approximate the area of intersection of two spherical caps
// fRadius0 : First cap’s radius (arc length in radians)
// fRadius1 : Second caps’ radius (arc length in radians)
// fDist : Distance between caps (radians between centers of caps)
float SphericalCapIntersectionArea(float fRadius0, float fRadius1, float fDist)
{
 float fArea;

 if (fDist <= max(fRadius0, fRadius1) - min(fRadius0, fRadius1))
 {
 // One cap in completely inside the other
 fArea = 6.283185308 - 6.283185308 * cos(min(fRadius0,fRadius1));
 }
 else if (fDist >= fRadius0 + fRadius1)
 {
 // No intersection exists
 fArea = 0;
 }
 else
 {
 // Partial intersection exists, use smoothstep approximation
 float fDiff = abs(fRadius0 - fRadius1);
 fArea=smoothstep(0.0,
 1.0,
 1.0-saturate((fDist-fDiff)/(fRadius0+fRadius1-fDiff)));
 fArea *= 6.283185308 - 6.283185308 * cos(min(fRadius0,fRadius1));
 }

 return fArea;
}

Listing 1: An HSLS function that computes the approximate area of intersection of two
spherical caps using our smoothstep approximation for partially overlapping spherical
caps.

8.4.3 Our Friend Lambert

Knowing the area of intersection between the aperture’s spherical cap and the light
source’s spherical cap isn’t enough to compute lighting at the point, it really only tells us
how much unoccluded light arrived at the point we’re rendering. A given area of
intersection will result in more or less diffuse reflection depending on its orientation
relative to the point’s surface normal. In other words, we must take Lambert’s Cosine
Law into account. The correct way to handle this would be to convolve the intersection
area with a cosine kernel, but this would require solving an integral and is too expensive
(if we wanted to solve integrals, we wouldn’t be mucking about with spherical caps in the
first place!). Instead, we account for the Lambertian falloff by first finding a vector from
the point we’re shading to the center of the area of intersection (i.e. the intersection
region’s centroid). A vector to the intersection region’s centroid is estimated by
averaging the aperture’s orientation vector with the light’s vector. We then compute the
dot product between this vector and the point’s geometric normal. This dot product is
used to scale the incoming lighting and it results in a Lambertian falloff as the area of
intersection approaches the horizon. For this approximation to be correct, we must

150

Advanced Real-Time Rendering in 3D Graphics and Games Course – SIGGRAPH 2006

assume that the area above the intersection region’s centroid is about the same as the
area below the intersection region’s centroid (see figure 7).

Figure 7: [Left] The aperture’s spherical cap is intersected with a light source’s
spherical cap. [Right] A rectangular plot of the two spherical caps along with the
Lambertian falloff function (i.e. the cos(theta) term). Our approximation assumes that
the intersection area above the intersection region’s centroid (red) is the same as the
intersection area below the region’s centroid.

This gives us a nice approximation of direct, diffuse lighting on our mesh but it doesn’t
handle indirect lighting at all and thus we require some additional terms to account for
ambient lighting.

8.4.4 Ambient Light

What if light occupies only a portion of our aperture’s area? Or none of the aperture’s
area? For outdoor lighting scenarios we should still get some indirect light scattering
into our aperture and this needs to be accounted for in our shading model. The indirect
sky light can be handled by filling the empty portion of our aperture with ambient light
from the sky. Once the area of the light/aperture intersection is found, we can subtract
this area from the aperture’s total area to figure out how much of the aperture is
unoccupied by the sun. This empty space can then be filled with indirect, ambient light.
For outdoor rendering, we can use the average sky color for our ambient light. The
average sky color could be found by sampling the lowest MIP level of a sky dome, for
example, or it could just be derived based on time of day:

• Sky blue during the day
• Red or pink at sun set
• Black or deep blue at night

This works much nicer than the standard constant ambient term since it only applies to
areas that aren’t being lit directly and aren’t totally occluded from the outside world. This
method’s advantage is that it doesn’t destroy scene contrast by adding ambient light in
areas that really should be dark because they’re mostly occluded from the outside world.

151

Chapter 8: Ambient Aperture Lighting

8.5 Limitations

Ambient aperture lighting makes a lot of simplifying assumptions and approximations in
order to reduce lighting computations when rendering with dynamic area light sources.
There are certain cases where the assumptions break down and the shading model
produces artifacts such as incorrect shadowing. One such assumption is that the visible
region for any point on a mesh is both contiguous and circular. This is generally true for
things like terrains where a point’s visible region is more-or-less the horizon but it fails to
handle the case of, for example, a sphere over a plane (see Figure 8).

Figure 8: Which way should the visibility aperture point? The visible region here is a
band around the horizon which can’t be closely approximated by a spherical cap.

8.6 Conclusion

A real-time shading model that allows for dynamic area light sources was presented.
This technique is well suited for outdoor environments lit by dynamic spherical area light
sources (such as the sun) and is particularly useful for applications where fast terrain
rendering is needed. Ambient aperture lighting makes several simplifying assumptions
and mathematical approximations to reduce the computational complexity and storage
costs associated with other real-time techniques that allow for dynamic area light
sources.

8.7 Bibliography

MAX, N. L. Horizon Mapping: Shadows for Bump-mapped Surfaces. The Visual

Computer 4, 2 (July 1988), 109-117.

SLOAN, P.-P., KAUTZ, J., SNYDER, J., Precomputed Radiance Transfer for Real-Time

Rendering in Dynamic, Low-Frequency Lighting Environments, SIGGRAPH 2002.

TOVCHIGRECHKO, A. AND VAKSER, I.A. 2001. How common is the funnel-like energy

landscape in protein-protein interactions? Protein Sci. 10:1572-1583

152

	Chapter 8
	Ambient Aperture Lighting
	This works much nicer than the standard constant ambient ter

