
 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Chapter 9

Fast Approximations for Global
Illumination on Dynamic Scenes

Alex Evans14

Bluespoon

9.1 Abstract

An innovative lighting algorithm is presented that allows scenes to be displayed with
approximate global illumination including ambient occlusion and sky-light effects at real-
time rates. The method is scalable for high polygonal scenes and requires a small
amount of pre-computation. The presented technique can be successfully applied to
dynamic and animated sequences, and displays a striking aesthetic style by reducing
traditional constraints of physical correctness and a standard lighting model.

9.2 Introduction

The introduction of pixel and fragment level programmable commodity GPU hardware in
2002 led to a significant shift in the way in which real-time graphics algorithms were
researched and implemented. No longer was it a case of exploiting a few simple fixed
function operations to achieve the desired rendered image – instead programmers could
explore a wealth of algorithms, along with numerous variations and tweaks.

One specific class of algorithms of particular interest in the games industry, are those
real-time algorithms which take as their target an art director’s ‘vision’, rather than a
particular subset of the physics of light in the real world.

These algorithms opened up the ‘field of play’ for graphic engine programmers, and
greatly increased the opportunity for each engine to differentiate itself visually in a
crowded and (in the case of games), fiercely competitive market. [Evans04]

Many problems in computer graphics are not yet practical to compute in real-time on
commodity hardware, at least in the general case. Instead, techniques that can balance

14 alex@bluespoon.com

153

mailto:alex@bluespoon.com

Chapter 9: Fast Approximations for Global Illumination on Dynamic Scenes

the computational load between run-time and pre-processing costs allow different trade-
offs that are applicable in different rendering systems (for example, pre-computed
radiance transfer (PRT) techniques, which allow complex light transport to be computed
in a static scene, then cached in a variety of ways which allow novel views and/or re-
lighting of a scene to be rendered interactively).

In these course notes, we will describe one such approximation algorithm. There are
many points at which decisions were made between a number of different, potentially
useful algorithmic options. It is this process of iteration and choice, made possible by
GPU programmability, more than the particular end result, that is the emphasis of the
following discussion.

9.3 Algorithm outline

The goal of the algorithm is to allow real-time rendering of dynamic scenes from a
movable viewpoint, lit under some aesthetically pleasing approximation to ‘sky lighting’.
An example of a sky-lit scene is shown in Figure 1. The key requirements set by our
fictional art director are:

- Dark ‘contact’ shadows where objects come into contact with each other
- Darker regions inside the creases and valleys of complex organic shapes – often

called ‘ambient occlusion’.
- Ability to handle multiple objects each of which can move both rigidly and

preferably, freely deform.

Figure 1. A detailed head model rendered using Autodesk’s 3D Studio Max default
renderer with a single skylight. (Model by Sebastian Schoellhammer, www.sebster.org)

154

http://www.sebster.org/

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

These kinds of effects are a key
visual indicator in giving the
impression of physical objects
are in contact with each other,
and have been widely
investigated, dating back to the
earliest days of graphics
research. Path tracing [Kajiya86]
gives a simple but very slow way
of understanding and evaluating
sky lighting: at each point P to be
rendered, the fraction of the sky
dome visible at that point is
estimated by shooting a large
number of rays towards the sky
(considered to be an evenly light
emitting hemisphere centered at
the origin of the scene, of infinite
radius). These rays bounce off
any surfaces that they come
across, until they are eventually
considered to be absorbed or
reach the sky dome itself. (Figure
2)

Figure 2. Path tracing a point P – by tracing rays from
P towards a large number of points on the distant sky
hemisphere, and measuring the fraction which make it to
the sky, we can arrive at an estimate of the surface
radiance of the point P as a result of the sky lighting. In
the case illustrated, rays R3 and R4 are blocked by object
O.

By summing the results of a suitably large number of random rays, this Monte Carlo
approach to solving the diffuse part of Kajiya’s rendering equation eventually converges
to an estimate of the surface radiance of the point P – and thus, when applied to all
points visible to the eye, a nice-looking sky-lit scene. Ignoring ray bounces, this process
amounts to computing an approximation to a simple integral giving the visibility of the
sky in the hemisphere above P:

IP = V (ω)B(v,ω)dω
ΩP

∫

where IP is the surface radiance of point P, ΩP is the hemisphere above the surface at P,
B(v, ω) is the BRDF of the surface being lit (including the diffuse cosine term,
max(N·L,0)), v is the direction towards the viewer from P, and V(ω) is a function defined
such that V(ω)=1 when rays in that direction reach the sky, and 0 when they do not.

Normally, V is the expensive term to compute, and thus the term that is normally chosen
for various kinds of approximation by real-time rendering algorithms.

Many techniques exist which try to make the sky lighting problem more tractable by
making various trade-offs. As such, real-time algorithms are often better characterized
by the cases they can’t handle than by the cases that they can. For example, many
diffuse global illumination solutions rely on pre-computed representations of the
geometry of the scene and the light flow around it. These include various forms of
radiosity, pre-computed radiance transfer (PRT), irradiance caching, and table based

155

Chapter 9: Fast Approximations for Global Illumination on Dynamic Scenes

approximations based on simplified occluders, such as spherical caps [Oat06],
[Kontikanen05].

However, to illustrate the breadth of approach that programmable GPUs have given us,
we are going to outline an unusual variant that has the following properties:

- Requires very little pre-computation and hence works well in dynamic scenes
- Has enormously large deviation from the accurate solution, but still looks

aesthetically pleasing
- Allows limited bounce light effects without computational penalties

Note that we have to specify the following constraint for our algorithm: it will only support
scenes that can be encompassed in a small volume. This is a direct result of the fact that
the approach is based on the idea of signed distance fields (SDFs) which will be stored
in a volumetric texture on the GPU. The above properties and constraints will provide us
with a GPU-friendly data structure, whose computation is expensive but highly
parallelizable, which encodes enough of the geometric layout of the scene that we can
render approximate sky-lighting efficiently.

9.4 Signed Distance Fields

In a given scene consisting of solid bodies, a signed distance field is a simple scalar
function S(P) defined at every point P in a (2D or 3D) space, such that

S(P) = 0 when it is on the surface of a body
S(P) > 0 when it is inside any body
S(P) < 0 when it is outside all bodies

Its magnitude is the minimum distance from that point to the surface of any body. A
simple example of a 2D SDF is visualized in Figure 3.

156

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Figure 3. a) shows a binary image representing a 2D scene, with points covered by an
object marked white. b) Shows the SDF computed from (a) using 2D Euclidian distances,
with -1 to 1 mapped to a grayscale gradient from black (-1) to white (1). The boundary of
the objects (where SDF=0) is marked in red for clarity.

Computing the SDF of an arbitrary polygonal 2D or 3D scene on a regularly sampled
grid is a computationally expensive process, often approximated by repeated application
of small (3x3x3) window-size non-linear filters to the entire volume [Danielson00,
Grevera04]. We will deal with efficient generation of the SDF on the GPU later, but for
the time being it’s sufficient to give the motivation for computing it: in an approximate
sense, it will serve as our means of rapidly computing the visibility of the sky from any
point in the scene we wish to light.

Signed distance functions find application in several areas: they are an example of a
‘potential function’ which can rendered directly or indirectly using ray marching, level
sets or marching cube techniques – for example to help accelerate the anti-aliased
rendering of text and vector graphics [Pope01, Frisken02, Frisken06]. They are also
useful in computer-vision in helping to find collisions, medial axes and in motion planning
[Price05].

Signed distance fields can be computed analytically for simple shapes – and we shall be
returning to this shortly – or tabulated in grids, octrees, or other spatial data structures.
In this course we’ll be using the simplest mapping to a GPU – namely an even sampling
of the SDF over a volume, storing the values of the function in a volume texture. This
kind of direct GPU representation is also used for a particular type of efficient GPU ray
tracing called ‘sphere tracing’ – as used in the implementation of per-pixel displacement
mapping in [Donnely05].

157

Chapter 9: Fast Approximations for Global Illumination on Dynamic Scenes

9.5 Curvature of a surface as an approximation to ambient
occlusion

Figure 4. (a) & (b) shows a part of a concave 2D object with its SDF. (c) shows the
smoothing effect of sampling the SDF on a regular grid and then reconstructing it
bilinearly. (d) Shows the difference between the smoothed and unsmoothed versions of
the SDF. For points on the surface, the difference is related to the curvature of the
surface – positive near concave corners (creases) such as the apex at the left, and
negative near convex corners.

The property we wish to make use of here is to do with using the SDF to find an
approximation to the curvature of the surfaces of meshes in a scene [Masuda03]. In
particular, we make the observation that in order to create the visual effect of darkening
inside creases and crevices; we could darken the mesh wherever it has significant
‘concavity’ – inside wrinkles, behind ears, and so on – to simulate the effect of the sides
of the concave region occluding the sky light. Figure 4 shows an example of how a
regularly sampled SDF can help us – around a sharp concave feature, the SDF itself is
also sharp and concave (Figure 4b). However, the errors introduced by the process of
sampling the SDF on a regular, coarse grid and then reconstructing it using a simple
trilinear filter have a smoothing effect (Figure 4c). A shader which sampled the SDF on
the surface would expect the answer ‘0’ if the SDF representation was error-free;
however in the case of a blurred SDF, the result will be related to the curvature of the
surface – slightly positive in concave regions and slightly negative in convex regions
(Figure 4d).

158

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

Figure 5. The result of visualizing the error in the sampled SDF, stored as an 8 bit per
pixel 64x64x64 volume texture. (Two views).

Figure 5 shows the result of visualizing this effect directly. The SDF of the mesh was
pre-computed on the CPU once and uploaded as a 64x64x64 volume texture to the
GPU. The mesh was then rendered with a simple shader that sampled the volume at the
point to be lit (on the surface of the mesh). The output colour was 0.5+exp(k * S) where
k sets the overall contrast, and S is the value of the SDF texture sampled at the rendered
point. While Figure 5 doesn’t yet look much like Figure 1, it shows some promise and
exhibits the desired ‘creases are dark’ ambient occlusion aesthetic look, for example,
behind the ears.

Point sampling the SDF and then reconstructing it trilinearly introduces high frequency
aliasing, visible in the output (and Figure 5) as slight banding across the mesh surface.
These artifacts can be greatly reduced by pre-filtering the SDF by low-pass filtering it
with (for example) a separable Gaussian low-pass filter. An additional advantage of this
pre-filtering step is that the width of the Gaussian filter allows us to effectively choose the
characteristic scale of the concavities that the algorithm highlights. We will use this
feature in the next section.

It should be noted that the distance encoded in the signed distance function may be
measured in a number of different ways – Euclidian, ‘Manhattan’, chess-square etc., and

159

Chapter 9: Fast Approximations for Global Illumination on Dynamic Scenes

may be exact or approximate. For the particular application of estimating curvature of a
mesh outlined in these course notes, it turns out that the particular distance metric
chosen isn’t particularly important. The only required property of the ‘pseudo SDF’ is that
we can estimate curvature in the manner outlined in Figure 4. Any function which

- can be quickly computed
- is positive inside objects, and negative outside
- decreases monotonically as the sample point moves away from object surfaces

It turns out that even a heavily blurred version of the binary image (eg blurring Figure 3a
directly) satisfies these conditions; however the underlying concept of an SDF provides
us with an intuitive theoretical basis for experimenting with different variations. This is
simply another example of the breadth of experimentation that art-driven
programmability affords us – the ‘correct’ choice of distance metric or blur kernel can
only be guided by the particular ‘look’ required.

9.6 Achieving the skylight look via SDFs

Only one more observation is required to achieve convincing sky lighting using our SDF
representation of the scene. We wish to incorporate sky shadowing effects on any point
P, from all objects in the scene, whatever their distance from the point P, not just the
effect of nearby concavities. Objects at a greater distance should have a lesser, ‘blurrier’
effect than those near the point P. Since the focus here is on achieving a desired visual
affect without worrying too much about the physicality of the situation, we look to our
SDF to see if there is some way that it can help us express these broader scale
interactions.

Figure 6. (a) As we move away from a point P in the normal direction N, the SDF will
be proportional to the distance from P – for example, at point Q - in the absence of any

160

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

nearby ‘occluding’ objects. (b) Another object causes the SDF to be closer to 0 (white)
than expected, at point Q.

Figure 6 shows what happens at increasing distances from the surface of an object, with
and without the presence of multiple objects (or oven a single object with a large-scale
concave shape). According to the definition of our SDF, at a distance d from P in a
direction N perpendicular to the surface at P, we expect the SDF to be:

SDF(P+d N) = -d

This holds only in a scene with no objects ‘in front of’ P. However, in the presence of
another object in the vicinity of the sampled point, the SDF will be closer to 0 (Figure 6b).
(The value cannot be more negative, due to the property that at every point, the SDF
records the minimum distance to the closest surface point).

This property allows us to take measurements of the occlusion / ‘openness’ of space at
increasing distances from P. In particular, if we sample at n points away from P, at
distances d0, d1, … dn with d0=0, and di < di+1, we expect

SDF(P + diN) = −
i= 0

n

∑ di
i= 0

n

∑

in the absence of occluders.

Any difference from this represents some degree of occlusion of P along the direction N
– and we visualize this difference as before, using an exponential:

∑= ++ ii dNdPSDFkeC)(

where C is the output of the shader.

Each sample (at a distance di) can be thought of as capturing the occlusion effects of
objects at a distance di. To simulate the increased blurring effect of distant shadows, and
to avoid artifacts that look like edges in the shadows caused by the point at P+ di N
‘swinging’ around rapidly as P and N change, we sample different, pre-filtered copies of
the SDF at each sample point. The pre-blur filter kernel size for each sample is set to be
proportional to each di. That is, we sample a blurred copy of the SDF with the radius of
blurring proportional to the distance of the sample from P.

This maps well to the GPU volume texture implementation when the di’s are spaced
according to powers of two – that is, di = 2 di-1 for i > 1, with d1 set to the width of the
voxels of the highest resolution volume texture. The pre-filtered volume textures for each
SDF are then stored in the mip-map chain for the volume texture, and can be efficiently
sampled using mip-level biased texture load instructions in the pixel shader.

161

Chapter 9: Fast Approximations for Global Illumination on Dynamic Scenes

Everything discussed so far makes no reference to the orientation of the sky hemisphere
itself. As described, the result ‘C’ of the shader given above approximates ambient
occlusion, which does not depend on any kind of directional light. To emulate the effect
of the sky lighting coming from an oriented, infinitely distant hemisphere, we simply need
to skew the sample positions ‘upwards’ towards the sky. This naturally introduces a bias
in the sample positions that causes shadows to be cast downwards, and upward facing
surfaces to be lit more brightly. We simply ‘bend’ N towards the skylight by replacing N
with:

N´ = N + αU

(where U is an upward pointing unit vector giving the orientation of the sky, N is our
normal at P and α is a ‘sky weighting factor’ from 0 to 1).

Figure 7 shows the result of rendering a scene with these techniques, and overall quite a
convincing skylighting effect is achieved in real time. (cf Figure 1, rendered using
Autodesk 3D Studio Max 8’s skylight). Note that there is not even any explicit ‘N · L’
term used – the lighting comes purely from the use of the bent normals described above,
with a value of α of 0.5. The entire scene is represented by a single 128x128x128 SDF
stored in an 8 bits per pixel monochrome volume texture. The shader used to render
Figure 7 is given in listing 1. The image in Figure 7 was made with a static SDF
computed once on the CPU. All that remains is to describe a technique by which we can
compute the SDF of an arbitrary scene, at runtime. This will allow the rendering of
dynamic scenes.

Figure 7. A scene rendered using a single, static 128x128x128 SDF sampled 4 times per
rendered pixel at 4 different mip levels. All shading comes directly from the SDF
technique.

162

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

struct VolSampleInfo
{
 float3 minuv;
 float3 maxuv;
 float3 uvscale;
 float4 numtiles; // across in x, down in y, total slices in z,

 // zfix = 0.5/numtiles.z
};

float4 SampleVolTex(sampler bigtex,

 float3 uvw,
 VolSampleInfo vi,
 sampler vtl)

{
 uvw.xy*=vi.uvscale.xy;
 uvw.z-=vi.zfix;
 uvw.xyz=clamp(uvw.xyz,vi.minuv,vi.maxuv);

 float2 uv=uvw.xy;//*0.125;
 float4 fix = tex2D(vtl, uvw.z);
 float4 s1 = tex2D(bigtex,uv+fix.xy);
 float4 s2 = tex2D(bigtex,uv+fix.wz);
 return lerp(s1,s2,frac(uvw.z*vi.numtiles.z));
}

float4 MeshPS(BASIC_OUTPUT i) : COLOR0
{
 float3 n =normalize(i.Normal);
 float3 vec2light(0,0,1);
 float3 pos = i.WorldPos ;
 float3 delta = n* 0.03 + vec2light * 0.03;
 float4 light = exp(
 SampleVolTex(BasicSampler , pos+delta, vi, VolTexLookupSampler) +
 SampleVolTex(BasicSampler1, pos+delta*2, vi1, VolTexLookupSampler1)*1.2 +
 SampleVolTex(BasicSampler2, pos+delta*4, vi2, VolTexLookupSampler2)*1.4 +
 SampleVolTex(BasicSampler3, pos+delta*8, vi3, VolTexLookupSampler3)*1.8
);
 return i.Diffuse * light * GlobalBrightness;
}

Listing 1. DirectX HLSL pixel shader code used to render figure 7. Since current GPUs
don’t allow rendering directly to the slices of a volume texture, the SampleVolTex
function emulates a trilinear sample by sampling a 2D texture on which the slices are
laid out in an order determined by a point sampled 1D lookup texture
(VolTexLookupSampler in the code)

9.7 Generating the SDF on the GPU

The final area to describe is how the SDF volume texture is generated in real-time. Many
grid based approaches take as their starting point, a volume texture (in 3D) or texture (in
2D) initialized with binary values representing whether the given voxel is inside or
outside the objects in the scene (see Figure 3a for an example). We call this the ‘binary
image’.

163

Chapter 9: Fast Approximations for Global Illumination on Dynamic Scenes

The simple brute force approach consists of simply looping over every voxel in the
space, and then for each one, searching for the nearest voxel with opposite
inside/outside-ness and recording its distance. Figure 3b was created in this manner,
and Listing 2 shows C code for computing a 2D SDF on a 256x256 binary bitmap in this
manner.

void ComputeSDF(unsigned char in[256][256], unsigned char
out[256][256])
{
 for (int y=0;y<256;y++) for (int x=0;x<256;x++)
 {
 int d=W*H;
 int p=in[y][x];
 for (int x2=0;x2<256;x2++) for (int y2=0;y2<256;y2++)
 {
 if (in[y2][x2]!=p)
 {
 int d2=(x-x2)*(x-x2)+(y-y2)*(y-y2);
 if (d2<d) d=d2;
 }
 }
 d=(int)(sqrt(d));
 if (d>127) d=127;
 if (p) d=-d;
 out[y][x]=d+128;
 }
}

Listing 2. This code was used to generate Figure 3b

The brute force method however is generally not tractable in 3D, since it is of cost O(v2)
where v is the total number of voxels in the scene. It is certainly not fast enough to use
per-frame in an interactive application. Many techniques – such as the Chamfer
Distance Algorithm (CDA) have been explored which use small nonlinear kernels to
iteratively ‘grow’ an approximate band of distance values around the boundary of the
objects, starting with the binary representation. Each iteration of the filter over the voxel
space expands the area which has been correctly initialized by one voxel. See
[Danielson80], [Price05], [Grevera04] for examples and pseudo-code.

Figure 5 was rendered using a SDF computed on the CPU using an algorithm similar to
the dead reckoning algorithm of [Grevera04].

As mentioned in section 12.5, the SDF need not contain Euclidian distances to achieve
an attractive result; indeed, simple Gaussian blurring of the binary image suffices to be
able to judge curvature in the sense of Figure 4. Figure 7 was rendered using an SDF
generated by repeatedly blurring and downsampling a 512x512x512 binary volume
image of the scene, to create a 128x128x128 pseudo-SDF volume texture with 4 mip-
maps down to 16x16x16.

164

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

9.8 Generating the binary image of a dynamic scene

Whether the SDF is generated through blurring, the Chamfer Distance Algorithm or a full
Euclidian distance calculation, some GPU friendly way of generating the SDF volume
texture is required. A key observation is that in many cases, a scene will be made up of
a number of (possibly moving) objects. Each object need only be able to rapidly compute
its own local SDF, before being composited into the final volume texture using the ‘min’
blending mode of the GPU to generate the ‘global’ SDF.

Figure 8. a) due to the limitations of current GPUs / APIs which do not allow direct
rendering to the voxels of a volume texture, the slices of the SDF volume are laid out on a
large 2D texture. The code to sample it is given in Listing 1. (b) a simple vertex shader
which intersects the 4 edges of an OBB which most align with the volume slicing axis
(normally ‘z’) allows the intersection of the OBB with the volume slices to be computed
efficiently in a single draw call. In the right of the diagram, the vertex shader’s output
quads are shown outlined; a pixel shader computes the actual SDF at each point within
those quads (shown as blurry black regions).

Since we are rendering into a volume rather than to the usual 2D render target
supported by GPUs, we have to lay out the volume in slices (Figure 8). In our
implementation, we created a vertex shader that was able in a single D3D draw call, to
calculate the intersection of an arbitrary oriented bounding box with all the slices of the
volume, and execute a pixel shader to update the SDF for only those ‘voxels’ which are
inside the bounding box (Figure 8b). In this way, the SDF updating algorithm consists
of:

Clear SDF render target representing the volume V of the entire
scene – assuming a 2D layout of the 3D slices as in Figure 8
For each object O in the scene
 Compute the oriented bounding box (OBB) of O
 Compute the intersection of the OBB of O with the
 slices of V

165

Chapter 9: Fast Approximations for Global Illumination on Dynamic Scenes

 For each pixel within the intersection regions,
Compute the approximate SDF of O,
‘min’ blend the result into the SDF render target

Depending on the type of object O, we compute its SDF in one of several ways:

1. For a cuboid or ellipsoid, the SDF can be computed analytically.

2. For a rigidly deforming body with a complex shape, the SDF can be precomputed
and stored as a volume texture in the local space of O

3. For a ‘height field’ object whose surface can be described as a single valued
function of 2 coordinates (x, y), the SDF can be approximated directly from a
blurred copy of the height field data describing the surface shape.

4. For a star shaped object (such as that shown in Figure 9) where the surface can
be described as a single valued function giving the radius of the object along the
direction to the object’s local origin, the SDF can be approximated directly from a
blurred copy of the ‘height field’ / Z buffer stored in a cubemap.

Options 1 and 2 are suitable for non-deforming (but affine transformable) objects.
Options 3 and 4 (including a variant of 3 in which two height fields are glued back-to-
back to create a more general shape) are useful for objects which may deform their
shape from frame to frame. In these cases, the height field texture (or cube map for
option 4) can be rendered dynamically to an offscreen buffer, using the GPU in a similar
manner to the way in which shadow maps are computed on the GPU. The blurring of the
Z buffer can also take place efficiently on the GPU; by rendering both the Z value and its
square and then blurring both, (as described in [Donnely05] in the context of Variance
Shadow Maps) the variance of Z over a range of blurred pixels can be used along with
the mean Z to compute the width of the falloff of the SDF along the Z axis. (Figure 9b).

Figure 9. A star shaped object can have its SDF computed approximately from a radial
cube map (or, in 2D as in this figure, a radial 1D texture) which stores the surface Z for

166

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

each theta. This is visualized above by the outer ring in (a). When blurring this Z buffer,
the variance in Z is tracked as in [Donnely05] and used to scale the rate of falloff of Z in
the SDF, since areas of high Z variance (marked by black parts of the inner ring in (a))
have a softer falloff from black to white along the radial direction, as shown in (b) by
comparing the blue radial direction (high variance), with the red radial direction (low
variance).

Figure 10 shows a ‘Cornell’ type box rendered using this algorithm, consisting of 6
cuboids (5 walls and one central cube) whose local SDF are computed analytically in a
pixel shader and composited into a 128x128x128 SDF for the whole scene. Figure 11a
shows a similar scene with the central box replaced with a complex mesh whose SDF
was precomputed in local space (option 2 above); Figure 11b shows a star shaped
object with dynamically generated SDF based on a cube map (option 4).

Figure 10. An oriented cube in a Cornell box. All shadowing in this image comes from
the SDF; in addition surfaces were lit using an N · L term scaled by the results of the
SDF lookups.

167

Chapter 9: Fast Approximations for Global Illumination on Dynamic Scenes

Figure 11. Two example scenes with more complex object shapes. (a) has 2 million
polygons and a precomputed local SDF stored in a 32x32x32 volume texture. (b) has a
dynamically rendered 32x32x6 cube map of radii which is used to approximate its local
SDF.

168

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

9.9 Approximate colour bleeding and future directions

Figures 10, 11a and 11b all exhibit small amounts of colour bleed. This was achieved by
computing the SDFs separately for red, green and blue channels, and then biasing the
SDF in each channel for each object by its diffuse surface colour. The red reflective wall
had its red channel of its local SDF increased by a small constant factor, causing all
nearby SDF lookups to return a slightly red hue. Despite being physically incorrect, in
the sense of not accurately capturing the physics of light bouncing from one diffuse
surface to another, it’s this kind of simple, free yet aesthetically pleasing trick which can
go a long way in a real-time environment.

In the spirit of ‘learning from mistakes’, the success of this kind of non-physical ‘short-
cut’ also suggests an extension to arbitrary light sources (rather than just sky-lights)
based on an interpretation of this skylighting algorithm that has more in common with the
Ambient Occlusion Fields of [Kontikanen05] than SDFs. If the volume texture placed
over the scene, is considered more as an approximation of the light reaching each point
in space, as opposed to the SDF of the occluders in that scene, then an alternative
algorithm supporting an arbitrary number of emissive objects in the scene (rather than
just a distant skylight). The idea is to start with a blurry copy of the ‘binary image’ of the
scene, stored in a volume texture. In addition, an even lower resolution volume texture is
computed containing a vector for each point, containing a direction pointing away from
the average of nearby light sources. This volume can be thought of as the first 4 terms
(constant and linear) spherical harmonic coefficients of an irradiance volume that does
not take into account occluders.

The latter volume, which we shall term ‘the light direction’ function, can be used to
‘advect’ the contents of the pseudo-SDF volume texture. This effect is best visualised by
observing the music visualisation features of media players such as Apple’s iTunes™ or
WinAmp. These take a simple bitmap image, and at each frame radially zoom and blur
the image, feeding the result back into the next frame. If you imagine radially blurring the
SDF volume texture according to the directions stored in the ‘light direction’ volume
texture (in the case of a single point light source, radially from the light), the resulting
volume will converge towards a good-looking approximation to the irradiance at every
point in space. Figure 12 shows this effect in 2D.

Figure 12. (a) starting with a binary image of the scene’s occluders (‘SDF’), and a
lower-resolution texture encoding light flow direction at every point (b), the SDF texture
is repeatedly zoomed, blurred and blended with itself (c) to create an approximation to

169

Chapter 9: Fast Approximations for Global Illumination on Dynamic Scenes

the irradiance at every point (d) – shown with colours inverted. This result can then be
used to render the scene with soft shadowing from the light sources included in the
original light flow texture.

9.10 Conclusion

The flexibility of GPUs was exploited in this description of an unusual soft-shadow
rendering algorithm. Although it is of limited use since it requires the whole scene to be
represented in a volume texture, it demonstrates a process of art-led discovery,
approximation and exploration in real-time graphics rendering which the author believes
will continue to be one of the driving forces behind exciting, visually unique games and
real-time applications, running on commodity GPU hardware.

9.11 Bibliography

DANIELSON, P.-E., 1980. Euclidian Distance Mapping. Computer Graphics and Image

Processing 14, pp. 227-248

DONNELLY, W. 2005. Per-Pixel Displacement Mapping with Distance Functions, GPU

Gems 2: Programming Techniques for High-Performance Graphics and General-
Purpose Computation, Chapter 8, Matt Pharr (ed.), Addison-Wesley.
http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch08.pdf

DONNELLY, W., LAURITZEN, A. 2006. Variance Shadow Maps. In the proceedings of ACM

SIGGRAPH 2006 Symposium on Interactive 3D Graphics and Games.

EVANS, A. 2005. Making Pretty Pictures with D3D. GDC Direct3D Tutorial 2005,

http://www.ati.com/developer/gdc/D3DTutorial07_AlexEvans_Final.pdf

EVERITT, C. 2001. Interactive Order-Independent Transparency. NVIDIA white paper,

2001, http://developer.nvidia.com/object/Interactive_Order_Transparency.html

FRISKEN, S.F.; PERRY, R.N. 2002. Efficient Estimation of 3D Euclidean Distance Fields

from 2D Range Images, Volume Visualization Symposia (VolVis), pp. 81-88

FRISKEN, S. F., 2006. Saffron: High Quality Scalable Type for Digital Displays, Mitsubishi

Electric Research Laboratory (MERL), http://www.merl.com/projects/ADF-Saffron/

GREVERA, G. J. 2004. The ‘‘Dead Reckoning’’ Signed Distance Transform, Computer

Vision and Image Understanding 95 (2004) pp. 317–333.

KAJIYA, J. T. 1986. The Rendering Equation. Computer Graphics 20 (4), 143-149

170

http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch08.pdf
http://www.ati.com/developer/gdc/D3DTutorial07_AlexEvans_Final.pdf
http://developer.nvidia.com/object/Interactive_Order_Transparency.html
http://www.merl.com/projects/ADF-Saffron/

 Advanced Real-Time Rendering in 3D Graphics and Games – SIGGRAPH 2006

KONTKANEN, J., LAINE, S. 2005. Ambient Occlusion Fields, In the proceedings of ACM
SIGGRAPH Interactive Symposium on 3D Graphics and Games

MASUDA, T. 2003. Surface Curvature Estimation from the Signed Distance Field. 3dim,

p. 361, Fourth International Conference on 3-D Digital Imaging and Modeling (3DIM
'03)

OAT, C. 2006. Ambient Aperture Lighting, “Advanced Real-Time Rendering in 3D

Graphics and Games”, Course 26, ACM SIGGRAPH

POPE, J., FRISKEN, S. F., PERRY, R.N. 2001. Dynamic Meshing Using Adaptively Sampled

Distance Fields, Mitsubishi Electric Research Laboratory (MERL) Technical Report
2001-TR2001-13

PRICE, K. 2005. Computer Vision Bibliography Webpage.

http://iris.usc.edu/Vision-Notes/bibliography/twod298.html

171

http://iris.usc.edu/Vision-Notes/bibliography/twod298.html

	9.1 Abstract
	9.2 Introduction
	9.3 Algorithm outline
	9.4 Signed Distance Fields
	9.5 Curvature of a surface as an approximation to ambient o
	9.6 Achieving the skylight look via SDFs
	9.7 Generating the SDF on the GPU
	9.8 Generating the binary image of a dynamic scene
	9.9 Approximate colour bleeding and future directions
	9.10 Conclusion
	9.11 Bibliography

