
Shading in Valve’s Source Engine
SIGGRAPH 2006

Jason Mitchell
Valve

Introduction

World Lighting
• Radiosity Normal Mapping
• Specular Lighting

Model lighting
• Irradiance Volume
• Half-Lambert
• Phong terms

High Dynamic Range Rendering
• Tone mapping
• Autoexposure

Color Correction

Timeline

Half-Life 2 and Counter-Strike: Source (November 2004)
• Baseline shading model we’ll present today

Lost Coast (October 2005)
• High Dynamic Range Rendering

Day of Defeat: Source (September 2005)
• Color Correction and HDR

Half-Life 2: Episode One (June 2006)
• Phong shading

Episodic Content Incremental Technology

The extensions to the baseline Half-Life 2 technology
have been shipped in subsequent products in the
year and a half since HL2 shipped.
• More efficient way to develop technology
• Delivers value to customers and licensees

Shorten the delay between hardware availability and
game support

Marketplace Context

See full survey at See full survey at http://www.steampowered.com/status/survey.html

Realism
More forgiving than direct lighting only
• Avoids harsh lighting situations
• Less micro-management of light sources for content

production
• Can’t tune lights shot-by-shot like movies. Don’t

know what the shots are, and don’t want to take the
production time to do this

World Lighting with Radiosity

Direct lighting only

Radiosity lighting

Reusable high-frequency detail
Higher detail than we can currently get from
triangles
Works well with both diffuse and specular
lighting models
Can now be made to integrate with radiosity

Normal Mapping

We created this technique to efficiently address the
strengths of both radiosity and normal mapping
In other engines, per-pixel lighting terms are often
accumulated one light at a time
• Multiple lights handled by summing multiple light contributions

within or between passes

We express the full lighting environment in our novel
basis in order to effectively perform diffuse bump
mapping with respect to an arbitrary number of lights
This is the key to shading in Valve’s Source engine

Radiosity Normal Mapping

3
1,0,

2
3

 −−

3
1,

2
1,

6
1

−

3
1,

2
1,

6
1

Basis for Radiosity Normal Mapping

Traditionally, when computing light map values using a
radiosity preprocessor, a single color value is calculated
In Radiosity Normal Mapping, compute light values for
each vector in our basis
• This triples light map storage, but we are willing to bear this cost

for the added quality and flexibility

Computing Light map Values

Sample three light map colors, and blend between them
based on the transformed vector

float3 dp;
dp.x = saturate(dot(normal, bumpBasis[0]));
dp.y = saturate(dot(normal, bumpBasis[1]));
dp.z = saturate(dot(normal, bumpBasis[2]));
dp *= dp;
diffuseLighting = dp.x * lightmapColor1 +

dp.y * lightmapColor2 +
dp.z * lightmapColor3;

At the pixel level. . .

Light Maps Only

Variable Luxel Density

High density typically
4”×4” luxels

Coarser light maps used
in low frequency areas

Final Rendered Scene

We use cube maps for specular lighting the world
Designers place the sample locations for specular lighting
Cube maps are pre-computed in-engine from the level
data using rendering
• Especially interesting for HDR, which we’ll discuss later

World surfaces pick up the “best” cube map, or cube
maps can be manually assigned to surfaces to fix
boundary problems

World Specular Lighting

Environment probes
placed in Level Editor

Specular on World Geometry

Diffuse Lighting Only

Specular from cube maps

Other World Lighting

There are a few other special cases
• Reflective and refractive water
• Special effects such as the Citadel Core in Episode One
• Some simple geometry which is just vertex lit

Model Lighting

Prior to Episode One, models (objects which aren’t
part of the immovable world geometry) used
primarily view-independent lighting terms:
• Two local diffuse lights with Half-Lambert
• Directional ambient term (ambient cube)

Also cubic environment mapping terms
These terms maxed out ps_2_0, which was our high
end when we shipped Half-Life 2 in November 2004

Half Lambert

Typically clamp
N·L to zero at the
terminator
Half Lambert
scales the -1 to 1
cosine term (red
curve) by ½,
biases by ½ and
squares to pull the
light all the way
around (blue
curve)

Lambertian TermLambertian Term Half LambertHalf Lambert
Another example of choosing a
forgiving lighting model
Similar to Exaggerated Shading
apaper by Rusinkiewicz et al

Indirect Illumination in Games

Quake III used a filtered sample
from a 3D array of ambient terms to
provide a constant ambient for a
given character [Hook99]
MotoGP used a hemisphere lighting
model where bounced light from the
ground varied spatially throughout
the race track [Hargreaves03]
Max Payne 2 stored linear 4-term
spherical harmonic coefficients for
use in lighting characters and other
moving geometry [Lehtinen06]

From [Hargreaves03]

Ambient Cube

Pre-compute irradiance samples
throughout the environment
4’×4’×8’ density
The set of samples is referred to in
the literature as an irradiance
volume [Greger98] and each
sample defines an irradiance
environment map [Ramamoorthi01] Directional AmbientDirectional Ambient Constant AmbientConstant Ambient

Directional ambient term which includes indirect light
Lights beyond the first two can be added to the ambient cube

Ambient Cube Basis

Six RGB lobes stored in shader constants
More concise basis than first two orders of spherical
harmonics (nine RGB colors)
Pixel shader constant store is currently a bottleneck,
though this eases quite a bit on ps_3_0
Developed in parallel with other techniques such as
[Ramamoorthi01]

+x

-x

+y

-y

-z +z

float3 AmbientLight(const float3 worldNormal)
{

float3 nSquared = worldNormal * worldNormal;
int3 isNegative = (worldNormal < 0.0);
float3 linearColor;
linearColor = nSquared.x * cAmbientCube[isNegative.x] +

nSquared.y * cAmbientCube[isNegative.y+2] +
nSquared.z * cAmbientCube[isNegative.z+4];

return linearColor;
}

Comparison of Ambient Cube to Spherical Harmonics

Original Light Probes Irradiance Environment
Maps from

[Ramamoorthi01]

Valve Ambient
Cubes

Benefits of Half Lambert and Ambient Cube

+

+

+

+

=

=

Lambert 1Lambert 1 Lambert 2Lambert 2 Constant AmbientConstant Ambient Most GamesMost Games

Half Lambert 1Half Lambert 1 Half Lambert 2Half Lambert 2 Ambient CubeAmbient Cube Source ModelsSource Models

Benefits of Half Lambert and Ambient Cube

Lambertian terms + constant ambientLambertian terms + constant ambient Half Lambert + ambient cubeHalf Lambert + ambient cube

Extensions to Earlier Model Lighting

When we shipped Half-Life 2, ps_2_0 was the most
advanced pixel shader model available
In the spring of 2006, 40% of our users have hardware
which supports ps_2_b or higher
• Of the people who have played Episode One in the two

months since it has shipped, 62% have such hardware

For Episode One and a recent update to Day of Defeat:
Source, we used these longer ps_2_b shaders to add
Phong terms to model lighting

ps_2_b

Shader model on ATI RADEON Xx00 parts
Same programming model as ps_2_0 but with longer
shaders
• ps_2_0 – 64 alu and 32 texture
• ps_2_b – 512 total…any mix of alu and texture

ATI RADEON Xx00 & X1x00 series
NVIDIA GeForce 6x00 & 7x000 series

Phong Terms

Compute Phong terms
for up to two local lights
Can specify specular
exponent variations
across a model
• Currently, map blends

between specular
exponent of 1 and 150

Modulate with scalar
mask channel and
tweakable Fresnel term

Specular ExponentSpecular Exponent Specular MaskSpecular Mask

Episodic Alyx Shade Tree

++

**

Ambient
Cube

Ambient
Cube

Diffuse 2Diffuse 2

Diffuse 1Diffuse 1

Total
Diffuse
Total

Diffuse

AlbedoAlbedo
Final

Diffuse
Final

Diffuse

Final LightingFinal Lighting
Light

source
parameters

Light
source

parameters

++

Phong
Exponent
Phong

Exponent

FresnelFresnel

Raw PhongRaw Phong
Specular

Term
Specular

Term

**

Phong MaskPhong Mask

High Dynamic Range
Rendering in the
Source Engine

High Dynamic Range
Rendering in the
Source Engine

High Dynamic Range

A High Dynamic Range image is an image that has a
greater contrast range than can be shown on a
standard display device, or that can be captured with
a standard camera with just a single exposure
High Dynamic Range rendering performs
intermediate operations such as shading in high
dynamic range space
The rendered HDR results are then mapped to a
limited-range display

Real-World Sky at Multiple Exposures

Scene from Lost Coast at Multiple Exposures

HDR Skybox

Authored by painting multiple exposures of the sky to
allow for real-time exposure adjustment

Authored Sources of HDR Illumination

HDR sky box authored by painting multiple exposures
of the sky
• Start with seamless LDR sky texture and paint HDR

information from there
• We use a combination of Photoshop and HDRShop to make

edits / touchups at different exposure levels
• The industry has not addressed this issue adequately at this

point and there is an opportunity for a tool vendor to step up
and fix this

Local lights with HDR values placed in levels

Generated Sources of HDR Illumination

HDR light maps are generated offline using our
radiosity solver and stored in RGBE format. At run
time, these are stored in a 16bit per channel format
HDR Cube maps are generated by the engine using
the HDR skybox as well as the HDR light sources and
the HDR light maps
• The result is that an object which reflecting the sun or some

other bright part of the scene, you will see this in the full
effect of the brightness in the reflection, which is one of the
key advantages of HDR rendering

HDR water reflection and refraction

HDRLDR

Tone Mapping

Very careful with linear versus gamma color spaces
All shaders in our DirectX 9 code path are single-pass
As a result, tone mapping can be performed during
normal rendering
• Simple subroutine added to the end of all pixel shaders

This allows us to use 32-bit RGBA render targets
• No increase in render target memory footprint
• MSAA supported
• 60% of our total users see HDR rendering

• 82% of those who have played Episode One so far!

Auto Exposure

Running luminance histogram of post-tonemapped frame
• Update one bucket per frame
• More histogram buckets for low luminance values

Each frame, we determine which output pixels fall within a
given range, tagging such pixels in the stencil buffer
Use an asynchronous occlusion query to count pixels in range
Full running histogram (not just a single average luminance) is
available to the CPU with no stalls
Time averaging is used smooth out auto exposure adjustments
Designers can also modify auto exposure and bloom across
different areas of a level or in connection with game events

A single bucket from the running histogram (shown in red)

Another bucket from the running histogram (shown in red)

Implemented Multiple HDR Paths

Floating point
• HDR textures and render targets are fp16
• Shipped this path, but it is not the one typically used

Integer
• Render to 32 bit RGBA integer frame buffer
• Store HDR textures in fp16 (linear color space) when filtered

fp16 textures are supported.
• Store HDR textures in 4.12 linear color space otherwise.
• Had to implement this version along with floating point

version to support more hardware

Float vs. Integer HDR Tradeoffs

Floating Point
+ Pre-tone-mapping data available for blooming
+ General refraction mapping techniques preserve HDR information
- Requires floating-point alpha blending
- Hardware lacks precision to perform fixed function pixel fog

Integer
+ Compatible with Multisample Antialiasing (MSAA)
+ Works on all DirectX 9 hardware (runs well even on ATI RADEON 9600)
+ Small performance hit relative to LDR

Half Life 2: Episode 1Half Life 2: Episode 1

Half Life 2: Episode 1Half Life 2: Episode 1

Half Life 2: Episode 1Half Life 2: Episode 1

Team Fortress 2: NPR + HDR!

Team Fortress 2: NPR + HDR!

Team Fortress 2: NPR + HDR!

Lost Coast
Demo

Color Correction

Color has been used in visual arts to evoke particular emotional
responses for millennia, and we can do the same in video games
It is very natural to apply color correction to rendered images as a
post process, since we’re doing lots of image processing already
• Simply define a mapping from a one set of RGB triples to another
• We do this with a 323 volume texture lookup (sometimes several)

Decouples color correction from the art or lighting of a given setting
Useful for a variety of purposes
• Stylization
• Day for night
• Gameplay

Color Correction in Source

Color correction in games can go beyond what is
possible in film
The dynamic nature of games is both a curse and a
blessing
• More difficult to tweak to specific scenes
• Far more potential to exploit the dynamic nature of games
• Strong feedback loops with the player
• Additional sideband communication with the player

Color correction is a powerful tool for art direction
• Mod authors and licensees can differentiate their titles

Desaturation

Original Image Desaturated

Future Directions

Improvements to
irradiance volume
sampling
Shadow Mapping
Foliage Rendering
Soft Particles
Non-Photorealistic
rendering in Team
Fortress 2

Conclusion

World Lighting
• Radiosity Normal Mapping
• Specular Lighting

Model lighting
• Irradiance Volume
• Half-Lambert
• Phong terms

High Dynamic Range Rendering
• Tone mapping
• Autoexposure

Color Correction

SDK & Academic Licensing

Publicly available SDK
Academic licenses provide
• Access to Valve games
• Source code

• HLSL shaders, Radiosity and visibility calculations
• AI system, path finding
• Animation system, acting system, inverse kinematics

• Production quality art and sound assets
• Useful level and modeling tools

• Hammer level editor, Faceposer, Model viewing utilities

academiclicensing@valvesoftware.com

Acknowledgements

Many thanks to Gary McTaggart, Chris Green,
James Grieve, Brian Jacobson, Ken Birdwell,
Bay Raitt and the rest of the folks at Valve who
contributed to this material and the
engineering behind it
Thanks also to Paul Debevec for the light
probes used in the comparison with
Ramamoorthi’s Irradiance Environment Maps

References

[Debevec00] Paul Debevec, Personal Communication, 2000.
[Diefenbach97] Paul J. Diefenbach, “Multi-pass Pipeline Rendering: Realism For Dynamic
Environments,” Proceedings, 1997 Symposium on Interactive 3D Graphics, 1997.
[Franke06] Scott Franke, Personal Communication, 2006.
[Green06] Chris Green and Gary McTaggart, “High Performance HDR Rendering on DX9-
Class Hardware,” Poster presented at the ACM Symposium on Interactive 3D Graphics
and Games, March, 2006.
[Greger98] Gene Greger, Peter Shirley, Philip M. Hubbard and Donald P. Greenberg,
“The Irradiance Volume,” IEEE Computer Graphics & Applications, 18(2):32-43, 1998.
[Hargreaves03] Shawn Hargreaves, “Hemisphere Lighting with Radiosity Maps”,
Gamasutra, August 2003.
[Hook99] Brian Hook, “The Quake 3 Arena Rendering Architecture,” Game Developer’s
Conference 1999.
[Lehtinen06] Jaakko Lehtinen, Personal Communication, 2006.
[McTaggart04] Gary McTaggart, “Half-Life 2 Shading,” GDC Direct3D Tutorial 2004.
[Ramamoorthi01] Ravi Ramamoorthi and Pat Hanrahan, “An Efficient Representation for
Irradiance Environment Maps,” SIGGRAPH 2001, pages 497-500.
[Rusinkiewicz06] Szymon Rusinkiewicz, Michael Burns, and Doug DeCarlo. “Exaggerated
Shading for Depicting Shape and Detail,” ACM Transactions on Graphics (Proc.
SIGGRAPH). 25(3) July 2006.

Questions?

Valve is Hiring!

jobs@valvesoftware.com

