

The Parthenon DemoThe Parthenon Demo
Preprocessing and RealPreprocessing and Real--Time Rendering Time Rendering

Techniques for Large DatasetsTechniques for Large Datasets

Pedro Sander
ATI Research

IntroductionIntroduction

• At Siggraph 2004 Debevec et al presented “The Parthenon”.
– Structures laser-scanned and photographed
– Captured HDR Lighting

• Our goal was to make a real-time version of this demo using
these datasets.

The ChallengeThe Challenge

• These sizes of the datasets are humongous!

– 15 million triangles of geometry.
• Simplified from original raw 90 million triangle model.

– 2.1GB of HDR sky imagery.

– 300MB (@350 512x512 textures) of texture data.

• This talk focuses on techniques for compressing,
managing, and rendering these datasets in real-time on
our next generation graphics cards.

OverviewOverview

• Progressive Buffers

• Video skybox

• Lighting and rendering

OverviewOverview

• Progressive Buffers
• Video skybox

• Lighting and rendering

OverviewOverview

• A data structure and system for rendering of
a large polygonal model:
– Out-of-core

– Texture/normal-mapping support

– Smooth transitions between levels of detail
(no popping)

Progressive Buffer ExampleProgressive Buffer Example

Progressive Buffer ExampleProgressive Buffer Example

• Example: Five levels of detail color coded from
Red (highest res) to green (lowest res)

• Previous work
• The progressive buffer

– Geometry LOD
– Texture LOD
– Coarse buffer hierarchy

• Automatic LOD control
• Memory management
• Results
• Future directions

Talk outlineTalk outline

Previous workPrevious work

• View-dependent rendering (early works)
• [e.g., Xia and Varshney 1996, Hoppe 1997, Luebke

and Ericson 1997, …]

–Mostly per triangle operations

• Out-of-core view-dependent rendering
[e.g., El-Sana and Chiang 2000, Vadrahan and
Manocha 2002, Lindstrom 2003, Cignoni et al 2004,
Yoon et al 2004, …]

– Multiple static buffers

– More efficient on current GPUs

Previous workPrevious work

• Geomorphing static buffers
[Gain 03]

• Per-vertex geomorphing
[Grabner 01]

• Our method:
– Geomorphs on GPU

– Texture mapping

– Hierarchy of clusters to reduce draw calls

• More similar to independent work of Borgeat 05

Continuous LOD controlContinuous LOD control

• Texture-mapping
Allows for lower geometric level of detail without loss
in quality (e.g., flat regions can be textured).

• Geomorphing
A lower number of rendered triangles causes
undesired popping when changing level of detail.
Geomorphing provides a smoother transition.

• Summary:
– Complex models
– Wide range of graphics hardware
– No need for tiny pixel-sized triangles

The progressive buffer (PB)The progressive buffer (PB)
Preprocess (mostly based on previous methods):
• Split model into clusters
• Parametrize clusters and sample textures
• Create multiple (e.g., five) static vertex/index buffers for

different LODs, each having ¼ of the vertices of its parent
– We achieved this by simplifying each chart at time from one LOD

down to the next, also simplifying the boundary vertices to its
neighbor

– Simplify respecting boundary constraints and preventing texture
flips
[Cohen 98, Sander 01]

• Perform vertex cache optimization for each of these buffers
[DX9; Hoppe 99]

Texture parametrizationTexture parametrization
• Goal: Penalizes undersampling

– L2 geometric stretch of Sander et al. [2001]

– Hierarchical algorithm to generate texture
coordinates

Straight texture boundariesStraight texture boundaries

coarse meshcoarse mesh

fine meshfine mesh

texture maptexture map

Straight boundary distortionStraight boundary distortion

Texture packingTexture packing

• Tetris packing [Levy 02]
– Goal: minimize wasted space (red)

– Place a chart at a time
(from largest to smallest)

– Pick best position and rotation
(minimize wasted space)

– Repeat above for multiple
square dimensions

• pick best

The progressive buffer (PB)The progressive buffer (PB)

Static buffers:
• Each static buffer will contain an

index buffer and two vertex
buffers:
– Fine vertex buffer

Representing the vertices in the current
LOD

– Coarse vertex buffer
Vertex-aligned with the fine buffer such that
each vertex corresponds to the “parent”
vertex of the fine buffer in the next coarser
LOD
(Note: requires vertex duplication)

PBi

9
8
7
6
5
4
3
2
1

6
4
1
6
5
4
3
2
1

fine coarse

The progressive buffer (PB)The progressive buffer (PB)

Vertex parents for LOD=4: vs,vt,vv vu

vs vt

vs vu

vu

vu

vu vv

LO
D

=4
LO

D
=3

…

…

…

The progressive buffer (PB)The progressive buffer (PB)

Runtime:

• A static buffer is streamed to
vertex shader
(LOD determined based on cluster’s center
distance to camera)

• Vertex shader smoothly blends
position, normal and UVs.
(blending weight based on vertex distance to
camera) PBi

9
8
7
6
5
4
3
2
1

6
4
1
6
5
4
3
2
1

fine coarse

• Decrease level of detail:
– Geomorph

PBi orange yellow

– Switch buffer
PBi PBi-1

– Geomorph
PBi-1 yellow green

– …

• Increase level of detail by reversing the order of
operations.

Buffer geomorphingBuffer geomorphing

PBi

9
8
7
6
5
4
3
2
1

6
4
1
6
5
4
3
2
1

6
5
4
3
2
1

3
2
2
3
2
1

PBi-1

fine coarse

fine coarse

vertex LOD

PBn PBn-1 PBn-2

distance to camera

r

geomorph geomorph geomorph

k
2k

4k

e

s

r e r e r

LOD

How it worksHow it works

LOD bands and weightsLOD bands and weights

vertex LOD

PBn PBn-1 PBn-2

distance to camera

geomorph geomorph geomorph

k 2k 4k

e

s

r e r e r

ds ded

Texture LODTexture LOD
• Analogous to vertex LOD

• Each LOD also has texture

• Each coarser LOD has ¼ of the # of vertices and ¼ of the #
of texels of the previous LOD

• Essentially, we drop the highest mip level when coarsening,
and add a mip level when refining

• Textures are blended just like vertices:

– Vertex geomorph weight passed down to pixel shader

– Pixel shader performs two fetches (one per LOD)

– Pixel shader blends resulting colors according to the interpolated
weight

Coarse buffer hierarchy (CBH)Coarse buffer hierarchy (CBH)

PB0

A
B
C
D
E
F
G
H

AB

CD

EF

GH

AD

EH

AH

• Store coarse LOD of all clusters in a single
vertex/index/texture buffer in video memory

• Group draw calls when adjacent clusters are
far from camera

A B C D E F G H

AB CD EF GH

AD EH
AH

Coarse buffer hierarchy (CBH)Coarse buffer hierarchy (CBH)

• Binary tree constructed using a bottom-up
greedy merge algorithm

• Priority metric is the radius of bounding
sphere of potential merged cluster

PB0

A
B
C
D
E
F
G
H

AB

CD

EF

GH

AD

EH

AH

A B C D E F G H

AB CD EF GH

AD EH
AH

CBH texturesCBH textures

• Textures of voxels at coarsest LOD are grouped:

• Always stored in video memory

• Texture coordinates in the CBH buffer adjusted.

• No visible popping when switching from coarse
static buffer to CBH buffer

Limitations of data structureLimitations of data structure
• Vertex buffer size is doubled

(but only small subset of data resides in video memory)

• Clusters should be about the same size
(a large cluster would limit minimum LOD band size)

• Larger number of draw calls than purely
hierarchical algorithms
(cannot switch textures within same draw call;
coarse level hierarchy partly addresses this)

• Texture stretching due to straight boundaries

Automatic LOD controlAutomatic LOD control

• Bounds:
– System memory

– Video memory

– Framerate (less stable)

– Maximum band size

• Values of k and s slowly adjusted accordingly to
remain within the above bounds

vertex LOD

geomorph geomorph geomorph

k 2k 4k

e

s

r e r e r

Memory managementMemory management

• Separate thread loads data, and based on
distance to viewer sets priorities as follows:

No

No

Yes

Yes

Video memory*

100MBYes3 (active)

Full datasetNo0 (not needed)

50MBYes1 (needed soon)

20MBYes2 (almost active)

Sample boundsSystem memoryPriority

*Priority (with LRU as tie-breaker) used for determining what is loaded on video memory

Memory managementMemory management

• We compute continuous LOD of each buffer.

• Taking the integer part, we get the static buffer,
and assign it priority 3:

• If the continuous LOD is within a specified
threshold of another static buffer’s LOD, we set
that buffer’s priority accordingly:

0.75Video memory2evideo

1.00System memory1esystem

ExampleTargetPriorityThreshold

Unavailable clusters

0

2

4

6

8

10

12

14

16

Prefetching resultsPrefetching results
• By prefetching and keeping approximately 20% of

additional data than that being rendered, we
ensure we have the appropriate cluster LODs
required for rendering

• Without prefetching, several buffers may become
unavailable:

• May vary dramatically based on hard drive seek
times, background tasks, other CPU usage.

Memory (MB)

0

10

20

30

40

50

60

70

80

90

System
Video
Rendered

StatisticsStatistics

FPS

0

20

40

60

80

100

120

140

Fi
xe

d
LO

D
Va

ria
bl

e
LO

D

FPS

0

20

40

60

80

100

120

140
Memory (MB)

0

20

40

60

80

100

120

140

160

180

System
Video
Rendered

Shadow map exampleShadow map example

• Uses CBH to do one draw call to render shadow
map

Instancing exampleInstancing example
1600 dragons, 240M polygons1600 dragons, 240M polygons

Instancing exampleInstancing example

Possible improvementsPossible improvements

Take advantage of new hardware features:

• With performant vertex fetch, can consider fetching
all coarse vertex data (20 bytes) from textures to
avoid buffer duplication

• Instead of blending between two textures, one of
which simply contains an extra mip level, we can:

– query mip level for highest LOD

– adjust it based on blending weights with lowest LOD

– perform a single fetch

Future workFuture work

• Hierarchical CBH textures
(requires multiple texture coordinates)

• Animated geometry
(need to preprocess conservative bounding
spheres)

• Tiled geometry
(need to simplify respecting boundary constraints)

SummarySummary

• Presented new LOD algorithm for rendering
large datasets

• Features include:
– Out-of-core rendering with prefetching
– Texture-mapping
– Geomorphing
– Uses “GPU-friendly” irregular meshes
– Only requires based shader programmability

Up Next: Video SkyboxUp Next: Video Skybox

• Progressive Buffers

• Video skybox
• Lighting and Rendering

Input Skybox ImageryInput Skybox Imagery

• Input: 2.1GB compressed HDR imagery, captured at one
minute intervals over the course of the day.
– (670 frames of data: each frame 1024x1024 anglemap)

• Goal: we would like to compress this data in a compact
and performant manner for playback and HW rendering.

8am8am 10am10am noonnoon

2pm2pm 4pm4pm sunsetsunset

Preprocessing: Preprocessing: ResamplingResampling

• HDR skybox re-sampled from angular mapping
to a paraboloid environment map.
– Simplifies per-pixel math for rendering the sky box only

tex2dproj is required.

Preprocessing: SH EstimationPreprocessing: SH Estimation

• HDR lighting information is derived and recorded for
each frame using 3rd order spherical harmonics (SH).

• This lighting information is used to provide diffuse
lighting information to render the scene.

Preprocessing: Range ReductionPreprocessing: Range Reduction

• Each frame of video is divided through by the SH
representation in order to reduce the range of
each frame to a 24-bit RGB image.

Encoding the Video SequenceEncoding the Video Sequence

• The reduced range video
frames can be compressed
using a standard video
codec.
– We found that DivX and XVid

worked well.

– 1024x1024, 670 frame
sequence reduced from 2.1GB
to 38.1MB

– 72k for SH coefficients for all
frames. (27 floats per frame)

– 1MB optic flow data……

Preprocessing: Optic FlowPreprocessing: Optic Flow

• Making a little video go a long way
– 670 frames at 30fps is only @ 23 seconds of video.
– Playback at a lower frame rate is choppy even with lerp between

frames.

• Estimate optic flow between frames to estimate cloud
motion.

• At runtime optic flow is used to warp one frame into the
next.
– Gives additional in-between frames, can use lower FPS video.

• Optic flow is stored as a 16x16x1024 R16G16 volume
texture
– Texture filtering for smooth interpolation between flow fields.

Video PlaybackVideo Playback

• At runtime video is decoded and used as a texture.
– Video is decompressed on the fly in its own thread.

• Optic flow based warping between frames in pixel shader.
– Current frame is warped toward next frame.

– Next frame is inverse warped back towards current frame.

– Results are lerped together. (similar to morphing)

– Flow is selectively applied (in area around sun, the flow is attenuated)

• Summary
– Fast (two lookups, and blend)

– Compact (DivX compression)

Up Next: Lighting and RenderingUp Next: Lighting and Rendering

• Progressive Buffers

• Video skybox

• Lighting and Rendering

sunsetsunrise late morning afternoon sunsetsunrise late morning afternoon

Ambient Lighting from SkyAmbient Lighting from Sky

• Per-vertex bent normal used to lookup into SH representation.

– Cartesian SH evaluation used, 12 instructions for 3rd order.

• Ambient occlusion texture (half resolution) used to attenuate
ambient lighting.

sunsetsunrise late morning afternoon sunsetsunrise late morning afternoon

Direct Lighting from the SunDirect Lighting from the Sun

• Per frame sun color, intensity and position extracted
from skybox.

• Bump mapping was only needed as detail texture.

sunsetsunrise late morning afternoon sunsetsunrise late morning afternoon sunsetsunrise late morning afternoon sunsetsunrise late morning afternoon

Shadow mappingShadow mapping

• Uses CBH for lowest level of detail to render shadow map using a
single draw call.

• Multi-tap PCF w/ random rotation

• Selective post process blurring of shadow edges

– Computation culling with early-z

morning mid-day late afternoon

Shadow mapping PCFShadow mapping PCF

1 tap 4 tap PCF

Shadow mapping PCFShadow mapping PCF

4 tap PCF16 tap PCF

Reusing shadow map testsReusing shadow map tests

• Store shadow in alpha

• Read previously combined results from alpha
(using projection matrix of previous frame)

• Recursively combine new and old results

• Store new shadow opacity value on alpha

• Display

Shadow mapping comparisonShadow mapping comparison

16 tap PCF 4 tap amortized

Shadow mapping comparisonShadow mapping comparison

4 tap PCF4 tap amortized

Amortized computationAmortized computation

• For additional details on this amortized
computation, see:

• Sketch: Cache Flow session
The Real-Time Reprojection Cache
Thursday, 3 August
3:45-5:00 (last talk)

Haze & Lighting for Far GeometryHaze & Lighting for Far Geometry

• Haze in distance also uses color from SH representation of sky.

– Better match with sky color than single color haze.

– Terrain blended using distance, sky blended using horizon.

• Sky texture used to project cloud shadows onto far geometry.

Fading in the sculpturesFading in the sculptures

• Cross fade between statues in museum and on pediment.

– Statue geometry is rendered only once with interpolation between the
two different lighting conditions inside the shader.

Fade In

Fade Out

Occlusion Query Geometry CullingOcclusion Query Geometry Culling

• Each cluster drawn is occlusion query tested to see how many
pixels get drawn for the current frame.
– If any pixels get drawn, the voxel is flagged to be drawn next frame.

– If no pixels get drawn, the next frame an inexpensive ‘probing’ quad is
rendered with color and Z writes disabled instead of the voxel.

All probing quads Active probing quads for current frame

OverviewOverview

• Progressive Buffers

• Video skybox

• Lighting and rendering

AcknowledgementsAcknowledgements

• John Isidoro, Jason Mitchell, and Josh Barczak for
participating in the development and implementation of
the parthenon demo.

• Eli Turner for his work on the datasets and all the
additional original artwork that went into this demo.

• Paul Debevec and Andrew Jones for providing the
Parthenon dataset and HDR skybox imagery

• For more information on Progressive Buffers see:
[Sander05] P. V. Sander and J. L. Mitchell, “Progressive Buffers:

View Dependent Geometry and Texture LOD”, Symposium on
Geometry Processing 2005

Thank you!Thank you!

• Thank you for attending!

