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IntroductionIntroduction

• At Siggraph 2004 Debevec et al presented “The Parthenon”.
– Structures laser-scanned and photographed
– Captured HDR Lighting

• Our goal was to make a real-time version of this demo using 
these datasets.



The ChallengeThe Challenge

• These sizes of the datasets are humongous!

– 15 million triangles of geometry.
• Simplified from original raw 90 million triangle model.

– 2.1GB of HDR sky imagery. 

– 300MB (@350 512x512 textures) of texture data.

• This talk focuses on techniques for compressing, 
managing, and rendering these datasets in real-time on 
our next generation graphics cards.



OverviewOverview

• Progressive Buffers

• Video skybox

• Lighting and rendering
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OverviewOverview

• A data structure and system for rendering of 
a large polygonal model:
– Out-of-core

– Texture/normal-mapping support

– Smooth transitions between levels of detail 
(no popping)



Progressive Buffer ExampleProgressive Buffer Example



Progressive Buffer ExampleProgressive Buffer Example

• Example: Five levels of detail color coded from 
Red (highest res) to green (lowest res)



• Previous work
• The progressive buffer

– Geometry LOD
– Texture LOD
– Coarse buffer hierarchy

• Automatic LOD control
• Memory management
• Results
• Future directions

Talk outlineTalk outline



Previous workPrevious work

• View-dependent rendering (early works)
• [e.g., Xia and Varshney 1996, Hoppe 1997, Luebke

and Ericson 1997, …]

–Mostly per triangle operations

• Out-of-core view-dependent rendering
[e.g., El-Sana and Chiang 2000, Vadrahan and 
Manocha 2002, Lindstrom 2003, Cignoni et al 2004, 
Yoon et al 2004, …]

– Multiple static buffers

– More efficient on current GPUs



Previous workPrevious work

• Geomorphing static buffers
[Gain 03]

• Per-vertex geomorphing
[Grabner  01]

• Our method:
– Geomorphs on GPU

– Texture mapping

– Hierarchy of clusters to reduce draw calls

• More similar to independent work of Borgeat 05



Continuous LOD controlContinuous LOD control

• Texture-mapping
Allows for lower geometric level of detail without loss 
in quality (e.g., flat regions can be textured).

• Geomorphing
A lower number of rendered triangles causes 
undesired popping when changing level of detail. 
Geomorphing provides a smoother transition.

• Summary:
– Complex models
– Wide range of graphics hardware
– No need for tiny pixel-sized triangles



The progressive buffer (PB)The progressive buffer (PB)
Preprocess (mostly based on previous methods):
• Split model into clusters 
• Parametrize clusters and sample textures
• Create multiple (e.g., five) static vertex/index buffers for 

different LODs, each having ¼ of the vertices of its parent
– We achieved this by simplifying each chart at time from one LOD 

down to the next, also simplifying the boundary vertices to its 
neighbor

– Simplify respecting boundary constraints and preventing texture 
flips
[Cohen 98, Sander 01]

• Perform vertex cache optimization for each of these buffers 
[DX9; Hoppe 99]



Texture parametrizationTexture parametrization
• Goal: Penalizes undersampling

– L2 geometric stretch of Sander et al. [2001]

– Hierarchical algorithm to generate texture 
coordinates



Straight texture boundariesStraight texture boundaries

coarse meshcoarse mesh

fine meshfine mesh

texture maptexture map



Straight boundary distortionStraight boundary distortion



Texture packingTexture packing

• Tetris packing [Levy 02]
– Goal: minimize wasted space (red)

– Place a chart at a time 
(from largest to smallest)

– Pick best position and rotation
(minimize wasted space)

– Repeat above for multiple 
square dimensions

• pick best



The progressive buffer (PB)The progressive buffer (PB)

Static buffers:
• Each static buffer will contain an 

index buffer and two vertex 
buffers:
– Fine vertex buffer

Representing the vertices in the current 
LOD

– Coarse vertex buffer
Vertex-aligned with the fine buffer such that 
each vertex corresponds to the “parent”
vertex of the fine buffer in the next coarser 
LOD
(Note: requires vertex duplication)
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The progressive buffer (PB)The progressive buffer (PB)

Vertex parents for LOD=4: vs,vt,vv vu
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The progressive buffer (PB)The progressive buffer (PB)

Runtime:

• A static buffer is streamed to 
vertex shader 
(LOD determined based on cluster’s center
distance to camera)

• Vertex shader smoothly blends 
position, normal and UVs. 
(blending weight based on vertex distance to 
camera) PBi
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• Decrease level of detail:
– Geomorph

PBi orange yellow

– Switch buffer
PBi PBi-1

– Geomorph
PBi-1 yellow green

– …

• Increase level of detail by reversing the order of 
operations.

Buffer geomorphingBuffer geomorphing
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vertex LOD
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LOD bands and weightsLOD bands and weights

vertex LOD
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Texture LODTexture LOD
• Analogous to vertex LOD

• Each LOD also has texture

• Each coarser LOD has ¼ of the # of vertices and ¼ of the # 
of texels of the previous LOD

• Essentially, we drop the highest mip level when coarsening, 
and add a mip level when refining

• Textures are blended just like vertices:

– Vertex geomorph weight passed down to pixel shader

– Pixel shader performs two fetches (one per LOD)

– Pixel shader blends resulting colors according to the interpolated 
weight



Coarse buffer hierarchy (CBH)Coarse buffer hierarchy (CBH)
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• Store coarse LOD of all clusters in a single 
vertex/index/texture buffer in video memory

• Group draw calls when adjacent clusters are 
far from camera
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Coarse buffer hierarchy (CBH)Coarse buffer hierarchy (CBH)

• Binary tree constructed using a bottom-up 
greedy merge algorithm

• Priority metric is the radius of bounding 
sphere of potential merged cluster
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CBH texturesCBH textures

• Textures of voxels at coarsest LOD are grouped:

• Always stored in video memory

• Texture coordinates in the CBH buffer adjusted.

• No visible popping when switching from coarse 
static buffer to CBH buffer



Limitations of data structureLimitations of data structure
• Vertex buffer size is doubled 

(but only small subset of data resides in video memory)

• Clusters should be about the same size 
(a large cluster would limit minimum LOD band size)

• Larger number of draw calls than purely 
hierarchical algorithms
(cannot switch textures within same draw call;
coarse level hierarchy partly addresses this)

• Texture stretching due to straight boundaries



Automatic LOD controlAutomatic LOD control

• Bounds:
– System memory

– Video memory

– Framerate (less stable)

– Maximum band size

• Values of k and s slowly adjusted accordingly to 
remain within the above bounds
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Memory managementMemory management

• Separate thread loads data, and based on 
distance to viewer sets priorities as follows:

No

No

Yes

Yes

Video memory*

100MBYes3 (active)

Full datasetNo0 (not needed)

50MBYes1 (needed soon)

20MBYes2 (almost active)

Sample boundsSystem memoryPriority

*Priority (with LRU as tie-breaker) used for determining what is loaded on video memory



Memory managementMemory management

• We compute continuous LOD of each buffer.

• Taking the integer part, we get the static buffer, 
and assign it priority 3:

• If the continuous LOD is within a specified 
threshold of another static buffer’s LOD, we set 
that buffer’s priority accordingly:

0.75Video memory2evideo

1.00System memory1esystem

ExampleTargetPriorityThreshold



Unavailable clusters
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Prefetching resultsPrefetching results
• By prefetching and keeping approximately 20% of 

additional data than that being rendered, we 
ensure we have the appropriate cluster LODs 
required for rendering

• Without prefetching, several buffers may become 
unavailable:

• May vary dramatically based on hard drive seek 
times, background tasks, other CPU usage.
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Shadow map exampleShadow map example

• Uses CBH to do one draw call to render shadow 
map



Instancing exampleInstancing example
1600 dragons, 240M polygons1600 dragons, 240M polygons



Instancing exampleInstancing example



Possible improvementsPossible improvements

Take advantage of new hardware features:

• With performant vertex fetch, can consider fetching 
all coarse vertex data (20 bytes) from textures to 
avoid buffer duplication

• Instead of blending between two textures, one of 
which simply contains an extra mip level, we can:

– query mip level for highest LOD

– adjust it based on blending weights with lowest LOD

– perform a single fetch



Future workFuture work

• Hierarchical CBH textures
(requires multiple texture coordinates)

• Animated geometry
(need to preprocess conservative bounding 
spheres)

• Tiled geometry
(need to simplify respecting boundary constraints)



SummarySummary

• Presented new LOD algorithm for rendering 
large datasets

• Features include:
– Out-of-core rendering with prefetching
– Texture-mapping
– Geomorphing
– Uses “GPU-friendly” irregular meshes
– Only requires based shader programmability



Up Next: Video SkyboxUp Next: Video Skybox

• Progressive Buffers

• Video skybox
• Lighting and Rendering



Input Skybox ImageryInput Skybox Imagery

• Input: 2.1GB compressed HDR imagery, captured at one 
minute intervals over the course of the day. 
– (670 frames of data: each frame 1024x1024 anglemap)

• Goal: we would like to compress this data in a compact 
and performant manner for playback and HW rendering.

8am8am 10am10am noonnoon

2pm2pm 4pm4pm sunsetsunset



Preprocessing: Preprocessing: ResamplingResampling

• HDR skybox re-sampled from angular mapping 
to a paraboloid environment map.
– Simplifies per-pixel math for rendering the sky box only 

tex2dproj is required.



Preprocessing: SH EstimationPreprocessing: SH Estimation

• HDR lighting information is derived and recorded for 
each frame using 3rd order spherical harmonics (SH).

• This lighting information is used to provide diffuse 
lighting information to render the scene. 



Preprocessing: Range ReductionPreprocessing: Range Reduction

• Each frame of video is divided through by the SH 
representation in order to reduce the range of 
each frame to a 24-bit RGB image. 



Encoding the Video SequenceEncoding the Video Sequence

• The reduced range video 
frames can be compressed 
using a standard video 
codec.  
– We found that DivX and XVid

worked well. 

– 1024x1024, 670 frame 
sequence reduced from 2.1GB 
to 38.1MB

– 72k for SH coefficients for all 
frames. (27 floats per frame)

– 1MB optic flow data……



Preprocessing: Optic FlowPreprocessing: Optic Flow

• Making a little video go a long way
– 670 frames at 30fps is only @ 23 seconds of video.
– Playback at a lower frame rate is choppy even with lerp between 

frames.

• Estimate optic flow between frames to estimate cloud 
motion.

• At runtime optic flow is used to warp one frame into the 
next.
– Gives additional in-between frames, can use lower FPS video.

• Optic flow is stored as a 16x16x1024 R16G16 volume 
texture
– Texture filtering for smooth interpolation between flow fields.



Video PlaybackVideo Playback

• At runtime video is decoded and used as a texture.
– Video is decompressed on the fly in its own thread.

• Optic flow based warping between frames in pixel shader.
– Current frame is warped toward next frame.

– Next frame is inverse warped back towards current frame.

– Results are lerped together. (similar to morphing)

– Flow is selectively applied (in area around sun, the flow is attenuated)

• Summary
– Fast (two lookups, and blend)

– Compact (DivX compression)



Up Next: Lighting and RenderingUp Next: Lighting and Rendering

• Progressive Buffers

• Video skybox

• Lighting and Rendering



sunsetsunrise late morning afternoon sunsetsunrise late morning afternoon

Ambient Lighting from SkyAmbient Lighting from Sky

• Per-vertex bent normal used to lookup into SH representation.

– Cartesian SH evaluation used, 12 instructions for 3rd order.

• Ambient occlusion texture (half resolution) used to attenuate 
ambient lighting.

sunsetsunrise late morning afternoon sunsetsunrise late morning afternoon



Direct Lighting from the SunDirect Lighting from the Sun

• Per frame sun color, intensity and position extracted 
from skybox. 

• Bump mapping was only needed as detail texture.

sunsetsunrise late morning afternoon sunsetsunrise late morning afternoon sunsetsunrise late morning afternoon sunsetsunrise late morning afternoon



Shadow mappingShadow mapping

• Uses CBH for lowest level of detail to render shadow map using a
single draw call.

• Multi-tap PCF w/ random rotation

• Selective post process blurring of shadow edges

– Computation culling with early-z

morning mid-day late afternoon



Shadow mapping PCFShadow mapping PCF

1 tap 4 tap PCF



Shadow mapping PCFShadow mapping PCF

4 tap PCF16 tap PCF



Reusing shadow map testsReusing shadow map tests

• Store shadow in alpha

• Read previously combined results from alpha 
(using projection matrix of previous frame)

• Recursively combine new and old results

• Store new shadow opacity value on alpha 

• Display



Shadow mapping comparisonShadow mapping comparison

16 tap PCF 4 tap amortized



Shadow mapping comparisonShadow mapping comparison

4 tap PCF4 tap amortized



Amortized computationAmortized computation

• For additional details on this amortized 
computation, see:

• Sketch: Cache Flow session
The Real-Time Reprojection Cache
Thursday, 3 August
3:45-5:00 (last talk)



Haze & Lighting for Far GeometryHaze & Lighting for Far Geometry

• Haze in distance also uses color from SH representation of sky.

– Better match with sky color than single color haze.

– Terrain blended using distance, sky blended using horizon. 

• Sky texture used to project cloud shadows onto far geometry.



Fading in the sculpturesFading in the sculptures

• Cross fade between statues in museum and on pediment.

– Statue geometry is rendered only once with interpolation between the 
two different lighting conditions inside the shader.

Fade In

Fade Out



Occlusion Query Geometry CullingOcclusion Query Geometry Culling

• Each cluster drawn is occlusion query tested to see how many 
pixels get drawn for the current frame. 
– If any pixels get drawn, the voxel is flagged to be drawn next frame.

– If no pixels get drawn, the next frame an inexpensive ‘probing’ quad is 
rendered with color and Z writes disabled instead of the voxel.

All probing quads Active probing quads for current frame



OverviewOverview

• Progressive Buffers

• Video skybox

• Lighting and rendering
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Thank you!Thank you!

• Thank you for attending!


