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When a Brick Wall Isn’t Just a 
Wall of Bricks…
When a Brick Wall Isn’t Just a 
Wall of Bricks…
• Concept versus realism

– Stylized object work well in some scenarios

– In realistic applications, we want the objects to be as 
detailed as possible

• Painting bricks on a wall isn’t necessarily enough
– Do they look / feel / smell like bricks? 

– What does it take to make the player really feel like they’ve 
hit a brick wall?



What Makes an Environment 
Truly Immersive?
What Makes an Environment 
Truly Immersive?
• Rich, detailed worlds help the illusion of realism
• Players feel more immersed into complex worlds

– Lots to explore
– Naturally, game play is still key

• If we want the players to think they’re near a brick 
wall, it should look like one:
– Grooves, bumps, scratches 
– Deep shadows
– Turn right, turn left – still looks 3D!



The Problem We’re Trying to 
Solve
The Problem We’re Trying to 
Solve
• An age-old 3D rendering balancing act

– How do we render complex surface topology 
without paying the price on performance?

• Wish to render very detailed surfaces 
• Don’t want to pay the price of millions of triangles

– Vertex transform cost
– Memory footprint

• Would like to render those detailed surfaces accurately
– Preserve depth at all angles
– Dynamic lighting
– Self occlusion resulting in correct shadowing

How do we render detailed surface topology without paying the price on 
perf?



Solution: Parallax Occlusion 
Mapping
Solution: Parallax Occlusion 
Mapping
• Per-pixel ray tracing of a height field in tangent space
• Correctly handles complicated viewing phenomena and 

surface details
– Displays motion parallax

– Renders complex geometric surfaces such as displaced text / 
sharp objects

• Calculates occlusion and filters visibility samples for soft 
self-shadowing

• Uses flexible lighting model
• Adaptive LOD system to maximize quality and 

performance

The effect of motion parallax for a surface can be computed by applying a height 
map and offsetting each pixel in the height map using the geometric normal and the 
eye vector. As we move the geometry away from its original position using that ray, 
the parallax is obtained by the fact that the highest points on the height map would 
move the farthest along that ray and the lower extremes would not appear to be 
moving at all. To obtain satisfactory results for true perspective simulation, one 
would need to displace every pixel in the height map using the view ray and the 
geometric normal. 
Essentially its a simulated displacement mapping technique that occurs in texture 
space. Displaces “down” - existing surface has a height value of 1. It is a sampling 
algorithm – think of it as rendering height slices. Accurately approximates parallax 
as viewing angle changes. Properly self shadows – “soft” shadows. Integrates with 
all commonly used lighting models. 



Parallax Occlusion Mapping 
versus Normal Mapping
Parallax Occlusion Mapping 
versus Normal Mapping

Scene rendered with Parallax 
Occlusion Mapping

Scene rendered with normal 
mapping

Realistic city scene rendered using parallax occlusion mapping applied to the 
cobblestone sidewalk in (left) and using the normal mapping technique in 
(right).



• Parallax occlusion mapping was used to render extreme high details 
for various surfaces in the demo
– Brick buildings
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• Parallax occlusion mapping was used to render extreme high details 
for various surfaces in the demo
– Brick buildings

– Wood-block letters for the toy shop 
sign

– Cobblestone sidewalk

• Using multiple lighting models
– Some just used diffuse lighting

– Others simulated wet materials

– Integrated view-dependent reflections 

– Shadow mapping was easily integrated into the materials with parallax 
occlusion mapped surfaces

• All objects used the level-of-details system

Surface Details in the ToyShop 
Demo
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Approximating Surface DetailsApproximating Surface Details

• First there was bump mapping… [Blinn78]
– Rendering detailed and uneven 

surfaces where normals are perturbed 
in some pre-determined manner 

– Popularized as normal mapping –
as a per-pixel technique

– No self-shadowing of the surface

– Coarse silhouettes expose the actual geometry being drawn

• Doesn’t take into account geometric 
surface depth
– Does not exhibit parallax

Apparent displacement of the 
object due to viewpoint change

The surface should appear to move correctly with respect to the viewer



Selected Related WorkSelected Related Work

• Horizon mapping [Max88]

• Interactive horizon mapping 
[Sloan00]

• Parallax mapping [Kaneko01]

• Parallax mapping with offset limiting [Welsh03]

• Hardware Accelerated Per-Pixel 
Displacement Mapping [Hirche04]

We would like to generate the feeling of motion parallax while rendering detailed 
surfaces. Recently many approaches appeared to solve this for rendering. 
Parallax Mapping was introduced by Kaneko in 2001 and popularized by Welsh 
in 2003 with offset limiting technique

Parallax mapping
• Simple way to approximate motion parallax effects on a given polygon
• Dynamically distorts the texture coordinate to approximate motion parallax effect
• Shifts texture coordinate using the view vector and the current height map value
• Issues:

• Doesn’t accurately represent surface depth
• Swimming artifacts at grazing angles 
• Flattens geometry at grazing angles

• Pros:
• No additional texture memory and very quick (~3 extra instructions)

Horizon Mapping:
• Encodes the height of the shadowing horizon at each point on the bump map in a series 

of textures for 8 directions
• Determines the amount of self-shadowing for a given light position
• At each frame project the light vector onto local tangent plane and compute per-pixel 

lighting
• Draw backs: additional texture memory

Parallax Mapping with Offset Limiting
• Same idea as in [Kaneko01]
• Uses height map to determine texture coordinate offset for approximating parallax
• Uses view vector in tangent space to determine how to offset the texels
• Reduces visual artifacts at grazing angles (“swimming texels) by limiting the offset to be at most 

equal to current height value
• Flattens geometry significantly at grazing angles (just a heuristic)
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Parallax Occlusion MappingParallax Occlusion Mapping

• Introduced in [Browley04] “Self-Shadowing, Perspective-
Correct Bump Mapping Using Reverse Height Map Tracing”

• Efficiently utilizes programmable GPU pipeline for interactive 
rendering rates

• Current algorithm has several significant improvements over 
the earlier technique



Parallax Occlusion Mapping 
SI3D 2006: New Contributions
Parallax Occlusion Mapping 
SI3D 2006: New Contributions

• Increased precision of height field – ray intersections

• Dynamic real-time lighting of surfaces 
– With soft shadows due to self-occlusion under varying light 

conditions

• Directable level-of-detail control system 
– Smooth transitions between levels

• Motion parallax simulation with perspective-correct depth

Our technique can be applied to animated objects and fits well within established art 
pipelines of games and effects rendering. The implementation makes effective use 
of current GPU pixel pipelines and texturing hardware for interactive rendering. The 
algorithm allows scalability for a range of existing GPU products. 



Encoding Displacement 
Information
Encoding Displacement 
Information

Tangent-space normal map 

All computations are done in tangent space, and thus 
can be applied to arbitrary surfaces

Height map (displacement values)

We encode surface displacement information in a tangent-space normal map 
accompanied by a scalar height map. Since tangent space is inherently locally 
planar for any point on an arbitrary surface, regardless of its curvature, it provides 
an intuitive mapping for surface detail information. We perform all calculations for 
height field intersection and visibility determination in tangent space, and compute 
the illumination in the same domain. 



1.0

Polygonal surface

Extruded surface

Parallax DisplacementParallax Displacement

0.0

View ray
Input texture coordinate

Displaced point on surfaceResult of normal mapping

toff

The effect of motion parallax for a surface can be computed by applying a height 
map and offsetting each pixel in the height map using the geometric normal and the 
view vector. We trace a ray through the height field to find the closest visible point 
on the surface. The core idea of the presented algorithm is to trace the pixel being 
currently rendered in reverse in the height map to determine which texel in the 
height map would yield the rendered pixel location if in fact we would have been 
using the actual displaced geometry. The input mesh provides the reference plane 
for displacing the surface downwards. The height field is normalized for correct ray-
height field intersection computation (0 representing the reference polygon surface 
values and 1 representing the extrusion valleys).



Implementation: Per-VertexImplementation: Per-Vertex

• Compute the viewing direction, the light direction 
in tangent space

• Can compute the parallax offset vector (as an 
optimization)

– Interpolated by the rasterizer

Compute the parallax offset vector P to determine maximum visual offset in texture-
space for current pixel being rendered.



Implementation: Per-PixelImplementation: Per-Pixel

• Ray-cast the view ray along the parallax offset vector

• Ray – height field profile intersection as a texture offset

– Yields the correct displaced point visible from the given view angle

• Light ray – height profile intersection for occlusion 
computation to determine the visibility coefficient

• Shading

– Using any attributes

– Any lighting model

Ray cast the view ray  along the parallax offset vector to compute the height profile 
– ray intersection point. We sample the height field profile along the parallax offset 
vector to determine the correct displaced point on the extruded surface. 
Approximating the height field profile as a piecewise linear curve allows us to have 
increased precision for the desired intersection (versus simply taking the nearest 
sample). This yields the texture coordinate shift offset (parallax offset) necessary to 
arrive at the desired point on the extruded surface. We add this parallax offset 
amount to the original sample coordinates to yield texture offset coordinates.
If computing shadowing and self-occlusion effects, we can use the texture offset 
coordinates to perform visibility computation
for light direction. In order to do that, we ray cast the light direction ray sampling the 
height profile along the way for occlusions. This results in a visibility coefficient for 
the given sample position. 
Using the texture offset coordinates and the visibility coefficient, we can shade the 
given pixel using its attributes,  such as applied textures (albedo, gloss, etc), the 
normal from the normal map and the light vector. 



Height Field Profile TracingHeight Field Profile Tracing

1.0

Polygonal surface

0.0

Extruded surface

View ray

t0

Parallax offset vector 

δ

toff

In order to compute the height field-ray intersection we approximate the height field 
(seen as the light green curve in this figure) as a piecewise linear curve (seen here 
as dark green segments), intersecting it with the given ray (in this case, the view 
direction) for each linear section. We start by tracing from the input sample 
coordinates to along the computed parallax offset vector P . We perform a linear 
search for the intersection along the parallax offset vector. We sample a linear 
segment from the height field profile by fetching two samples step size δ apart. 
We successively test each segments endpoints to see if it would possibly 
intersect with the view ray. For that, we simply use the height displacement value 
from each end point to see if they are above current horizon level. Once such pair of 
end points is found, we compute an intersection between this linear segment and 
the view ray. The intersection of the height field profile yields the point on the 
extruded surface that would be visible to the viewer.



Real-Time Relief Mapping 
[Policarpo05]
Real-Time Relief Mapping 
[Policarpo05]
• Similar idea to one presented here

– Per-pixel ray tracing to arrive at displaced point 
on the extruded surface

• Different implementation
– A combination of a static linear search and a 

binary search to determine an approximation for ray - height field 
intersection

– Linear search finds a point below the extruded surface along the ray

– Binary search is used to arrive at approximate displaced point on the 
surface

– Does not compute the ray-surface intersection, just samples the height 
field

• Hard shadows computed for self-occlusion based  shading

Techniques such as [Policarpo et al. 2005; Oliveira and Policarpo 2005] determine 
the intersection point by a combination of a linear and a binary search routines. The 
relief mapping algorithm approximates the height field with piecewise constant 
curve, and doesn’t actually compute the full intersection, therefore will suffer from 
aliasing if not enough samples are taken. This technique also computes shadows 
for surface features, however since it simply tests whether a particular feature is 
visible or not, this results in hard shadows. 
Mapping relief data in tangent space for per-pixel displacement mapping in real-time 
was proposed in [Brawley and Tatarchuk 2004; Policarpo et al. 2005; McGuire and 
McGuire 2005] and further extended in [Oliveira and Policarpo et al. 2005] to 
support silhouette generation. These methods take excellent advantage of the 
programmable pixel pipeline efficiency by performing height field-ray intersection in 
the pixel shader to compute the displacement information. These approaches 
generate dynamic lighting with self-occlusion, shadows and motion parallax. Using 
the visibility horizon to compute hard shadows as in [Policarpo et al. 2005; McGuire 
and McGuire 2005; Oliveira and Policarpo 2005] can result in shadow aliasing 
artifacts. All of the above approaches exhibit strong aliasing and excessive flattening 
at steep viewing angles. No explicit level of detail schemes were provided with these 
approaches, relying on texture filtering capabilities of the GPUs. 



Binary Search for Surface-Ray 
Intersection
Binary Search for Surface-Ray 
Intersection

• Binary search refers to repeatedly halving 
the search distance to determine the 
displaced point
– The height field is not sorted a priori

– Requires dependent texture fetches for 
computation

• Incurs latency cost for each successive depth level

• Uses 5 or more levels of dependent texture fetches

The binary search helps finding an approximate height field intersection 
utilizing bilinear texture filtering to interpolate the intersection point. The 
intersection of the surface is approximated with texture filtering, thus only 
using 8 bit of precision for intersection computation. This results in visible 
stair-stepping artifacts at steep viewing angles. Depth biasing toward the 
horizon hides these artifacts but introduces excessive feature flattening at 
oblique angles



Per-Pixel Displacement Mapping 
with Distance Functions 
[Donnely05]

Per-Pixel Displacement Mapping 
with Distance Functions 
[Donnely05]
• Also a real-time technique for rendering per-pixel displacement 

mapped surfaces on the GPU

– Stores a ‘slab’ of distances 
to the height field in a 
volumetric texture

• To arrive at the displaced point, 
walk the volume texture in the 
direction of the ray 

– Instead of performing a 
ray-height field intersection

– Uses dependent texture fetches, 
amount varies

A precomputed three-dimensional distance map for a  rendered object can be used 
for surface extrusion along a given view direction ([Donnelly 2005]). The cost of a 
3D texture and dependent texture fetches’ latency make this algorithm not 
applicable to most real-time applications. Each texture fetch into the distance map is 
not texture-cache coherent



Per-Pixel Displacement Mapping 
with Distance Functions 
Per-Pixel Displacement Mapping 
with Distance Functions 

• Visible aliasing
– Not just at grazing angles

• Only supports precomputed 
height fields
– Requires preprocessing to compute volumetric distance map
– Volumetric texture size is prohibitive 

• The idea of using a distance map to arrive at the 
extruded surface is very useful



Linear Search for Surface-Ray 
Intersection
Linear Search for Surface-Ray 
Intersection
• We use just the linear search which requires only 

regular texture fetches
– Fast performance
– Using dynamic flow control, can break out of execution once 

the intersection is found

• However - simply using linear search is not enough!
– Linear search alone does not yield good rendering results

• Requires high precision calculations for surface-ray intersections

• Otherwise produces visible aliasing artifacts

For our computation we use only just the linear search to arrive at the 
intersection point. Note that this search utilizes low-latency regular texture 
fetching and results in good texture cache coherency thus resulting in faster 
performance. Additionally, using the dynamic flow control feature of the latest 
consumer GPUs, we can stop tracing the height field profile section once the 
intersection is found. Note that just simply using a linear search alone is not 
enough. In order to use just the linear search we must require high precision 
calculations for surface-ray intersection. Otherwise when using linear search 
with just bilinear texture fetches for approximating extruded intersection of 
the height field with a given ray, the results display very strong aliasing. 



Comparison of Intersection 
Search Types and Depth Bias 
Application

Comparison of Intersection 
Search Types and Depth Bias 
Application

Relief Mapping with both binary and linear 
searches and no depth bias applied: Notice 
the aliasing artifacts

Surface approximation methods affect resulting precision for intersection 
computation. Piecewise constant representation of the surface yields 
incorrect intersection results just with linear search. Techniques such as 
[Policarpo et al. 2005; Oliveira and Policarpo 2005] determine the 
intersection point by a combination of a linear and a binary search routines. 
These approaches sample the height field as a piecewise constant function. 
The linear search allows arriving at a point below the extruded surface 
intersection with the view ray. The following binary search helps finding an 
approximate height field intersection utilizing bilinear texture filtering to 
interpolate the intersection point. The intersection of the surface is 
approximated with texture filtering, thus only using 8 bit of precision for 
intersection computation. This results in visible stair-stepping artifacts at 
steep viewing angles (as seen in first figure). Even a combination of binary 
and linear search with piecewise constant representation does not yield good 
results - unsuitable for production quality rendering. Significant aliasing at 
grazing angles makes it unusable. That’s why binary search is introduced in 
[Policarpo05]. Depth biasing toward the horizon hides these artifacts but 
introduces excessive feature flattening at oblique angles (seen in this figure) 
With our algorithm we perform only a linear search combined with a high 
precision intersection computation for extruded surface-ray intersection. This 
allows us to preserve perspective-correct depth even at oblique angles as 
well as display very little or none aliasing due to missed intersections of the 
extruded surface with the view ray.



Comparison of Intersection 
Search Types and Depth Bias 
Application

Comparison of Intersection 
Search Types and Depth Bias 
Application

Relief Mapping with both binary and linear 
searches and depth bias applied: Notice the 
horizon flattening

Surface approximation methods affect resulting precision for intersection 
computation. Piecewise constant representation of the surface yields 
incorrect intersection results just with linear search. Techniques such as 
[Policarpo et al. 2005; Oliveira and Policarpo 2005] determine the 
intersection point by a combination of a linear and a binary search routines. 
These approaches sample the height field as a piecewise constant function. 
The linear search allows arriving at a point below the extruded surface 
intersection with the view ray. The following binary search helps finding an 
approximate height field intersection utilizing bilinear texture filtering to 
interpolate the intersection point. The intersection of the surface is 
approximated with texture filtering, thus only using 8 bit of precision for 
intersection computation. This results in visible stair-stepping artifacts at 
steep viewing angles (as seen in first figure). Even a combination of binary 
and linear search with piecewise constant representation does not yield good 
results - unsuitable for production quality rendering. Significant aliasing at 
grazing angles makes it unusable. That’s why binary search is introduced in 
[Policarpo05]. Depth biasing toward the horizon hides these artifacts but 
introduces excessive feature flattening at oblique angles (seen in this figure) 
With our algorithm we perform only a linear search combined with a high 
precision intersection computation for extruded surface-ray intersection. This 
allows us to preserve perspective-correct depth even at oblique angles as 
well as display very little or none aliasing due to missed intersections of the 
extruded surface with the view ray.



Comparison of Intersection 
Search Types and Depth Bias 
Application

Comparison of Intersection 
Search Types and Depth Bias 
Application

Parallax Occlusion Mapping rendered with 
just linear search but the high precision 
height field intersection computation

Surface approximation methods affect resulting precision for intersection 
computation. Piecewise constant representation of the surface yields 
incorrect intersection results just with linear search. Techniques such as 
[Policarpo et al. 2005; Oliveira and Policarpo 2005] determine the 
intersection point by a combination of a linear and a binary search routines. 
These approaches sample the height field as a piecewise constant function. 
The linear search allows arriving at a point below the extruded surface 
intersection with the view ray. The following binary search helps finding an 
approximate height field intersection utilizing bilinear texture filtering to 
interpolate the intersection point. The intersection of the surface is 
approximated with texture filtering, thus only using 8 bit of precision for 
intersection computation. This results in visible stair-stepping artifacts at 
steep viewing angles (as seen in first figure). Even a combination of binary 
and linear search with piecewise constant representation does not yield good 
results - unsuitable for production quality rendering. Significant aliasing at 
grazing angles makes it unusable. That’s why binary search is introduced in 
[Policarpo05]. Depth biasing toward the horizon hides these artifacts but 
introduces excessive feature flattening at oblique angles (seen in this figure) 
With our algorithm we perform only a linear search combined with a high 
precision intersection computation for extruded surface-ray intersection. This 
allows us to preserve perspective-correct depth even at oblique angles as 
well as display very little or none aliasing due to missed intersections of the 
extruded surface with the view ray.
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B

Height Field Profile – Ray 
Intersection
Height Field Profile – Ray 
Intersection

Intersections resulted from Intersections resulted from 
direct height profile query direct height profile query 
(piecewise constant (piecewise constant 
approximation)approximation)

Intersections due to Intersections due to 
piecewise linear height field piecewise linear height field 
approximationapproximation

Production quality results require more precise intersection. Other ray tracing-based 
mapping techniques query the height profile for the closest location to the viewer 
along the view direction. In the case presented here, these techniques would report 
point A as the displacement point. This results in the stair stepping artifacts visible in 
the picture on the left. The artifacts are particularly strong at oblique viewing angles, 
where the apparent parallax is larger. We perform actual line intersection 
computation for the ray and the linear section of the approximated height field. This 
yields the intersection point B. 
In the figure on the right, you see the smoother surface rendered using higher 
precision height field intersection technique. In both figures the identical number of 
samples was used during tracing view direction rays. 



Higher Quality With Dynamic 
Sampling Rate
Higher Quality With Dynamic 
Sampling Rate
• Sampling-based algorithms are prone to aliasing

SM 2.0 POM with just 8 samples and no 
depth bias

One of the biggest problems with the aliasing algorithms exists due to aliasing 
artifacts. Here you see the result of our 2004 technique intersecting the height field 
with a fixed sampling rate. Note the aliasing artifacts visible with this technique at 
the grazing angle. To fix this we applied perspective bias to reduce the aliasing 
artifacts, as visible in the picture here. This results in strong flattening of the 
surface details along the horizon, which is undesirable. 
Dynamically scaling the sampling rate ensures that the resulting extruded surface is 
far less likely to display aliasing artifacts and certainly does not display any 
flattening as in this figure. Therefore the surfaces rendered with our approach 
display perspective-correct depth at all angles. 
On the latest GPUs we can utilize dynamic flow control instructions to dynamically 
scale the sampling rate during ray tracing. We express the sampling rate as a linear 
function of the angle between the geometric normal  and the view direction ray. This 
ensures that we take more samples when the surface is viewed at steep grazing 
angles, where more samples are desired. 



Higher Quality With Dynamic 
Sampling Rate
Higher Quality With Dynamic 
Sampling Rate
• Sampling-based algorithms are prone to aliasing

• One possible “solution” – depth bias 
– Flatten toward horizon

SM 2.0 POM with just 8 samples and depth 
bias

One of the biggest problems with the aliasing algorithms exists due to aliasing 
artifacts. Here you see the result of our 2004 technique intersecting the height field 
with a fixed sampling rate. Note the aliasing artifacts visible with this technique at 
the grazing angle. To fix this we applied perspective bias to reduce the aliasing 
artifacts, as visible in the picture here. This results in strong flattening of the 
surface details along the horizon, which is undesirable. 
Dynamically scaling the sampling rate ensures that the resulting extruded surface is 
far less likely to display aliasing artifacts and certainly does not display any 
flattening as in this figure. Therefore the surfaces rendered with our approach 
display perspective-correct depth at all angles. 
On the latest GPUs we can utilize dynamic flow control instructions to dynamically 
scale the sampling rate during ray tracing. We express the sampling rate as a linear 
function of the angle between the geometric normal  and the view direction ray. This 
ensures that we take more samples when the surface is viewed at steep grazing 
angles, where more samples are desired. 



Higher Quality With Dynamic 
Sampling Rate
Higher Quality With Dynamic 
Sampling Rate
• Sampling-based algorithms are prone to aliasing

• Solution: Dynamically adjust the sampling rate for ray 
tracing as a linear function of angle between the 
geometric normal and the view direction ray

POM SM 3.0: Perspective-correct 
depth with dynamic sampling rate

Aliasing at grazing angles due to static
sampling rate

)(ˆˆ
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One of the biggest problems with the aliasing algorithms exists due to aliasing 
artifacts. Here you see the result of our 2004 technique intersecting the height field 
with a fixed sampling rate. Note the aliasing artifacts visible with this technique at 
the grazing angle. To fix this we applied perspective bias to reduce the aliasing 
artifacts, as visible in the picture here. This results in strong flattening of the 
surface details along the horizon, which is undesirable. 
Dynamically scaling the sampling rate ensures that the resulting extruded surface is 
far less likely to display aliasing artifacts and certainly does not display any 
flattening as in this figure. Therefore the surfaces rendered with our approach 
display perspective-correct depth at all angles. 
On the latest GPUs we can utilize dynamic flow control instructions to dynamically 
scale the sampling rate during ray tracing. We express the sampling rate as a linear 
function of the angle between the geometric normal  and the view direction ray. This 
ensures that we take more samples when the surface is viewed at steep grazing 
angles, where more samples are desired. 
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The features of the height map can in fact cast shadows onto the surface. Once we 
arrive at the point on the displaced surface (highlighted here) we can compute its 
visibility from the any light source. For that, we cast a ray toward the light source 
in question and perform horizon visibility queries of the height field profile along the 
light direction ray. If there are intersections of the height field profile with the light 
vector, then there are occluding features and the point in question will be in 
shadow. This process allows us to generate shadows due to the object features’
self-occlusions and object interpenetration. 



Soft Shadows ComputationSoft Shadows Computation

• Simply determining whether the current feature is 
occluded yields hard shadows

[Policarpo05]

While computing the visibility information, we could simply stop at the first 
intersection blocking the horizon from the current view point. This yields the 
horizon shadowing value specifying whether the displaced pixel is in shadow. Other 
techniques, as seen in this picture, use this approach. This generates hard 
shadows which may have strong aliasing artifacts as you can see in the high-
lighted portion. 



Soft Shadows ComputationSoft Shadows Computation

• We can compute soft 
shadows by filtering the 
visibility samples during 
the occlusion computation

• Don’t compute shadows
for objects not facing 
the light source:

N ● L > 0

In our algorithm, we continue sampling the height field along the light ray past the 
first shadowing horizon until we reach the next fully visible point on the surface. 
Then we filter the resulting visibility samples to compute soft shadows with smooth 
edges.
We optimize the algorithm by only performing visibility query for areas which are lit 
by the given light source with a simple test.



Light 
vector

h1
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h3
h4
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h6

h0

h7

Penumbral Size ApproximationPenumbral Size Approximation

We sample the height value h0 at the shifted texture coordinate toff. The sample h0 is 
our reference (“surface”) height. We then sample n other samples along the light 
ray, subtracting h0 from each of the successive samples hi. This allows us to 
compute the blocker-to-receiver ratio as in figure. 
We note that the closer the blocker is to the surface, the smaller the resulting 
penumbra. We compute the the visibility coefficient by scaling the contribution of 
each sample by the distance from the reference sample. We apply this visibility 
coefficient during the lighting computation for generation of smoothly soft shadows. 
In combination with bi- or trilinear texture filtering in hardware, we are able to obtain 
well-behaved soft shadows without any edge aliasing or filtering artifacts present in 
many shadow mapping techniques. 
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The blocker heights hi allow us to 
compute the blocker-to-receiver
ratio

wp = ws (dr – db) / db

Penumbral Size ApproximationPenumbral Size Approximation

We sample the height value h0 at the shifted texture coordinate toff. The sample h0 is 
our reference (“surface”) height. We then sample n other samples along the light 
ray, subtracting h0 from each of the successive samples hi. This allows us to 
compute the blocker-to-receiver ratio as in figure. 
We note that the closer the blocker is to the surface, the smaller the resulting 
penumbra. We compute the the visibility coefficient by scaling the contribution of 
each sample by the distance from the reference sample. We apply this visibility 
coefficient during the lighting computation for generation of smoothly soft shadows. 
In combination with bi- or trilinear texture filtering in hardware, we are able to obtain 
well-behaved soft shadows without any edge aliasing or filtering artifacts present in 
many shadow mapping techniques. 



Shadows Comparison 
Example
Shadows Comparison 
Example

Relief Mapping with Hard Shadows
Parallax Occlusion Mapping 
with Soft Shadows

Here you see a comparison of rendering the same scene with relief mapping 
with hard shadows (on the left) and with parallax occlusion mapping with 
approximate soft shadows (on the right). We note that the closer the blocker 
is to the surface, the smaller the resulting penumbra. We compute the 
visibility coefficient by scaling the contribution of each sample by the 
distance from the reference sample. We apply this visibility coefficient during 
the lighting computation for generation of smoothly soft shadows. 
In combination with bi- or trilinear texture filtering in hardware, we are able to 
obtain well-behaved soft shadows without any edge aliasing or filtering 
artifacts present in many shadow mapping techniques. 



Illuminating the SurfaceIlluminating the Surface

• Use the computed texture coordinate offset to 
sample desired maps (albedo, normal, detail, etc.)

• Given those parameters and 
the visibility information, 
we can apply any lighting 
model as desired
– Phong
– Compute reflection / refraction
– Very flexible



Adaptive Level-of-Detail 
System
Adaptive Level-of-Detail 
System

• Compute the current mip map level 
• For furthest LOD levels, render 

using normal mapping (threshold 
level)

• As the surface approaches the 
viewer, increase the sampling rate 
as a function of the current mip 
map level

• In transition region between the 
threshold LOD level, blend 
between the normal mapping and 
the full parallax occlusion mapping

We designed an explicit level-of-detail control system for automatically controlling 
shader complexity. We determine the current mip map level directly in the pixel 
shader and use this information to transition between different levels of detail from 
the full effect to simple normal mapping. We render the lowest level of details
using regular normal mapping shading. As the surface approaches the viewer, we 
increase the sampling rate for the full parallax occlusion mapping computation as a 
function of the current mip level. We specify an artist-directable threshold level
where the transition between the parallax occlusionmapping and the normal 
mapping computations will occur. When the currently rendered surface portion is in 
the transition region, we interpolate the result of parallax occlusion mapping 
computation with the normal mapping result. We using the fractional part of the 
current mip level computed in the pixel shader. As you can compare between these 
two figures, there is no associated visual quality degradation as we move into a 
lower level of detail and the transition appears quite smooth. 



Parallax Occlusion Mapping 
vs. Actual Geometry
Parallax Occlusion Mapping 
vs. Actual Geometry

An 1,100 polygon object rendered with 
parallax occlusion mapping 

A 1.5 million polygon object 
rendered with diffuse lighting

We applied parallax occlusion mapping to an 1,100 polygon soldier character 
displayed on the left. We compared this result to a 1.5 million polygon soldier 
displayed on the right used to generate normal maps for the low resolution model. 
We use the same lighting model on both objects. We apply a 2048x2048 RGBα
texture map to the low resolution object. 



- 1,500,000 polygons with normal               Frame Rate:
mapping                                                    - 32 fps on ATI Radeon

- Memory: 31Mb vertex buffer                        X1600 
14Mb index buffer         

____________________________
Total: 45 Mb

Parallax Occlusion Mapping 
vs. Actual Geometry
Parallax Occlusion Mapping 
vs. Actual Geometry

-1100 polygons with parallax occlusion       Frame Rate:
mapping (8 to 50 samples used)               - 255 fps on ATI  

- Memory: 79K vertex buffer                         Radeon X1600 
6K index buffer - 235 fps with skinning

13Mb texture (3Dc) 
(2048 x 2048 maps)

_______________________________
Total: < 14 Mb

We render the low resolution soldier using DirectX on ATI Radeon X850 at 255 fps. 
From 8 to 50 samples were used during ray tracing as necessary. The memory 
requirement for this model was 79K for the vertex buffer and 6K for the index buffer, 
and 13Mb of texture memory (we use 3DC texture compression). The high 
resolution soldier model rendered on the same hardware at a rate of 32 fps. The 
memory requirement for this model was 31Mb for the vertex buffer and 14Mb for the 
index buffer. However, using our technique on an extremely low resolution model 
provided significant frame rate increase with 32Mb memory saving at comparable 
quality of rendering. Notice the details on the bullet belts and the gas mask for the 
low polygon soldier. We also animated the low resolution model with a run cycle 
using skinning in vertex shader rendering at 235 fps on the same hardware. Due to 
memory considerations, vertex transform cost for rendering, animation, and 
authoring issues, characters matching the high resolution soldier are impractical in 
current game scenarios. 



The PlanThe Plan

• What are we trying to solve?
• Quick review of existing approaches for 

surface detail rendering
• Parallax occlusion mapping details
• Discuss integration into games 

–Performance analysis and optimizations
–Considerations for authoring art assets

• Conclusions



How Does One Render Height 
Maps, Exactly?
How Does One Render Height 
Maps, Exactly?
• Two possibilities 

– Render surface details as if “pushed down” – the actual polygonal 
surface will be above the rendered surface

– In this case the top (polygon face) is at height = 1, 
and the deepest value is at 0

– Or actually push surface details upward (ala displacement 
mapping)

• This affects both the art pipeline and the actual algorithm

• In the presented algorithm, we render the surface pushed 
down



Performance vs Image QualityPerformance vs Image Quality

• Tradeoffs between speed and quality

– Less samples means more possibility for missed features and incorrect 
intersections

– This can result in stair stepping artifacts at oblique angles

• Silhouettes are not computed correctly

– Art can be authored to hide this artifact

– Alternatives exist (at the expense of memory and extra computations)

• Use vertex curvature data and texkill in the pixel shader to clip pixels at the 
silhouettes

• Relief Mapping example shows a result

• Aliasing at the object silhouettes can be very strong



Incorporate Dynamic Height 
Field Rendering with POM
Incorporate Dynamic Height 
Field Rendering with POM
• Easily supports dynamically rendered height fields

– Generate height field 

– Compute normals for this height field

– Apply inverse displacement mapping w/ POM algorithm to that height field 

– Shade using computed normals

• Examples of dynamic HF generation:

– Water waves / procedurally generated objects / noise

– Explosions in objects 

– Bullet holes

• Approaches that rely on precomputation do not support dynamic height field 
rendering in real-time

– Displacement mapping with distance maps

– Encoding additional vertex data such as curvature

Our method can be used with a dynamically rendered height field and still produce 
perspective-correct depth results. In that case, the dynamically updated 
displacement values can be used to derive the normal vectors at rendering time by 
convolving the height map with a Sobel operator in the horizontal and vertical 
direction. The rest of the algorithm does not require any modifications.
This can be used in games to improve visual quality of interactive scenes. For 
example, parallax occlusion mapping can be successfully used on procedurally 
generated height fields. It can be used to render explosions in objects or dynamic 
bullet holes. Note that other approaches that require precomputed qualities do not 
support dynamic rendering to height fields. 



Combine Fluid Dynamics with 
Parallax Occlusion Mapping
Combine Fluid Dynamics with 
Parallax Occlusion Mapping
• Compute Navier-Stokes 

simulation for fluid dynamics for a 
height field
– Example: Fluid flow in mysterious 

galaxies from “Screen Space” ATI 
X1900 screen saver

• Fluid dynamics algorithm can be 
executed entirely on the GPU
– See ATI technical report on 

“Explicit Early-Z Culling for 
Efficient Fluid Flow Simulation 
and Rendering” by P. Sander, N. 
Tatarchuk and J.L. Mitchell for 
details

Height Map Normal Map

We able to use physics-based Navier-Stokes fluid dynamics simulation as 
the basis for rendering a height field of a distant gaseous planet in ATI’s 
“ScreenSpace” screen saver. There the entire fluid dynamics simulation is 
performed entirely on the GPU (see our technical report from 2004).



Correct Depth OutputCorrect Depth Output

• Simply using parallax occlusion mapping will yield incorrect object 
intersection
– Depth will be computed for the reference surface
– May display object gaps or cut-throughs

• Solution: update each pixel’s Z value when computing the 
displacement
– Compensate for simulated extruded surface
– Use the height field value and the reference plane Z value to compute 

correct depth 
– [Policarpo05] shows an example

• Performance will be affected
– Z is output from the pixel shader
– No longer able to use HiZ for optimization 



• Since the computation is in tangent space, the approach can 
be used with any surfaces

– Works equally well on curved objects

– Beware of silhouettes 

• If vertex curvature can be encoded into
vertex data

– Extend current algorithm to use that
data to improve height-field 
intersection using the curvature

– This reduces aliasing and potential
misses at steep grazing angles

Parallax Occlusion Mapping 
with Curved Surfaces
Parallax Occlusion Mapping 
with Curved Surfaces



Able to Handle Difficult 
Cases
Able to Handle Difficult 
Cases

The parallax occlusion mapping technique provides the ability to render such 
traditionally difficult displacement mapping cases such as raised text or objects with 
very fine features. In order to render the same objects interactively with equal level 
of detail, the meshes would need an extremely detailed triangle subdivision (with 
triangles being nearly pixel-small), which is impractical even with the currently 
available GPUs. 



Shader Implementation 
Details
Shader Implementation 
Details
• Really takes advantage of the great architecture of current and next-

gen GPUs

– Balances texture fetches and control flow with ALU load

– Flow control:

• Uses dynamic flow control when supported

• Flow control cost is offset by the ALU / texture fetches

• ATI Shader Compiler makes aggressive optimizations

• Easily supports a range of Dx9 hardware targets 

– Multipass w/ ps_2_0

– Single pass in ps_2_b

– Single pass dynamic flow control in ps_3_0



PS_2_0 Shader DetailsPS_2_0 Shader Details

• Uses static flow control to compute intersections

– Compute parallax offset in first pass, output to render target

– In second pass computing lighting and shadow term

• 8 samples in 64 instructions: Fast performance!

– Static iterations mean constant number of samples for height field tracing 

– May cause some sampling aliasing at grazing angles if not enough
samples are used (depends on height map frequencies)

– Can use more than one pass to sample height map at higher frequencies 

– 2-3 passes 8 samples each gives good results

• Makes oblique angles look better!



PS_2_b Shader DetailsPS_2_b Shader Details

• Single pass to compute the parallaxed offset, lighting and 
self-shadowing

• Uses a static number of iterations to compute height field 
intersections
– This may cause some sampling aliasing at grazing angles if 

not enough samples are used (depends on height map frequencies)

• Great performance 

• Use as many samples as needed for your art / scene
– Pay in form of instructions



Shader Model 3.0 Gives Ideal 
Results
Shader Model 3.0 Gives Ideal 
Results
• Uses dynamic flow control and early out during ray-tracing 

operations
– A close relationship with the assembly is key
– Always double-check to see if what you are expecting to get is 

what you are getting
– Beware of unrolled static loops

• Best quality results and optimizations
• Nicely balances ALU ops with control flow instructions and 

texture fetches
• ATI Driver Shader Compiler optimizations in action:

– A 200 ALU ops and 32 texture ops of the disassembled HLSL 
shader becomes 96 ALU and 20 texture fetches

– That’s 50% faster!

Uses dynamic flow control and early out during ray-tracing operations. Note: 
dynamic flow control in HLSL can be tricky to achieve. Develop in close 
relationship with the assembly – always double-check to see if what you are 
expecting to get is what you are getting. Beware of unrolled static loops. All 
of the important optimizations / quality improvements happen here (in SM 
3.0):
•Nicely balances ALU ops with control flow instructions and texture fetches



Authoring Art for POM: 
Pointers
Authoring Art for POM: 
Pointers
• Easiest – less detailed height maps with wide features

– If rendering bricks or cobble stones, it helps to have wider grout 
(“valley”) regions

– Soft, blurry height maps perform better

• This algorithm gives the artist control over the range for 
displacing pixels
– This represents the range of the height field

– Easily modifiable to get the right look

• Remember – the algorithm is pushing down, not up 
– Use this when placing geometry – may need to play the actual 

geometry higher than planning to render 

– Height map: white is the top, black is the bottom



POM Art Assets

• Color Map

Required art assets:
•Color Map (Obviously)
•Normal Map (Must be a Tangent Space normal map, All computations are done in 
tangent space, so the shader could be applied to any surface. The shader derives 
all SHADING (self shadowing) information from the normal map). 
•Height Map (8-bit (grayscale), this map encodes the displacement info)
That’s it! Minimal increase in memory usage. Only a small increase in memory 
footprint over traditional normal mapping technique. Recommend stuffing this into 
an available channel of one of your RGB textures (colormap). Either manually (by 
artists) or during export/pre-process stage. Considering that POM was a showcase 
feature of The Toy Shop demo we invested in high quality maps. We used 
2048x2048 for maximum visual quality. 



POM Art Assets

• Color Map

• Normal map

– In tangent space

Required art assets:
•Color Map (Obviously)
•Normal Map (Must be a Tangent Space normal map, All computations are done in 
tangent space, so the shader could be applied to any surface. The shader derives 
all SHADING (self shadowing) information from the normal map). 
•Height Map (8-bit (grayscale), this map encodes the displacement info)
That’s it! Minimal increase in memory usage. Only a small increase in memory 
footprint over traditional normal mapping technique. Recommend stuffing this into 
an available channel of one of your RGB textures (colormap). Either manually (by 
artists) or during export/pre-process stage. Considering that POM was a showcase 
feature of The Toy Shop demo we invested in high quality maps. We used 
2048x2048 for maximum visual quality. 



POM Art Assets

• Color Map

• Normal map

– In tangent space

• Height Map

– 8-bit (grayscale)

• That’s it!

• Minimal increase in 
memory use

Required art assets:
•Color Map (Obviously)
•Normal Map (Must be a Tangent Space normal map, All computations are done in 
tangent space, so the shader could be applied to any surface. The shader derives 
all SHADING (self shadowing) information from the normal map). 
•Height Map (8-bit (grayscale), this map encodes the displacement info)
That’s it! Minimal increase in memory usage. Only a small increase in memory 
footprint over traditional normal mapping technique. Recommend stuffing this into 
an available channel of one of your RGB textures (colormap). Either manually (by 
artists) or during export/pre-process stage. Considering that POM was a showcase 
feature of The Toy Shop demo we invested in high quality maps. We used 
2048x2048 for maximum visual quality. 



Authoring Strategies

• For planar surfaces 
– High-poly source data compared to low poly approximation

– Converting 2d texture data to normal map works well for flat 
surfaces

• For non-planar surfaces
– Generate normal and height maps from highly detailed 

geometry

• Avoid drastic height changes
– Blurring height map can help

Planar Surfaces: Either method is fine and will generate good results
Non-planar Surfaces: 
•For “physically correct” results you must generate your tangent space normal maps 
from geometry
•You can apply texture derived normal and height maps, but you will not get the best 
results. It won’t completely break… you will get something parrallax-ish… But 
generally, not the best idea
•Avoid drastic height changes: This relates back to limitation of “stretching” of 
texture coordinated. The more gradual the height change… the less noticeable this 
will be.  If you have a height map that is causing texture stretching… try blurring it in 
the problematic areas.



Authoring Art Considerations 
for POM
• Can alias at extreme viewing angles

• Stretching of texture coordinates

– In some cases requires smooth height maps or high resolution maps

• Intersecting geometry clips at original height, not at displaced
height

– One can modify the shader to compute depth based on the extruded
surface intersection

• Tile sets require buffer region to eliminate seam artifacts



The PlanThe Plan

• What are we trying to solve?
• Quick review of existing approaches for 

surface detail rendering

• Parallax occlusion mapping details

• Discuss integration into games 
• Conclusions



ConclusionsConclusions
• Powerful technique for 

rendering complex surface 
details in real time
– Higher precision height field – ray intersection computation
– Self-shadowing for self-occlusion in real-time
– LOD rendering technique for textured scenes

• Produces excellent lighting results
• Has modest texture memory footprint

– Comparable to normal mapping
• Efficiently uses existing pixel pipelines for highly interactive

rendering
• Supports dynamic rendering of height fields and animated 

objects

We have presented a novel technique for rendering highly detailed surfaces under 
varying light conditions. We have described an efficient algorithm for computing 
intersections of the height field profile with rays with high precision. We presented 
a algorithm for generating soft shadows during occlusion computation. An 
automatic level-of-detail control system is used by our approach to control 
shader complexity efficiently. A benefit of our approach lies in a modest texture 
memory footprint, comparable to normal mapping. It requires only an grayscale 
texture in addition to the normal map. Our technique is designed to take advantage 
of the GPU programmable pipeline resulting in highly interactive frame rates. It 
efficiently uses the dynamic flow control feature to improve resulting visual quality 
and optimize rendering speed. Additionally, this algorithm is designed to easily 
support dynamic rendering to height fields for a variety of interesting effects. 
Algorithms based on precomputed quantities are not as flexible and thus are limited 
to the static height fields
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