

Practical Parallax Occlusion Mapping
For Highly Detailed Surface
Rendering

Natalya Tatarchuk

3D Application Research Group
ATI Research, Inc.

Practical Parallax Occlusion Mapping Practical Parallax Occlusion Mapping
For Highly Detailed Surface For Highly Detailed Surface
RenderingRendering

Natalya TatarchukNatalya Tatarchuk

3D Application Research Group3D Application Research Group
ATI Research, Inc.ATI Research, Inc.

The PlanThe Plan

• What are we trying to solve?

• Quick review of existing approaches for
surface detail rendering

• Parallax occlusion mapping details
– Comparison against existing algorithms

• Discuss integration into games

• Conclusions

The PlanThe Plan

• What are we trying to solve?
• Quick review of existing approaches for

surface detail rendering

• Parallax occlusion mapping details

• Discuss integration into games
• Conclusions

When a Brick Wall Isn’t Just a
Wall of Bricks…
When a Brick Wall Isn’t Just a
Wall of Bricks…
• Concept versus realism

– Stylized object work well in some scenarios

– In realistic applications, we want the objects to be as
detailed as possible

• Painting bricks on a wall isn’t necessarily enough
– Do they look / feel / smell like bricks?

– What does it take to make the player really feel like they’ve
hit a brick wall?

What Makes an Environment
Truly Immersive?
What Makes an Environment
Truly Immersive?
• Rich, detailed worlds help the illusion of realism
• Players feel more immersed into complex worlds

– Lots to explore
– Naturally, game play is still key

• If we want the players to think they’re near a brick
wall, it should look like one:
– Grooves, bumps, scratches
– Deep shadows
– Turn right, turn left – still looks 3D!

The Problem We’re Trying to
Solve
The Problem We’re Trying to
Solve
• An age-old 3D rendering balancing act

– How do we render complex surface topology
without paying the price on performance?

• Wish to render very detailed surfaces
• Don’t want to pay the price of millions of triangles

– Vertex transform cost
– Memory footprint

• Would like to render those detailed surfaces accurately
– Preserve depth at all angles
– Dynamic lighting
– Self occlusion resulting in correct shadowing

How do we render detailed surface topology without paying the price on
perf?

Solution: Parallax Occlusion
Mapping
Solution: Parallax Occlusion
Mapping
• Per-pixel ray tracing of a height field in tangent space
• Correctly handles complicated viewing phenomena and

surface details
– Displays motion parallax

– Renders complex geometric surfaces such as displaced text /
sharp objects

• Calculates occlusion and filters visibility samples for soft
self-shadowing

• Uses flexible lighting model
• Adaptive LOD system to maximize quality and

performance

The effect of motion parallax for a surface can be computed by applying a height
map and offsetting each pixel in the height map using the geometric normal and the
eye vector. As we move the geometry away from its original position using that ray,
the parallax is obtained by the fact that the highest points on the height map would
move the farthest along that ray and the lower extremes would not appear to be
moving at all. To obtain satisfactory results for true perspective simulation, one
would need to displace every pixel in the height map using the view ray and the
geometric normal.
Essentially its a simulated displacement mapping technique that occurs in texture
space. Displaces “down” - existing surface has a height value of 1. It is a sampling
algorithm – think of it as rendering height slices. Accurately approximates parallax
as viewing angle changes. Properly self shadows – “soft” shadows. Integrates with
all commonly used lighting models.

Parallax Occlusion Mapping
versus Normal Mapping
Parallax Occlusion Mapping
versus Normal Mapping

Scene rendered with Parallax
Occlusion Mapping

Scene rendered with normal
mapping

Realistic city scene rendered using parallax occlusion mapping applied to the
cobblestone sidewalk in (left) and using the normal mapping technique in
(right).

• Parallax occlusion mapping was used to render extreme high details
for various surfaces in the demo
– Brick buildings

Surface Details in the ToyShop
Demo

• Parallax occlusion mapping was used to render extreme high details
for various surfaces in the demo
– Brick buildings

– Wood-block letters for the toy shop
sign

Surface Details in the ToyShop
Demo

• Parallax occlusion mapping was used to render extreme high details
for various surfaces in the demo
– Brick buildings

– Wood-block letters for the toy shop
sign

– Cobblestone sidewalk

• Using multiple lighting models
– Some just used diffuse lighting

– Others simulated wet materials

– Integrated view-dependent reflections

– Shadow mapping was easily integrated into the materials with parallax
occlusion mapped surfaces

• All objects used the level-of-details system

Surface Details in the ToyShop
Demo

Demo: ToyShopDemo: ToyShopDemo: ToyShop

The PlanThe Plan

• What are we trying to solve?
• Quick review of existing approaches for

surface detail rendering

• Parallax occlusion mapping details

• Discuss integration into games
• Conclusions

Approximating Surface DetailsApproximating Surface Details

• First there was bump mapping… [Blinn78]
– Rendering detailed and uneven

surfaces where normals are perturbed
in some pre-determined manner

– Popularized as normal mapping –
as a per-pixel technique

– No self-shadowing of the surface

– Coarse silhouettes expose the actual geometry being drawn

• Doesn’t take into account geometric
surface depth
– Does not exhibit parallax

Apparent displacement of the
object due to viewpoint change

The surface should appear to move correctly with respect to the viewer

Selected Related WorkSelected Related Work

• Horizon mapping [Max88]

• Interactive horizon mapping
[Sloan00]

• Parallax mapping [Kaneko01]

• Parallax mapping with offset limiting [Welsh03]

• Hardware Accelerated Per-Pixel
Displacement Mapping [Hirche04]

We would like to generate the feeling of motion parallax while rendering detailed
surfaces. Recently many approaches appeared to solve this for rendering.
Parallax Mapping was introduced by Kaneko in 2001 and popularized by Welsh
in 2003 with offset limiting technique

Parallax mapping
• Simple way to approximate motion parallax effects on a given polygon
• Dynamically distorts the texture coordinate to approximate motion parallax effect
• Shifts texture coordinate using the view vector and the current height map value
• Issues:

• Doesn’t accurately represent surface depth
• Swimming artifacts at grazing angles
• Flattens geometry at grazing angles

• Pros:
• No additional texture memory and very quick (~3 extra instructions)

Horizon Mapping:
• Encodes the height of the shadowing horizon at each point on the bump map in a series

of textures for 8 directions
• Determines the amount of self-shadowing for a given light position
• At each frame project the light vector onto local tangent plane and compute per-pixel

lighting
• Draw backs: additional texture memory

Parallax Mapping with Offset Limiting
• Same idea as in [Kaneko01]
• Uses height map to determine texture coordinate offset for approximating parallax
• Uses view vector in tangent space to determine how to offset the texels
• Reduces visual artifacts at grazing angles (“swimming texels) by limiting the offset to be at most

equal to current height value
• Flattens geometry significantly at grazing angles (just a heuristic)

The PlanThe Plan

• What are we trying to solve?
• Quick review of existing approaches for

surface detail rendering

• Parallax occlusion mapping details

• Discuss integration into games
• Conclusions

Parallax Occlusion MappingParallax Occlusion Mapping

• Introduced in [Browley04] “Self-Shadowing, Perspective-
Correct Bump Mapping Using Reverse Height Map Tracing”

• Efficiently utilizes programmable GPU pipeline for interactive
rendering rates

• Current algorithm has several significant improvements over
the earlier technique

Parallax Occlusion Mapping
SI3D 2006: New Contributions
Parallax Occlusion Mapping
SI3D 2006: New Contributions

• Increased precision of height field – ray intersections

• Dynamic real-time lighting of surfaces
– With soft shadows due to self-occlusion under varying light

conditions

• Directable level-of-detail control system
– Smooth transitions between levels

• Motion parallax simulation with perspective-correct depth

Our technique can be applied to animated objects and fits well within established art
pipelines of games and effects rendering. The implementation makes effective use
of current GPU pixel pipelines and texturing hardware for interactive rendering. The
algorithm allows scalability for a range of existing GPU products.

Encoding Displacement
Information
Encoding Displacement
Information

Tangent-space normal map

All computations are done in tangent space, and thus
can be applied to arbitrary surfaces

Height map (displacement values)

We encode surface displacement information in a tangent-space normal map
accompanied by a scalar height map. Since tangent space is inherently locally
planar for any point on an arbitrary surface, regardless of its curvature, it provides
an intuitive mapping for surface detail information. We perform all calculations for
height field intersection and visibility determination in tangent space, and compute
the illumination in the same domain.

1.0

Polygonal surface

Extruded surface

Parallax DisplacementParallax Displacement

0.0

View ray
Input texture coordinate

Displaced point on surfaceResult of normal mapping

toff

The effect of motion parallax for a surface can be computed by applying a height
map and offsetting each pixel in the height map using the geometric normal and the
view vector. We trace a ray through the height field to find the closest visible point
on the surface. The core idea of the presented algorithm is to trace the pixel being
currently rendered in reverse in the height map to determine which texel in the
height map would yield the rendered pixel location if in fact we would have been
using the actual displaced geometry. The input mesh provides the reference plane
for displacing the surface downwards. The height field is normalized for correct ray-
height field intersection computation (0 representing the reference polygon surface
values and 1 representing the extrusion valleys).

Implementation: Per-VertexImplementation: Per-Vertex

• Compute the viewing direction, the light direction
in tangent space

• Can compute the parallax offset vector (as an
optimization)

– Interpolated by the rasterizer

Compute the parallax offset vector P to determine maximum visual offset in texture-
space for current pixel being rendered.

Implementation: Per-PixelImplementation: Per-Pixel

• Ray-cast the view ray along the parallax offset vector

• Ray – height field profile intersection as a texture offset

– Yields the correct displaced point visible from the given view angle

• Light ray – height profile intersection for occlusion
computation to determine the visibility coefficient

• Shading

– Using any attributes

– Any lighting model

Ray cast the view ray along the parallax offset vector to compute the height profile
– ray intersection point. We sample the height field profile along the parallax offset
vector to determine the correct displaced point on the extruded surface.
Approximating the height field profile as a piecewise linear curve allows us to have
increased precision for the desired intersection (versus simply taking the nearest
sample). This yields the texture coordinate shift offset (parallax offset) necessary to
arrive at the desired point on the extruded surface. We add this parallax offset
amount to the original sample coordinates to yield texture offset coordinates.
If computing shadowing and self-occlusion effects, we can use the texture offset
coordinates to perform visibility computation
for light direction. In order to do that, we ray cast the light direction ray sampling the
height profile along the way for occlusions. This results in a visibility coefficient for
the given sample position.
Using the texture offset coordinates and the visibility coefficient, we can shade the
given pixel using its attributes, such as applied textures (albedo, gloss, etc), the
normal from the normal map and the light vector.

Height Field Profile TracingHeight Field Profile Tracing

1.0

Polygonal surface

0.0

Extruded surface

View ray

t0

Parallax offset vector

δ

toff

In order to compute the height field-ray intersection we approximate the height field
(seen as the light green curve in this figure) as a piecewise linear curve (seen here
as dark green segments), intersecting it with the given ray (in this case, the view
direction) for each linear section. We start by tracing from the input sample
coordinates to along the computed parallax offset vector P . We perform a linear
search for the intersection along the parallax offset vector. We sample a linear
segment from the height field profile by fetching two samples step size δ apart.
We successively test each segments endpoints to see if it would possibly
intersect with the view ray. For that, we simply use the height displacement value
from each end point to see if they are above current horizon level. Once such pair of
end points is found, we compute an intersection between this linear segment and
the view ray. The intersection of the height field profile yields the point on the
extruded surface that would be visible to the viewer.

Real-Time Relief Mapping
[Policarpo05]
Real-Time Relief Mapping
[Policarpo05]
• Similar idea to one presented here

– Per-pixel ray tracing to arrive at displaced point
on the extruded surface

• Different implementation
– A combination of a static linear search and a

binary search to determine an approximation for ray - height field
intersection

– Linear search finds a point below the extruded surface along the ray

– Binary search is used to arrive at approximate displaced point on the
surface

– Does not compute the ray-surface intersection, just samples the height
field

• Hard shadows computed for self-occlusion based shading

Techniques such as [Policarpo et al. 2005; Oliveira and Policarpo 2005] determine
the intersection point by a combination of a linear and a binary search routines. The
relief mapping algorithm approximates the height field with piecewise constant
curve, and doesn’t actually compute the full intersection, therefore will suffer from
aliasing if not enough samples are taken. This technique also computes shadows
for surface features, however since it simply tests whether a particular feature is
visible or not, this results in hard shadows.
Mapping relief data in tangent space for per-pixel displacement mapping in real-time
was proposed in [Brawley and Tatarchuk 2004; Policarpo et al. 2005; McGuire and
McGuire 2005] and further extended in [Oliveira and Policarpo et al. 2005] to
support silhouette generation. These methods take excellent advantage of the
programmable pixel pipeline efficiency by performing height field-ray intersection in
the pixel shader to compute the displacement information. These approaches
generate dynamic lighting with self-occlusion, shadows and motion parallax. Using
the visibility horizon to compute hard shadows as in [Policarpo et al. 2005; McGuire
and McGuire 2005; Oliveira and Policarpo 2005] can result in shadow aliasing
artifacts. All of the above approaches exhibit strong aliasing and excessive flattening
at steep viewing angles. No explicit level of detail schemes were provided with these
approaches, relying on texture filtering capabilities of the GPUs.

Binary Search for Surface-Ray
Intersection
Binary Search for Surface-Ray
Intersection

• Binary search refers to repeatedly halving
the search distance to determine the
displaced point
– The height field is not sorted a priori

– Requires dependent texture fetches for
computation

• Incurs latency cost for each successive depth level

• Uses 5 or more levels of dependent texture fetches

The binary search helps finding an approximate height field intersection
utilizing bilinear texture filtering to interpolate the intersection point. The
intersection of the surface is approximated with texture filtering, thus only
using 8 bit of precision for intersection computation. This results in visible
stair-stepping artifacts at steep viewing angles. Depth biasing toward the
horizon hides these artifacts but introduces excessive feature flattening at
oblique angles

Per-Pixel Displacement Mapping
with Distance Functions
[Donnely05]

Per-Pixel Displacement Mapping
with Distance Functions
[Donnely05]
• Also a real-time technique for rendering per-pixel displacement

mapped surfaces on the GPU

– Stores a ‘slab’ of distances
to the height field in a
volumetric texture

• To arrive at the displaced point,
walk the volume texture in the
direction of the ray

– Instead of performing a
ray-height field intersection

– Uses dependent texture fetches,
amount varies

A precomputed three-dimensional distance map for a rendered object can be used
for surface extrusion along a given view direction ([Donnelly 2005]). The cost of a
3D texture and dependent texture fetches’ latency make this algorithm not
applicable to most real-time applications. Each texture fetch into the distance map is
not texture-cache coherent

Per-Pixel Displacement Mapping
with Distance Functions
Per-Pixel Displacement Mapping
with Distance Functions

• Visible aliasing
– Not just at grazing angles

• Only supports precomputed
height fields
– Requires preprocessing to compute volumetric distance map
– Volumetric texture size is prohibitive

• The idea of using a distance map to arrive at the
extruded surface is very useful

Linear Search for Surface-Ray
Intersection
Linear Search for Surface-Ray
Intersection
• We use just the linear search which requires only

regular texture fetches
– Fast performance
– Using dynamic flow control, can break out of execution once

the intersection is found

• However - simply using linear search is not enough!
– Linear search alone does not yield good rendering results

• Requires high precision calculations for surface-ray intersections

• Otherwise produces visible aliasing artifacts

For our computation we use only just the linear search to arrive at the
intersection point. Note that this search utilizes low-latency regular texture
fetching and results in good texture cache coherency thus resulting in faster
performance. Additionally, using the dynamic flow control feature of the latest
consumer GPUs, we can stop tracing the height field profile section once the
intersection is found. Note that just simply using a linear search alone is not
enough. In order to use just the linear search we must require high precision
calculations for surface-ray intersection. Otherwise when using linear search
with just bilinear texture fetches for approximating extruded intersection of
the height field with a given ray, the results display very strong aliasing.

Comparison of Intersection
Search Types and Depth Bias
Application

Comparison of Intersection
Search Types and Depth Bias
Application

Relief Mapping with both binary and linear
searches and no depth bias applied: Notice
the aliasing artifacts

Surface approximation methods affect resulting precision for intersection
computation. Piecewise constant representation of the surface yields
incorrect intersection results just with linear search. Techniques such as
[Policarpo et al. 2005; Oliveira and Policarpo 2005] determine the
intersection point by a combination of a linear and a binary search routines.
These approaches sample the height field as a piecewise constant function.
The linear search allows arriving at a point below the extruded surface
intersection with the view ray. The following binary search helps finding an
approximate height field intersection utilizing bilinear texture filtering to
interpolate the intersection point. The intersection of the surface is
approximated with texture filtering, thus only using 8 bit of precision for
intersection computation. This results in visible stair-stepping artifacts at
steep viewing angles (as seen in first figure). Even a combination of binary
and linear search with piecewise constant representation does not yield good
results - unsuitable for production quality rendering. Significant aliasing at
grazing angles makes it unusable. That’s why binary search is introduced in
[Policarpo05]. Depth biasing toward the horizon hides these artifacts but
introduces excessive feature flattening at oblique angles (seen in this figure)
With our algorithm we perform only a linear search combined with a high
precision intersection computation for extruded surface-ray intersection. This
allows us to preserve perspective-correct depth even at oblique angles as
well as display very little or none aliasing due to missed intersections of the
extruded surface with the view ray.

Comparison of Intersection
Search Types and Depth Bias
Application

Comparison of Intersection
Search Types and Depth Bias
Application

Relief Mapping with both binary and linear
searches and depth bias applied: Notice the
horizon flattening

Surface approximation methods affect resulting precision for intersection
computation. Piecewise constant representation of the surface yields
incorrect intersection results just with linear search. Techniques such as
[Policarpo et al. 2005; Oliveira and Policarpo 2005] determine the
intersection point by a combination of a linear and a binary search routines.
These approaches sample the height field as a piecewise constant function.
The linear search allows arriving at a point below the extruded surface
intersection with the view ray. The following binary search helps finding an
approximate height field intersection utilizing bilinear texture filtering to
interpolate the intersection point. The intersection of the surface is
approximated with texture filtering, thus only using 8 bit of precision for
intersection computation. This results in visible stair-stepping artifacts at
steep viewing angles (as seen in first figure). Even a combination of binary
and linear search with piecewise constant representation does not yield good
results - unsuitable for production quality rendering. Significant aliasing at
grazing angles makes it unusable. That’s why binary search is introduced in
[Policarpo05]. Depth biasing toward the horizon hides these artifacts but
introduces excessive feature flattening at oblique angles (seen in this figure)
With our algorithm we perform only a linear search combined with a high
precision intersection computation for extruded surface-ray intersection. This
allows us to preserve perspective-correct depth even at oblique angles as
well as display very little or none aliasing due to missed intersections of the
extruded surface with the view ray.

Comparison of Intersection
Search Types and Depth Bias
Application

Comparison of Intersection
Search Types and Depth Bias
Application

Parallax Occlusion Mapping rendered with
just linear search but the high precision
height field intersection computation

Surface approximation methods affect resulting precision for intersection
computation. Piecewise constant representation of the surface yields
incorrect intersection results just with linear search. Techniques such as
[Policarpo et al. 2005; Oliveira and Policarpo 2005] determine the
intersection point by a combination of a linear and a binary search routines.
These approaches sample the height field as a piecewise constant function.
The linear search allows arriving at a point below the extruded surface
intersection with the view ray. The following binary search helps finding an
approximate height field intersection utilizing bilinear texture filtering to
interpolate the intersection point. The intersection of the surface is
approximated with texture filtering, thus only using 8 bit of precision for
intersection computation. This results in visible stair-stepping artifacts at
steep viewing angles (as seen in first figure). Even a combination of binary
and linear search with piecewise constant representation does not yield good
results - unsuitable for production quality rendering. Significant aliasing at
grazing angles makes it unusable. That’s why binary search is introduced in
[Policarpo05]. Depth biasing toward the horizon hides these artifacts but
introduces excessive feature flattening at oblique angles (seen in this figure)
With our algorithm we perform only a linear search combined with a high
precision intersection computation for extruded surface-ray intersection. This
allows us to preserve perspective-correct depth even at oblique angles as
well as display very little or none aliasing due to missed intersections of the
extruded surface with the view ray.

A

B

Height Field Profile – Ray
Intersection
Height Field Profile – Ray
Intersection

Intersections resulted from Intersections resulted from
direct height profile query direct height profile query
(piecewise constant (piecewise constant
approximation)approximation)

Intersections due to Intersections due to
piecewise linear height field piecewise linear height field
approximationapproximation

Production quality results require more precise intersection. Other ray tracing-based
mapping techniques query the height profile for the closest location to the viewer
along the view direction. In the case presented here, these techniques would report
point A as the displacement point. This results in the stair stepping artifacts visible in
the picture on the left. The artifacts are particularly strong at oblique viewing angles,
where the apparent parallax is larger. We perform actual line intersection
computation for the ray and the linear section of the approximated height field. This
yields the intersection point B.
In the figure on the right, you see the smoother surface rendered using higher
precision height field intersection technique. In both figures the identical number of
samples was used during tracing view direction rays.

Higher Quality With Dynamic
Sampling Rate
Higher Quality With Dynamic
Sampling Rate
• Sampling-based algorithms are prone to aliasing

SM 2.0 POM with just 8 samples and no
depth bias

One of the biggest problems with the aliasing algorithms exists due to aliasing
artifacts. Here you see the result of our 2004 technique intersecting the height field
with a fixed sampling rate. Note the aliasing artifacts visible with this technique at
the grazing angle. To fix this we applied perspective bias to reduce the aliasing
artifacts, as visible in the picture here. This results in strong flattening of the
surface details along the horizon, which is undesirable.
Dynamically scaling the sampling rate ensures that the resulting extruded surface is
far less likely to display aliasing artifacts and certainly does not display any
flattening as in this figure. Therefore the surfaces rendered with our approach
display perspective-correct depth at all angles.
On the latest GPUs we can utilize dynamic flow control instructions to dynamically
scale the sampling rate during ray tracing. We express the sampling rate as a linear
function of the angle between the geometric normal and the view direction ray. This
ensures that we take more samples when the surface is viewed at steep grazing
angles, where more samples are desired.

Higher Quality With Dynamic
Sampling Rate
Higher Quality With Dynamic
Sampling Rate
• Sampling-based algorithms are prone to aliasing

• One possible “solution” – depth bias
– Flatten toward horizon

SM 2.0 POM with just 8 samples and depth
bias

One of the biggest problems with the aliasing algorithms exists due to aliasing
artifacts. Here you see the result of our 2004 technique intersecting the height field
with a fixed sampling rate. Note the aliasing artifacts visible with this technique at
the grazing angle. To fix this we applied perspective bias to reduce the aliasing
artifacts, as visible in the picture here. This results in strong flattening of the
surface details along the horizon, which is undesirable.
Dynamically scaling the sampling rate ensures that the resulting extruded surface is
far less likely to display aliasing artifacts and certainly does not display any
flattening as in this figure. Therefore the surfaces rendered with our approach
display perspective-correct depth at all angles.
On the latest GPUs we can utilize dynamic flow control instructions to dynamically
scale the sampling rate during ray tracing. We express the sampling rate as a linear
function of the angle between the geometric normal and the view direction ray. This
ensures that we take more samples when the surface is viewed at steep grazing
angles, where more samples are desired.

Higher Quality With Dynamic
Sampling Rate
Higher Quality With Dynamic
Sampling Rate
• Sampling-based algorithms are prone to aliasing

• Solution: Dynamically adjust the sampling rate for ray
tracing as a linear function of angle between the
geometric normal and the view direction ray

POM SM 3.0: Perspective-correct
depth with dynamic sampling rate

Aliasing at grazing angles due to static
sampling rate

)(ˆˆ
minmaxmin nnVNnn ts −•+=

One of the biggest problems with the aliasing algorithms exists due to aliasing
artifacts. Here you see the result of our 2004 technique intersecting the height field
with a fixed sampling rate. Note the aliasing artifacts visible with this technique at
the grazing angle. To fix this we applied perspective bias to reduce the aliasing
artifacts, as visible in the picture here. This results in strong flattening of the
surface details along the horizon, which is undesirable.
Dynamically scaling the sampling rate ensures that the resulting extruded surface is
far less likely to display aliasing artifacts and certainly does not display any
flattening as in this figure. Therefore the surfaces rendered with our approach
display perspective-correct depth at all angles.
On the latest GPUs we can utilize dynamic flow control instructions to dynamically
scale the sampling rate during ray tracing. We express the sampling rate as a linear
function of the angle between the geometric normal and the view direction ray. This
ensures that we take more samples when the surface is viewed at steep grazing
angles, where more samples are desired.

1.0

Polygonal surface

Self-Occlusion ShadowsSelf-Occlusion Shadows

Extruded surface

View ray

Light ray toff

The features of the height map can in fact cast shadows onto the surface. Once we
arrive at the point on the displaced surface (highlighted here) we can compute its
visibility from the any light source. For that, we cast a ray toward the light source
in question and perform horizon visibility queries of the height field profile along the
light direction ray. If there are intersections of the height field profile with the light
vector, then there are occluding features and the point in question will be in
shadow. This process allows us to generate shadows due to the object features’
self-occlusions and object interpenetration.

Soft Shadows ComputationSoft Shadows Computation

• Simply determining whether the current feature is
occluded yields hard shadows

[Policarpo05]

While computing the visibility information, we could simply stop at the first
intersection blocking the horizon from the current view point. This yields the
horizon shadowing value specifying whether the displaced pixel is in shadow. Other
techniques, as seen in this picture, use this approach. This generates hard
shadows which may have strong aliasing artifacts as you can see in the high-
lighted portion.

Soft Shadows ComputationSoft Shadows Computation

• We can compute soft
shadows by filtering the
visibility samples during
the occlusion computation

• Don’t compute shadows
for objects not facing
the light source:

N ● L > 0

In our algorithm, we continue sampling the height field along the light ray past the
first shadowing horizon until we reach the next fully visible point on the surface.
Then we filter the resulting visibility samples to compute soft shadows with smooth
edges.
We optimize the algorithm by only performing visibility query for areas which are lit
by the given light source with a simple test.

Light
vector

h1
h2

h3
h4

h5
h6

h0

h7

Penumbral Size ApproximationPenumbral Size Approximation

We sample the height value h0 at the shifted texture coordinate toff. The sample h0 is
our reference (“surface”) height. We then sample n other samples along the light
ray, subtracting h0 from each of the successive samples hi. This allows us to
compute the blocker-to-receiver ratio as in figure.
We note that the closer the blocker is to the surface, the smaller the resulting
penumbra. We compute the the visibility coefficient by scaling the contribution of
each sample by the distance from the reference sample. We apply this visibility
coefficient during the lighting computation for generation of smoothly soft shadows.
In combination with bi- or trilinear texture filtering in hardware, we are able to obtain
well-behaved soft shadows without any edge aliasing or filtering artifacts present in
many shadow mapping techniques.

Light
source

1.0

0.0

Light
vector

h1
h2

h3
h4

h5
h6

h0

h7
ws

Blocker

Surface

db

dr

wp

The blocker heights hi allow us to
compute the blocker-to-receiver
ratio

wp = ws (dr – db) / db

Penumbral Size ApproximationPenumbral Size Approximation

We sample the height value h0 at the shifted texture coordinate toff. The sample h0 is
our reference (“surface”) height. We then sample n other samples along the light
ray, subtracting h0 from each of the successive samples hi. This allows us to
compute the blocker-to-receiver ratio as in figure.
We note that the closer the blocker is to the surface, the smaller the resulting
penumbra. We compute the the visibility coefficient by scaling the contribution of
each sample by the distance from the reference sample. We apply this visibility
coefficient during the lighting computation for generation of smoothly soft shadows.
In combination with bi- or trilinear texture filtering in hardware, we are able to obtain
well-behaved soft shadows without any edge aliasing or filtering artifacts present in
many shadow mapping techniques.

Shadows Comparison
Example
Shadows Comparison
Example

Relief Mapping with Hard Shadows
Parallax Occlusion Mapping
with Soft Shadows

Here you see a comparison of rendering the same scene with relief mapping
with hard shadows (on the left) and with parallax occlusion mapping with
approximate soft shadows (on the right). We note that the closer the blocker
is to the surface, the smaller the resulting penumbra. We compute the
visibility coefficient by scaling the contribution of each sample by the
distance from the reference sample. We apply this visibility coefficient during
the lighting computation for generation of smoothly soft shadows.
In combination with bi- or trilinear texture filtering in hardware, we are able to
obtain well-behaved soft shadows without any edge aliasing or filtering
artifacts present in many shadow mapping techniques.

Illuminating the SurfaceIlluminating the Surface

• Use the computed texture coordinate offset to
sample desired maps (albedo, normal, detail, etc.)

• Given those parameters and
the visibility information,
we can apply any lighting
model as desired
– Phong
– Compute reflection / refraction
– Very flexible

Adaptive Level-of-Detail
System
Adaptive Level-of-Detail
System

• Compute the current mip map level
• For furthest LOD levels, render

using normal mapping (threshold
level)

• As the surface approaches the
viewer, increase the sampling rate
as a function of the current mip
map level

• In transition region between the
threshold LOD level, blend
between the normal mapping and
the full parallax occlusion mapping

We designed an explicit level-of-detail control system for automatically controlling
shader complexity. We determine the current mip map level directly in the pixel
shader and use this information to transition between different levels of detail from
the full effect to simple normal mapping. We render the lowest level of details
using regular normal mapping shading. As the surface approaches the viewer, we
increase the sampling rate for the full parallax occlusion mapping computation as a
function of the current mip level. We specify an artist-directable threshold level
where the transition between the parallax occlusionmapping and the normal
mapping computations will occur. When the currently rendered surface portion is in
the transition region, we interpolate the result of parallax occlusion mapping
computation with the normal mapping result. We using the fractional part of the
current mip level computed in the pixel shader. As you can compare between these
two figures, there is no associated visual quality degradation as we move into a
lower level of detail and the transition appears quite smooth.

Parallax Occlusion Mapping
vs. Actual Geometry
Parallax Occlusion Mapping
vs. Actual Geometry

An 1,100 polygon object rendered with
parallax occlusion mapping

A 1.5 million polygon object
rendered with diffuse lighting

We applied parallax occlusion mapping to an 1,100 polygon soldier character
displayed on the left. We compared this result to a 1.5 million polygon soldier
displayed on the right used to generate normal maps for the low resolution model.
We use the same lighting model on both objects. We apply a 2048x2048 RGBα
texture map to the low resolution object.

- 1,500,000 polygons with normal Frame Rate:
mapping - 32 fps on ATI Radeon

- Memory: 31Mb vertex buffer X1600
14Mb index buffer

Total: 45 Mb

Parallax Occlusion Mapping
vs. Actual Geometry
Parallax Occlusion Mapping
vs. Actual Geometry

-1100 polygons with parallax occlusion Frame Rate:
mapping (8 to 50 samples used) - 255 fps on ATI

- Memory: 79K vertex buffer Radeon X1600
6K index buffer - 235 fps with skinning

13Mb texture (3Dc)
(2048 x 2048 maps)

Total: < 14 Mb

We render the low resolution soldier using DirectX on ATI Radeon X850 at 255 fps.
From 8 to 50 samples were used during ray tracing as necessary. The memory
requirement for this model was 79K for the vertex buffer and 6K for the index buffer,
and 13Mb of texture memory (we use 3DC texture compression). The high
resolution soldier model rendered on the same hardware at a rate of 32 fps. The
memory requirement for this model was 31Mb for the vertex buffer and 14Mb for the
index buffer. However, using our technique on an extremely low resolution model
provided significant frame rate increase with 32Mb memory saving at comparable
quality of rendering. Notice the details on the bullet belts and the gas mask for the
low polygon soldier. We also animated the low resolution model with a run cycle
using skinning in vertex shader rendering at 235 fps on the same hardware. Due to
memory considerations, vertex transform cost for rendering, animation, and
authoring issues, characters matching the high resolution soldier are impractical in
current game scenarios.

The PlanThe Plan

• What are we trying to solve?
• Quick review of existing approaches for

surface detail rendering
• Parallax occlusion mapping details
• Discuss integration into games

–Performance analysis and optimizations
–Considerations for authoring art assets

• Conclusions

How Does One Render Height
Maps, Exactly?
How Does One Render Height
Maps, Exactly?
• Two possibilities

– Render surface details as if “pushed down” – the actual polygonal
surface will be above the rendered surface

– In this case the top (polygon face) is at height = 1,
and the deepest value is at 0

– Or actually push surface details upward (ala displacement
mapping)

• This affects both the art pipeline and the actual algorithm

• In the presented algorithm, we render the surface pushed
down

Performance vs Image QualityPerformance vs Image Quality

• Tradeoffs between speed and quality

– Less samples means more possibility for missed features and incorrect
intersections

– This can result in stair stepping artifacts at oblique angles

• Silhouettes are not computed correctly

– Art can be authored to hide this artifact

– Alternatives exist (at the expense of memory and extra computations)

• Use vertex curvature data and texkill in the pixel shader to clip pixels at the
silhouettes

• Relief Mapping example shows a result

• Aliasing at the object silhouettes can be very strong

Incorporate Dynamic Height
Field Rendering with POM
Incorporate Dynamic Height
Field Rendering with POM
• Easily supports dynamically rendered height fields

– Generate height field

– Compute normals for this height field

– Apply inverse displacement mapping w/ POM algorithm to that height field

– Shade using computed normals

• Examples of dynamic HF generation:

– Water waves / procedurally generated objects / noise

– Explosions in objects

– Bullet holes

• Approaches that rely on precomputation do not support dynamic height field
rendering in real-time

– Displacement mapping with distance maps

– Encoding additional vertex data such as curvature

Our method can be used with a dynamically rendered height field and still produce
perspective-correct depth results. In that case, the dynamically updated
displacement values can be used to derive the normal vectors at rendering time by
convolving the height map with a Sobel operator in the horizontal and vertical
direction. The rest of the algorithm does not require any modifications.
This can be used in games to improve visual quality of interactive scenes. For
example, parallax occlusion mapping can be successfully used on procedurally
generated height fields. It can be used to render explosions in objects or dynamic
bullet holes. Note that other approaches that require precomputed qualities do not
support dynamic rendering to height fields.

Combine Fluid Dynamics with
Parallax Occlusion Mapping
Combine Fluid Dynamics with
Parallax Occlusion Mapping
• Compute Navier-Stokes

simulation for fluid dynamics for a
height field
– Example: Fluid flow in mysterious

galaxies from “Screen Space” ATI
X1900 screen saver

• Fluid dynamics algorithm can be
executed entirely on the GPU
– See ATI technical report on

“Explicit Early-Z Culling for
Efficient Fluid Flow Simulation
and Rendering” by P. Sander, N.
Tatarchuk and J.L. Mitchell for
details

Height Map Normal Map

We able to use physics-based Navier-Stokes fluid dynamics simulation as
the basis for rendering a height field of a distant gaseous planet in ATI’s
“ScreenSpace” screen saver. There the entire fluid dynamics simulation is
performed entirely on the GPU (see our technical report from 2004).

Correct Depth OutputCorrect Depth Output

• Simply using parallax occlusion mapping will yield incorrect object
intersection
– Depth will be computed for the reference surface
– May display object gaps or cut-throughs

• Solution: update each pixel’s Z value when computing the
displacement
– Compensate for simulated extruded surface
– Use the height field value and the reference plane Z value to compute

correct depth
– [Policarpo05] shows an example

• Performance will be affected
– Z is output from the pixel shader
– No longer able to use HiZ for optimization

• Since the computation is in tangent space, the approach can
be used with any surfaces

– Works equally well on curved objects

– Beware of silhouettes

• If vertex curvature can be encoded into
vertex data

– Extend current algorithm to use that
data to improve height-field
intersection using the curvature

– This reduces aliasing and potential
misses at steep grazing angles

Parallax Occlusion Mapping
with Curved Surfaces
Parallax Occlusion Mapping
with Curved Surfaces

Able to Handle Difficult
Cases
Able to Handle Difficult
Cases

The parallax occlusion mapping technique provides the ability to render such
traditionally difficult displacement mapping cases such as raised text or objects with
very fine features. In order to render the same objects interactively with equal level
of detail, the meshes would need an extremely detailed triangle subdivision (with
triangles being nearly pixel-small), which is impractical even with the currently
available GPUs.

Shader Implementation
Details
Shader Implementation
Details
• Really takes advantage of the great architecture of current and next-

gen GPUs

– Balances texture fetches and control flow with ALU load

– Flow control:

• Uses dynamic flow control when supported

• Flow control cost is offset by the ALU / texture fetches

• ATI Shader Compiler makes aggressive optimizations

• Easily supports a range of Dx9 hardware targets

– Multipass w/ ps_2_0

– Single pass in ps_2_b

– Single pass dynamic flow control in ps_3_0

PS_2_0 Shader DetailsPS_2_0 Shader Details

• Uses static flow control to compute intersections

– Compute parallax offset in first pass, output to render target

– In second pass computing lighting and shadow term

• 8 samples in 64 instructions: Fast performance!

– Static iterations mean constant number of samples for height field tracing

– May cause some sampling aliasing at grazing angles if not enough
samples are used (depends on height map frequencies)

– Can use more than one pass to sample height map at higher frequencies

– 2-3 passes 8 samples each gives good results

• Makes oblique angles look better!

PS_2_b Shader DetailsPS_2_b Shader Details

• Single pass to compute the parallaxed offset, lighting and
self-shadowing

• Uses a static number of iterations to compute height field
intersections
– This may cause some sampling aliasing at grazing angles if

not enough samples are used (depends on height map frequencies)

• Great performance

• Use as many samples as needed for your art / scene
– Pay in form of instructions

Shader Model 3.0 Gives Ideal
Results
Shader Model 3.0 Gives Ideal
Results
• Uses dynamic flow control and early out during ray-tracing

operations
– A close relationship with the assembly is key
– Always double-check to see if what you are expecting to get is

what you are getting
– Beware of unrolled static loops

• Best quality results and optimizations
• Nicely balances ALU ops with control flow instructions and

texture fetches
• ATI Driver Shader Compiler optimizations in action:

– A 200 ALU ops and 32 texture ops of the disassembled HLSL
shader becomes 96 ALU and 20 texture fetches

– That’s 50% faster!

Uses dynamic flow control and early out during ray-tracing operations. Note:
dynamic flow control in HLSL can be tricky to achieve. Develop in close
relationship with the assembly – always double-check to see if what you are
expecting to get is what you are getting. Beware of unrolled static loops. All
of the important optimizations / quality improvements happen here (in SM
3.0):
•Nicely balances ALU ops with control flow instructions and texture fetches

Authoring Art for POM:
Pointers
Authoring Art for POM:
Pointers
• Easiest – less detailed height maps with wide features

– If rendering bricks or cobble stones, it helps to have wider grout
(“valley”) regions

– Soft, blurry height maps perform better

• This algorithm gives the artist control over the range for
displacing pixels
– This represents the range of the height field

– Easily modifiable to get the right look

• Remember – the algorithm is pushing down, not up
– Use this when placing geometry – may need to play the actual

geometry higher than planning to render

– Height map: white is the top, black is the bottom

POM Art Assets

• Color Map

Required art assets:
•Color Map (Obviously)
•Normal Map (Must be a Tangent Space normal map, All computations are done in
tangent space, so the shader could be applied to any surface. The shader derives
all SHADING (self shadowing) information from the normal map).
•Height Map (8-bit (grayscale), this map encodes the displacement info)
That’s it! Minimal increase in memory usage. Only a small increase in memory
footprint over traditional normal mapping technique. Recommend stuffing this into
an available channel of one of your RGB textures (colormap). Either manually (by
artists) or during export/pre-process stage. Considering that POM was a showcase
feature of The Toy Shop demo we invested in high quality maps. We used
2048x2048 for maximum visual quality.

POM Art Assets

• Color Map

• Normal map

– In tangent space

Required art assets:
•Color Map (Obviously)
•Normal Map (Must be a Tangent Space normal map, All computations are done in
tangent space, so the shader could be applied to any surface. The shader derives
all SHADING (self shadowing) information from the normal map).
•Height Map (8-bit (grayscale), this map encodes the displacement info)
That’s it! Minimal increase in memory usage. Only a small increase in memory
footprint over traditional normal mapping technique. Recommend stuffing this into
an available channel of one of your RGB textures (colormap). Either manually (by
artists) or during export/pre-process stage. Considering that POM was a showcase
feature of The Toy Shop demo we invested in high quality maps. We used
2048x2048 for maximum visual quality.

POM Art Assets

• Color Map

• Normal map

– In tangent space

• Height Map

– 8-bit (grayscale)

• That’s it!

• Minimal increase in
memory use

Required art assets:
•Color Map (Obviously)
•Normal Map (Must be a Tangent Space normal map, All computations are done in
tangent space, so the shader could be applied to any surface. The shader derives
all SHADING (self shadowing) information from the normal map).
•Height Map (8-bit (grayscale), this map encodes the displacement info)
That’s it! Minimal increase in memory usage. Only a small increase in memory
footprint over traditional normal mapping technique. Recommend stuffing this into
an available channel of one of your RGB textures (colormap). Either manually (by
artists) or during export/pre-process stage. Considering that POM was a showcase
feature of The Toy Shop demo we invested in high quality maps. We used
2048x2048 for maximum visual quality.

Authoring Strategies

• For planar surfaces
– High-poly source data compared to low poly approximation

– Converting 2d texture data to normal map works well for flat
surfaces

• For non-planar surfaces
– Generate normal and height maps from highly detailed

geometry

• Avoid drastic height changes
– Blurring height map can help

Planar Surfaces: Either method is fine and will generate good results
Non-planar Surfaces:
•For “physically correct” results you must generate your tangent space normal maps
from geometry
•You can apply texture derived normal and height maps, but you will not get the best
results. It won’t completely break… you will get something parrallax-ish… But
generally, not the best idea
•Avoid drastic height changes: This relates back to limitation of “stretching” of
texture coordinated. The more gradual the height change… the less noticeable this
will be. If you have a height map that is causing texture stretching… try blurring it in
the problematic areas.

Authoring Art Considerations
for POM
• Can alias at extreme viewing angles

• Stretching of texture coordinates

– In some cases requires smooth height maps or high resolution maps

• Intersecting geometry clips at original height, not at displaced
height

– One can modify the shader to compute depth based on the extruded
surface intersection

• Tile sets require buffer region to eliminate seam artifacts

The PlanThe Plan

• What are we trying to solve?
• Quick review of existing approaches for

surface detail rendering

• Parallax occlusion mapping details

• Discuss integration into games
• Conclusions

ConclusionsConclusions
• Powerful technique for

rendering complex surface
details in real time
– Higher precision height field – ray intersection computation
– Self-shadowing for self-occlusion in real-time
– LOD rendering technique for textured scenes

• Produces excellent lighting results
• Has modest texture memory footprint

– Comparable to normal mapping
• Efficiently uses existing pixel pipelines for highly interactive

rendering
• Supports dynamic rendering of height fields and animated

objects

We have presented a novel technique for rendering highly detailed surfaces under
varying light conditions. We have described an efficient algorithm for computing
intersections of the height field profile with rays with high precision. We presented
a algorithm for generating soft shadows during occlusion computation. An
automatic level-of-detail control system is used by our approach to control
shader complexity efficiently. A benefit of our approach lies in a modest texture
memory footprint, comparable to normal mapping. It requires only an grayscale
texture in addition to the normal map. Our technique is designed to take advantage
of the GPU programmable pipeline resulting in highly interactive frame rates. It
efficiently uses the dynamic flow control feature to improve resulting visual quality
and optimize rendering speed. Additionally, this algorithm is designed to easily
support dynamic rendering to height fields for a variety of interesting effects.
Algorithms based on precomputed quantities are not as flexible and thus are limited
to the static height fields

AcknowledgementsAcknowledgements

• Zoe Brawley, Relic Entertainment
– Brawley, Z. and Tatarchuk, N. 2004. Self-Shadowing,

Perspective-Correct Bump Mapping Using Reverse Height
Map Tracing. ShaderX3: Advanced Rendering Techniques
with DirectX and OpenGL. Charles River Media, Cambridge,
MA

• Pedro Sander, for ScreenSpace screensaver
work and related slides

• The ScreenSpace screensaver team

The ToyShop TeamThe ToyShop Team
Lead ArtistLead Artist Lead ProgrammerLead Programmer

Dan Roeger Natalya TDan Roeger Natalya Tatarchukatarchuk

David GosselinDavid Gosselin

ArtistsArtists
Daniel Szecket, Eli Turner, and Abe WileyDaniel Szecket, Eli Turner, and Abe Wiley

Engine / Shader ProgrammingEngine / Shader Programming
John Isidoro, Dan Ginsburg, Thorsten Scheuermann and Chris OatJohn Isidoro, Dan Ginsburg, Thorsten Scheuermann and Chris Oat

ProducerProducer ManagerManager
Lisa CloseLisa Close Callan McInallyCallan McInally

Truly a team effort of which we are all very proud of.

Reference MaterialReference Material

• Demos, GDC presentations, papers and technical reports, and related
materials: www.ati.com/developer

• Downloadable publications and videos from ATI Research
– http://www.ati.com/developer/techreports.html

– Tatarchuk, N. Dynamic Parallax Occlusion Mapping with Approximate Soft Shadows.
ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games. Redwood City,
CA

– P. Sander, N. Tatarchuk, J. L. Mitchell. 2004. “Explicit Early-Z Culling for Efficient Flow
Simulation and Rendering”, ATI Research Technical Report, August 2004.

• ATI ToyShop demo:
http://www.ati.com/developer/demos/rx1800.html

ATI ScreenSpace screen saver:
http://www.ati.com/designpartners/media/screensavers/RadeonX1k.html

• Parallax Occlusion Mapping DirectX 9.0c SDK sample:
http://msdn.microsoft.com/directx/

Questions?Questions?

