
Bisection Based Triangulation of Catmull Clark Subdivision
Jonathan Dupuy

Unity Technologies

Thomas Deliot

Unity Technologies

input: halfedge based Catmull Clark subdivision [Dupuy and Vanhoey 2021]

h0

h2
h1

h3

h4

h5h6

h7

h8
h9

h10

h11

S0

h0

h1
h2

h3

h4
h5

h6
h7

h8

h9

h10

h11

h12
h13

h14
h15

h16 h17

h18h19
h20

h21

h22
h23

h24

h25 h26

h27

h29

h31

h33

h34
h35

h36

h37
h38

h39

h40

h41

h42

h43

h44

h45

h46

h47

h28
h30

h32

S1

h0

h1h2

h3

h4
h5

h6 h7

h8

h9
h10

h11

h12
h13

h14
h15

h16

h17

h18
h19

h20

h21

h22

h23

h24
h25

h26

h27

h28

h29
h30

h31

h32

h33

h34

h35

h36

h37

h38

h39

h40

h41

h42

h43

h44

h45

h46

h47h48
h49

h50

h51

h52

h53

h54

h55

h56

h57

h58
h59

h60

h61

h62

h63

h64 h65

h66h67

h68

h69
h70

h71

h72h73

h74
h75

h76

h77 h78

h79

h80

h81

h82

h83

h84

h85
h86

h87

h88
h89

h90
h91

h92

h93

h94

h95

h96

h97 h98

h99

h100 h101

h102
h103

h104

h105h106

h107

h108h109

h110 h111

h112

h113

h114

h115

h116

h117

h118

h119

h120

h121

h122

h123

h124

h125

h126

h127

h128
h129

h130
h131

h132

h133h134

h135

h136
h137

h138
h139

h140

h141

h142

h143

h144

h145

h146

h147

h148

h149

h150

h151

h152

h153
h154

h155

h156
h157

h158
h159

h160

h161

h162

h163

h164

h165

h166

h167

h168

h169

h170

h171

h172

h173

h174

h175

h176

h177

h178

h179

h180

h181

h182

h183

h184

h185

h186

h187
h188

h189

h190

h191

S2

initialization:
neighbors:

n0
7
= (b0

1
, b0

8
, b0

11
)

hafledge triplet:

b0
7
= (h28, h30, h32)

adaptive
refinement:

b0
0

b0
2

b0
3

b0
4

b0
5

b0
6

b0
8 b0

9

b0
10

b0
11

b0
1 b0

7

b0
0

b1
2

b1
3

b0
2

b0
3

b0
4

b1
10

b1
11b0

6

b2
28

b3
58 b3

59

b3
60

b3
61

b2
31

b2
32

b2
33

b1
17

b0
9

b0
10

b1
22b2

46

b2
47

Figure 1: Overview of our triangulation method. Our method takes (top) a halfedge based subdivision as input and produces
(bottom) adaptive bisection based triangulations by implicitly mapping bisectors to halfedge triplets. The resulting triangula-
tion effectively acts as an anisotropic sampler over the subdivision, with the guarantee to produce a conforming topology.

ABSTRACT
Concurrent binary trees are a recent GPU-friendly data-structure

suitable for generating bisection based terrain tessellations, i.e.,

adaptive triangulations over square domains. In this document, we

introduce simple mappings and algorithms that bring such adaptive

triangulations to Catmull Clark subdivision surfaces. Our resulting

implementation is straightforward and allows to render densely

triangulated subdivision surfaces in a fewmilliseconds on a modern

GPU. We showcase production scenes rendered in real time within

the Unity game engine thanks to our method.

KEYWORDS
GPU tessellation; compute shader; subdivision

1 INTRODUCTION
Motivation. Many popular GPU rendering techniques require

multiple passes over geometric data, e.g., shadow mapping, Z pre-

passing, path-tracing, visibility buffering, etc. Obviously, the speed

of such techniques greatly depends on that of geometric data reads.

In this context, tessellation shaders are not ideal: they either re-

quire re-generating up to thousands of triangles per pass or caching

the vertex data it generates without the ability to index it (thus

producing highly redundant data). To circumvent these issues, we

introduced a compute based adaptive triangulation algorithm that

provides efficient caching for terrain rendering, i.e., square do-

mains [2020]. In this talk, we show how to extend these adaptive

triangulations to geometric data produced by our recently published

halfedge based Catmull Clark refinement algorithm [2021].

Contributions and Outline. Our approach is illustrated in Fig-

ure 1: We generate adaptive triangulations by refining what we

refer to as bisectors, i.e., triangles that recursively split into two new

ones. Each bisector references exactly three halfedges produced

by our Catmull Clark algorithm. In turn, these halfedges provide

access to vertex points, thus fully determining the geometry of

its referent bisector. In this setting, the key to computing adaptive

triangulations free of⊤-junctions lies in the ability to determine the

neighbors of each bisector at any refinement level. In the following

sections, we provide an initialization method along with a simple

refinement rule that fulfil this requirement (see Sections 2, 3). Fur-

thermore, our method represents each bisector as an integer value,

which makes it suitable for our GPU-friendly concurrent binary

tree (CBT) data-structure (Section 4). We refer the interested reader

to our supplemental video for real-time rendering results.

1



Conference’17, July 2017, Washington, DC, USA Jonathan Dupuy and Thomas Deliot

2 BISECTION OPERATORS
Bisector Initialization. Our triangulation method draws inspira-

tion from that of Velho and Zorin [2001], who suggest initializing

two bisectors per quad after one Catmull Clark refinement step.

Our approach differs from theirs in that we initialize a bisector for

each halfedge of the control cage. This construction provides two

triangulations per Catmull-Clark subdivision as illustrated below:

S0

s
u
b
d
i
v
i
s
i
o
n
s
: S1 S2 S3

ℓ = 0

b
i
s
e
c
t
i
o
n
s
:

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5

For a control cage with H0 ≥ 3 halfedges, we index initial bisectors

by h ∈ [0,H0) and set their halfedge reference to the following

triplet (see red and green symbols in Figure 1):

b0h = (4h, 4h + 2, 4Next(h)). (1)

Bisector Refinement Rule. We refine bisectors depending onwhether

the current refinement level is even or odd. For even levels, we have:

bℓk = (h0, h1, h2) 7→ bℓ+1
2k+0 = (h0, h0 + 1, h0 + 2)

7→ bℓ+1
2k+1 = (h2 + 2, h2 + 3, h2), (2)

and for odd bisection levels:

bℓk = (h0, h1, h2) 7→ bℓ+1
2k+0 = (4h0, 4h0 + 2, 4h1)

7→ bℓ+1
2k+1 = (4h1, 4h1 + 2, 4h2). (3)

Bisector Vertex Points. We retrieve the bisector’s vertex points

by querying each halfedge it references. Given a bisector with

halfedges h0, h1, and h2, the vertex points are simply Vert(h0),
Vert(h1), and Vert(h2).

3 ADAPTIVE TRIANGULATIONS
Conforming Triangulations. In order to produce adaptive trian-

gulations, we simply refine bisectors non-uniformly. In this non-

uniform setting, we guarantee conforming triangulations, i.e., free

of ⊤-junctions, as follows: whenever we refine a bisector from re-

finement level ℓ to ℓ + 1, we propagate the refinement over up to ℓ

neighboring bisectors according to Algorithm 1. We determine the

neighboring bisectors thanks to the equations derived next.

Neighboring Bisectors. The initial bisector with index h ∈ [0,H0)
has the three following neighbors (see blue symbols in Figure 1):

n0h = (Twin(h), Next(h), Prev(h)). (4)

Then, neighbors evolve according to the following refinement rule:

nℓb = (n0, n1, n2) 7→ nℓ+1
2b+0 = (2n2 + 1, 2b + 1, 2n0 + 1)

7→ nℓ+1
2b+1 = (2n1 + 0, 2n0 + 0, 2b + 0). (5)

Note that this rule applies to both even and odd refinement levels.

Furthermore, our rule is such that the first neighbor is always the

one for which refinement must be propagated to obtain conforming

triangulations (see lines 4 to 6 in Algorithm 1).

Algorithm 1 Conforming triangulations via bisection

1: procedure ConformingBisection(bℓ : bisector)
2: Bisect(bℓ )
3: nℓ ← Neighbors(bℓ ) ▷ see Equation (5)

4: while nℓ
0
≥ 0 and ℓ ≥ 0 do

5: pℓ−1 ← ParentBisector(nℓ
0
)

6: Bisect(pℓ−1)

7: Bisect(nℓ
0
)

8: nℓ ← Neighbors(pℓ−1)
9: end while
10: end procedure

4 CBT IMPLEMENTATION
Bisectors as Integers. We encode bisectors implicitly as unique

integer values. Each integer value is a binary heap index: the most

significant bit gives the bisector refinement level ℓ, and the follow-

ing bits provide the path from the initial bisector to refinement

level ℓ in most to least significant bit order. Specifically, the value

for initial bisector h ∈ [0,H0) is

b0h 7→ 2
⌈lgH0 ⌉ + h. (6)

After one refinement, the two children are twice the integer value

plus zero and one respectively. This approach allows the use of a

CBT to encode each triangle as a leaf node, as we describe next.

CBT Initialization. In order to encode all possible triangulations,

we create a CBT with maximum depth ⌈lgH0⌉+2D−1, whereD de-

notes the depth of the Catmull Clark subdivision. We then initialize

all leaf nodes at depth ⌈lgH0⌉ to get a heap index per initial bisector.

Note that this produces 2
⌈lgH0 ⌉−H0 extra indexes that don’t map to

bisectors so we discard those in practice. This procedure effectively

encodes all initial bisectors for the triangulation.

CBT Update and Rendering. To update the triangulation, we iter-

ate over the heap indexes encoded by the CBT and decode them

as bisectors. To determine the halfedge triplet of each bisector, we

iterate over the bits of heap index and apply Equations (2, 3). We

then retrieve the vertex points of the bisector and decide whether

to refine or decimate it based on an arbitrary metric that controls

the triangulation. We render each bisector in the same fashion.

Results and Performances. We implemented our method as a stan-

dalone C++ code and on top of our existing CBT implementation

in the Unity game engine [Deliot et al. 2021]. On production assets,

our triangulation takes a few milliseconds and adds negligible over-

head compared to computing their Catmull-Clark subdivision see,

e.g., the timings in our supplemental video.

REFERENCES
T. Deliot, Y. Xialing, J. Dupuy, and K. Rijnen. 2021. Experimenting With Concurrent

Binary Trees for Large-scale Terrain Rendering. In ACM SIGGRAPH 2021 Courses.
Jonathan Dupuy. 2020. Concurrent Binary Trees (with Application to Longest Edge

Bisection). Proc. ACM Comput. Graph. Interact. Tech. (2020). https://doi.org/10.

1145/3406186

J. Dupuy and K. Vanhoey. 2021. A Halfedge Refinement Rule for Parallel Catmull-Clark

Subdivision. Computer Graphics Forum (2021). https://doi.org/10.1111/cgf.14381

Luiz Velho and Denis Zorin. 2001. 4-8 Subdivision. Comput. Aided Geom. Des. 18, 5
(jun 2001), 397–427. https://doi.org/10.1016/S0167-8396(01)00039-5

2

https://doi.org/10.1145/3406186
https://doi.org/10.1145/3406186
https://doi.org/10.1111/cgf.14381
https://doi.org/10.1016/S0167-8396(01)00039-5

	Abstract
	1 Introduction
	2 Bisection Operators
	3 Adaptive Triangulations
	4 CBT Implementation
	References

