Bisection Based Triangulation of Catmull Clark Subdivision

Jonathan Dupuy
Unity Technologies

input: halfedge based Catmull Clark subdivision [Dupuy and Vanhoey 2021]

| adaptive
initialization: refinement:
|

neighbors:

0—(p0 pO 10
n; = (by, b, by,)
hafledge triplet:
b9 = (has. h3o. h3a)

Thomas Deliot
Unity Technologies

Figure 1: Overview of our triangulation method. Our method takes (top) a halfedge based subdivision as input and produces
(bottom) adaptive bisection based triangulations by implicitly mapping bisectors to halfedge triplets. The resulting triangula-
tion effectively acts as an anisotropic sampler over the subdivision, with the guarantee to produce a conforming topology.

ABSTRACT

Concurrent binary trees are a recent GPU-friendly data-structure
suitable for generating bisection based terrain tessellations, i.e.,
adaptive triangulations over square domains. In this document, we
introduce simple mappings and algorithms that bring such adaptive
triangulations to Catmull Clark subdivision surfaces. Our resulting
implementation is straightforward and allows to render densely
triangulated subdivision surfaces in a few milliseconds on a modern
GPU. We showcase production scenes rendered in real time within
the Unity game engine thanks to our method.

KEYWORDS

GPU tessellation; compute shader; subdivision

1 INTRODUCTION

Motivation. Many popular GPU rendering techniques require
multiple passes over geometric data, e.g., shadow mapping, Z pre-
passing, path-tracing, visibility buffering, etc. Obviously, the speed
of such techniques greatly depends on that of geometric data reads.
In this context, tessellation shaders are not ideal: they either re-
quire re-generating up to thousands of triangles per pass or caching
the vertex data it generates without the ability to index it (thus
producing highly redundant data). To circumvent these issues, we
introduced a compute based adaptive triangulation algorithm that
provides efficient caching for terrain rendering, i.e., square do-
mains [2020]. In this talk, we show how to extend these adaptive
triangulations to geometric data produced by our recently published
halfedge based Catmull Clark refinement algorithm [2021].

Contributions and Outline. Our approach is illustrated in Fig-
ure 1: We generate adaptive triangulations by refining what we
refer to as bisectors, i.e., triangles that recursively split into two new
ones. Each bisector references exactly three halfedges produced
by our Catmull Clark algorithm. In turn, these halfedges provide
access to vertex points, thus fully determining the geometry of
its referent bisector. In this setting, the key to computing adaptive
triangulations free of T-junctions lies in the ability to determine the
neighbors of each bisector at any refinement level. In the following
sections, we provide an initialization method along with a simple
refinement rule that fulfil this requirement (see Sections 2, 3). Fur-
thermore, our method represents each bisector as an integer value,
which makes it suitable for our GPU-friendly concurrent binary
tree (CBT) data-structure (Section 4). We refer the interested reader
to our supplemental video for real-time rendering results.



Conference’17, July 2017, Washington, DC, USA

2 BISECTION OPERATORS

Bisector Initialization. Our triangulation method draws inspira-
tion from that of Velho and Zorin [2001], who suggest initializing
two bisectors per quad after one Catmull Clark refinement step.
Our approach differs from theirs in that we initialize a bisector for
each halfedge of the control cage. This construction provides two
triangulations per Catmull-Clark subdivision as illustrated below:

SO Sl SZ SS

subdivisions:

bisections:

=0 =1 =2 =3 =4 =5

For a control cage with Hy > 3 halfedges, we index initial bisectors
by h € [0,Hp) and set their halfedge reference to the following
triplet (see red and green symbols in Figure 1):

bg = (4h, 4h + 2, 4NexT(h)). (1)

Bisector Refinement Rule. We refine bisectors depending on whether
the current refinement level is even or odd. For even levels, we have:

bl = (ho, h1, ha) = bLTL = (ho, ho + 1, ho +2)

b b = (42, by +3, ), (2)

and for odd bisection levels:

b,i = (ho, h1, h2) — bg,:rio = (4hg, 4ho + 2, 4hy)

b bEL = (4hy, 4hy + 2, 4hy). 3)

Bisector Vertex Points. We retrieve the bisector’s vertex points
by querying each halfedge it references. Given a bisector with
halfedges ho, hi, and hy, the vertex points are simply VERT(hy),
VERrT(h1), and VERT(h2).

3 ADAPTIVE TRIANGULATIONS

Conforming Triangulations. In order to produce adaptive trian-
gulations, we simply refine bisectors non-uniformly. In this non-
uniform setting, we guarantee conforming triangulations, i.e., free
of T-junctions, as follows: whenever we refine a bisector from re-
finement level £ to £ + 1, we propagate the refinement over up to ¢
neighboring bisectors according to Algorithm 1. We determine the
neighboring bisectors thanks to the equations derived next.

Neighboring Bisectors. The initial bisector with index h € [0, Hp)
has the three following neighbors (see blue symbols in Figure 1):

n) = (Twin(h), NexT(h), PREV(h)). 4)

Then, neighbors evolve according to the following refinement rule:

+1
2b+0
{+1
2b+1

ni = (no, n1, n2) = N =2ny+1,2b+1,2np+1)

= n =(2n1+0, 2n9+0,2b+0). (5

Note that this rule applies to both even and odd refinement levels.
Furthermore, our rule is such that the first neighbor is always the
one for which refinement must be propagated to obtain conforming
triangulations (see lines 4 to 6 in Algorithm 1).

Jonathan Dupuy and Thomas Deliot

Algorithm 1 Conforming triangulations via bisection

1: procedure CoNFORMINGBISECTION(bY : bisector)

2 Bisect(b?)

3: n’ « NercuBors(b?)

4 while ng >0and{ > 0do
p’™! « PARENTBISECTOR(n))
Bisect(p{™!)

7: BISECT(ng)

8: n’ « Nerusors(p?™1)

9: end while

10: end procedure

> see Equation (5)

AN 4

4 CBT IMPLEMENTATION

Bisectors as Integers. We encode bisectors implicitly as unique
integer values. Each integer value is a binary heap index: the most
significant bit gives the bisector refinement level ¢, and the follow-
ing bits provide the path from the initial bisector to refinement
level ¢ in most to least significant bit order. Specifically, the value
for initial bisector h € [0, Hy) is

by > 2M8HT 4, 6)

After one refinement, the two children are twice the integer value
plus zero and one respectively. This approach allows the use of a
CBT to encode each triangle as a leaf node, as we describe next.

CBT Initialization. In order to encode all possible triangulations,
we create a CBT with maximum depth [1g Hy1+ 2D — 1, where D de-
notes the depth of the Catmull Clark subdivision. We then initialize
all leaf nodes at depth [lg Hy1 to get a heap index per initial bisector.
Note that this produces 28 Ho1 — Hy extra indexes that don’t map to
bisectors so we discard those in practice. This procedure effectively
encodes all initial bisectors for the triangulation.

CBT Update and Rendering. To update the triangulation, we iter-
ate over the heap indexes encoded by the CBT and decode them
as bisectors. To determine the halfedge triplet of each bisector, we
iterate over the bits of heap index and apply Equations (2, 3). We
then retrieve the vertex points of the bisector and decide whether
to refine or decimate it based on an arbitrary metric that controls
the triangulation. We render each bisector in the same fashion.

Results and Performances. We implemented our method as a stan-
dalone C++ code and on top of our existing CBT implementation
in the Unity game engine [Deliot et al. 2021]. On production assets,
our triangulation takes a few milliseconds and adds negligible over-
head compared to computing their Catmull-Clark subdivision see,
e.g., the timings in our supplemental video.

REFERENCES

T. Deliot, Y. Xialing, J. Dupuy, and K. Rijnen. 2021. Experimenting With Concurrent
Binary Trees for Large-scale Terrain Rendering. In ACM SIGGRAPH 2021 Courses.

Jonathan Dupuy. 2020. Concurrent Binary Trees (with Application to Longest Edge
Bisection). Proc. ACM Comput. Graph. Interact. Tech. (2020). https://doi.org/10.
1145/3406186

J. Dupuy and K. Vanhoey. 2021. A Halfedge Refinement Rule for Parallel Catmull-Clark
Subdivision. Computer Graphics Forum (2021). https://doi.org/10.1111/cgf.14381

Luiz Velho and Denis Zorin. 2001. 4-8 Subdivision. Comput. Aided Geom. Des. 18, 5
(jun 2001), 397-427. https://doi.org/10.1016/S0167-8396(01)00039-5


https://doi.org/10.1145/3406186
https://doi.org/10.1145/3406186
https://doi.org/10.1111/cgf.14381
https://doi.org/10.1016/S0167-8396(01)00039-5

	Abstract
	1 Introduction
	2 Bisection Operators
	3 Adaptive Triangulations
	4 CBT Implementation
	References

