

Hi everyone I am Francesco and I am going to talk about precomputed indirect diffuse
lighting in Enemies. Enemies doesn’t use lightmaps. We all know why lightmaps might be
problematic, complex geometry with many LODs are hard to deal with, they impose
annoying authoring constraint, there is a lack of unified lighting with dynamic objects which
is a problem given that the character here is the star of the film, and also we found we
weren’t getting the directional quality we wanted from Unity’s implementation of directional
light maps. Coincidentally, we were developing (and still are!) a replacement for the legacy
per-object tetrahedralized probe system and therefore it felt like a good fit for the project.

Workflow ended up being much better as well… which is a great win!

The system doesn’t do much especially new, but we stand tall on the shoulders of giants
that preceded us. I am going to talk a bit about the choice that we made for this system
before handing it over to Lasse and John to talk about Hair.

The system is adaptive in nature, we do an automatic placement step that adds probes
near geometry with higher density, while doing a coarser distribution as we move farther
away.

Artist will place probe volumes in the scene as markers of where the probes need to be
placed, but it is important to notice the data is not owned by the volumes, it is instead
slotted in a global structure.

CLICK

Volumes can also be placed to customize the probe density. For example a volume here is
placed around the main character to have higher subdivision surrounding it as you can see
by the red bricks.

For a bit of nomenclature, we place probes in units of 4x4x4 called bricks, corners between
bricks of different subdivisions are shared so that for a given position we bake the data only
once.

Bricks are grouped in what we call cells, those are none other than loadable and
streamable units. I am not going to talk about streaming today, but the streaming happens
from disk to GPU passing through a small CPU staging memory.

The actual placement of the bricks is very similar to what was presented for Need For
Speed at SIGGRAPH 2020. We generate an SDF of the scene and [CLICK] guided by said
SDF we are going to refine the subdivision if we detect we are close to surfaces.

Now that we have our bricks, we need to sample the data somehow.

The data structure is made up of two parts, an indirection part that in itself has two building
blocks: a global cell indirection structure and a per-cell brick indirection. [CLICK]

And we have a storage for Spherical Harmonics data that we call SH Pool.

The SH texture pool is a set of fixed sized 3D textures where the only constraint is that a
brick worth of data is contiguous (for filtering and indexing sake), but the rest of the data
can be completely disjointed; there is no required knowledge of the placement location.
The size of this texture is user-set according to memory budgets and it only determines
how often we’ll trigger a streaming event.

We store SH compressed as presented by O’Donnell in the Precomputed Global
Illumination in Frostbite. L0 is stored with higher precision and L1/L2 are represented as
numbers between 0 and 1 expressed in function of L0 and therefore that can be stored at
lower precision. Note that L2 is optional.

This scheme was discussed as creating some problems by [Hobson] for god of war for
filtering data. Those concerns are valid, and while it has been working fine for us we are
keeping our eyes open nonetheless.

The first part of indirection is a data structure with an entry for each cell of the level or
world. This data structure is global and always fully in memory. We don’t expect many cells
since those are generally fairly large, but even it were to be the case the data stored for
each entry is small and heavily packed and therefore the impact in memory is manageable.

CLICK.

Specifically what we store is:
- The highest density subdivision level
- The bounds of the area of the cell that actually contains bricks. And we represent

these bounds in terms of minimum brick size
- And finally an address to the per-cell indirection buffer that will give us the actual

mapping from world position to the SH data.

We keep this brick indirection per cell instead of having a global one for two main reasons:
- First, we can shape it for what is actually within the cell and we don’t need to

overallocate for the minimum common denominator. That means that if a cell
contains only large bricks, the indirection structure will be small.

- More importantly, we can stream this part in and out without having to reupdate a
monolithic structure every time; the sum of all these buffers might be a significant
chunk of memory, so having the option to stream parts of it is really important.

This per-cell indirection buffer has an entry for each potential brick in the cell and it is built
assuming we might have the area of the cell that is covered in bricks as if fully filled at the
highest resolution available inside the cell. This will allow us to query the structure at the
right resolution at any given point.

For example if we had a cell of 81 meter per dimension and a minimum brick size available
in the cell of 3 meter, we will have 27 entries per dimension.

As we load a brick we place it in the SH pool. Upon placement we will note down the
texture location where the placement has happened.

CLICK

Using the world position of the brick relative to the cell origin, we can now place it in the
indirection buffer.
For all the entries that overlap with the brick we insert the brick’s texture location in the pool
and its subdivision level.
Note how in this example the brick is of subdivision 1, and therefore NOT of the highest
density we have available. For this reason, it span multiple entries that are minimum
subdiv-sized and we will tag them all.

As a smaller bricks comes that is at the same world position, we replace the data previously
stored from a brick at lower resolution, guaranteeing that we always store the coordinates
to the highest quality data for any given entry.

So to recap:

With a world position we identify the cell we are in and so the right entry in the cell
indirection structure (it is just a matter of dividing by cell size and move relative to origin),
CLICK

with the metadata in there we find the right per cell brick indirection for the cell we are
sampling from CLICK

Now, we can move the world position to be relative to the cell and find the brick texture
coordinates by sampling the per cell indirection buffer. CLICK

Finally, using the fractional world position within the brick we can craft the UVW used for
our trilinear sampling.

So this is the data structure, but of course we have problems!

Before I go on describing them, it is important to point out that we need to stay very
lightweight as we need to support a large range of platforms. Moreover, since we are a
generic engine we sadly cannot make any assumption on the content that the system is
going to be used with.

One of the issues that every multi resolution probe systems incurs into, is when
neighbouring points in space sample from different resolutions. This leads to harsh strong
seams as points that are close spatially will sample lighting data captured at different
resolutions.

You can see the problem in this image highlighted in red

Well, CLICK .

We solve, or rather try to address, the issue with a delicacy of an hammer, a noisy hammer
if you will!

CLICK

We apply animated Interleaved Gradient Noise in the tangent frame of the sample position,
ending up breaking the straight seams into noise.

To be honest, this started as a crude stopgap solution, but it proved fairly effective and TAA
smooths away most of the noise anyway.

Eventually, we ended up not observing the problem much especially on textured surfaces
and given that this solution is very cheap, that’s what we are going with at the moment,
though I don’t exclude that more effort will need to put in this.

Another big set of issues come from probes that end up within geometry. This can happen
fairly easily as bricks are a regular structure placed at locked positions in space.

CLICK We identify these problematic probes with a validity score based on how many
backfaces are seen during the baking process.

If these invalid probes are left untreated they will leak black splotches throughout the
scene, so we have to do something about it.

A first solution is dilation, this will happen immediately after we baked the data. Invalid
probes gather data from valid neighbours (up to a distance set by user) and then will weigh
those contributions based on the inverse squared distance from the probe we are dilating
into.

CLICK

As you can see by the images, with the raw output on left and post dilation on the right, this
gets rid of a fair amount of black splotches. However, as you can see from the areas
highlighted in red, it creates new leaks as for example data from outside gets dilated into
probes sampled “inside”. Here you can see that in the area behind the columns.

Again, sadly we can’t make content specific assumption to guide this process better.

Another option is what we call Virtual Offset. This similar to what discussed by [Cuarant for
Detroit: Become Human and the Need for Speed presentation I mentioned before].
Essentially if a probe is inside geometry we try to find the closest way out, teleport the
probe there for the sake of baking and then snap it back to the original grid position for the
sake of sampling.

This works generally well, here is an example of when it does; you can see highlighted in
red bright leaking on the top part of the column and the dark leaking from the wall are
significantly reduced. However,

if used too aggressively, virtual offset it can skew the capture point too much and when we
use it with judgement we have no guarantee that a way out is actually found. Also, it might
create new leaking as the way out we find to bake might not be from the side we want or
necessarily in a favourable spot.

In the end, both dilation and virtual offset work together. For the enemies Virtual Offset runs
first and then for failing cases we run dilation.

Let’s see an image. With only dilation we can see how we get a significantly better result
than the raw output, however as I mentioned before, some issues are still there and new
leaks have been introduced.

By running virtual offset first, some of the bright leaks are not there anymore, notice the
area around the column [DO BACK AND FORTH]…
However a lot of problematic areas still are present, and some areas are arguably
regressed.

So.. we need more!

We still have leaking from valid probes and the newly created leaks from trying to fix some
black splotches. It is now time to do something at runtime.
But as I said before, we need to be lightweight, hence why we sadly cannot use incredible
recent advances in leaking reduction such as the octahedral depth used in DDGI due to the
additional runtime and memory cost.

We accept the results won’t be perfect, but we will try our best nonetheless.

Firstly we start with some simple biases.

The first one is along the normal direction. This is very well discussed by Hobson, and I
refer you to that excellent presentation, but essentially what it does is inflating the sampler
to avoid self-sampling issues. This gets rid of several problems. However it is hard to tune.
As you can see by the gif, pushing it too much shows weird data getting onto the sphere
without any business to do so and too little will not be enough to account for our issues.

The other bias we support is the View bias. This biases towards the camera, hopefully
picking data that is more relevant to the viewer. Unfortunately as you can see by the gif, this
produces a view dependent result which is sub-optimal.

Overall, both of course are just biases, and while they are powerful, they are annoying to
tune and can lead to several problems. Generally we find that is very important to have
them, but it is equally important to keep them at the minimum value acceptable to avoid
creating issues.

So… yet again… we need to do more!

While it is true that we need to keep only a single hardware trilinear sample per texture for
performance reasons, we can warp the trilinear sample location by modifying the trilinear
weights with some additional weighting. Specifically we use two schemes,

- A Geometry weight inspired by Remedy’s/Silvennoinen
- And a validity based method I am going to discuss next.

We treated our invalid probes with dilation and virtual offset, and while those processes do
an overall good job, as we have seen they can also introduce new issues.

More generally, we just want to avoid sampling data from probes that are inside geometry.
Either they represent an occluding mesh or they might contain newly leaky data.

To avoid sampling them, at bake time each probe creates an 8bit mask where each bit
represent a probe in the 2x2x2 neighbourhood used for sampling. A bit in this mask is set
to 1 if the corresponding neighbour is valid and is set to 0 otherwise.
Using this info, we can compute a weight that we can use to push the sample location away
from the invalid probes. In our case it is just a binary one.

This of course adds a single extra 8bit texture load, but the visual gains are significant
enough.

As you can see from the image and specifically the parts highlighted in red, we manage to
avoid some of the leaking dilation introduced.

Note that for this image the geometry weighting has been turned off to show the impact of
the validity weighting alone.

So let’s go back to the image I showed you before.
Dilation and virtual offset give us a decent start, but lots of problematic areas are still there,
for example the ones I highlighted in red. CLICK

Using our weighting we can see how many of those problematic areas are now fixed. [DO
BACK AND FORTH]
Note that in these images biases are set to an extremely small epsilon and yet we still get a
fairly clean image.

Now, of course this validity weighting relies on the fact that our probes will sample the
scene accurately, more specifically that we will always have probes falling within the
geometry at the interface of a possible leak.

This of course cannot always be the case. So, we offer a primitive volume that artist can
place and everything falling within it will be marked as invalid for the sake of this weighting
scheme.

This essentially is the same of virtually increasing the size of specific objects like the ceiling
of this box that had walls of only 7cm thickness. As you can see by invalidating the probes
as if they were inside the ceiling, the leaking is heavily reduced.

I was very worried that this manual intervention would put off the artists. However, it turned
out that this placement is not needed often, in fact for Enemies the feature is not used at all.
Given that this is not a mandatory step, our artists actually quite welcomed this new degree
of control it give them.

But we must not forget that a sampler probe trash is another sampler probe treasure!

Consider the example, a touch up volume invalidated a couple of probes. Most points
sampling the bottom 2x2x2 blocks of probes is going to be happy with the invalidation as an
occlusion is actually there made by the grey box; however the top neighbourhood has no
need to push the samples away from those probes as that neighbourhood is free of
occlusion and those probes have been invalidated only because of the touchup volume that
is placed for the grey box.

See for example the sphere image here, an artifact is visible on the bottom of the sphere
due to this problem.

To partially account for this, if we detect that there is no occluding objects in the 2x2x2
neighborhood, we restore the validity in the mask used for computing the weighting.

Now the top neighbourhood in the example can have all the bits set to valid and freely
gather data from all probes, while the bottom one can keep them invalid and push away
from those.

Of course this is not perfect, but it is better than not doing it.

I have run out of time, so I cannot discuss here how the touchup volumes evolved into
becoming much more than this. We started experimenting with using them as also a mean
to guide a bit the dilation and virtual offset process with localized content specific
adjustments for example, a way to restore probe validity in the rare cases in which we might
want to … and we also added a last resort intensity scale that I was forced at gun point to
add… but it is very well hidden I swear!

Also I haven’t discussed many other features of the system, such as reflection probe
normalization and sampling from volumetric fog.

It is now time to pass on to Lasse to talk about a more hairy subject

https://github.com/Unity-Technologies/com.unity.demoteam.hair

To conclude our presentation, I’m going to talk about some progress we’ve made in
bringing a physically based shading model for hair to Unity.

Prior to our work on this, Unity’s HDRP already provided a hair shader available to users.

This was a non-physically based, Kajiya-Kay based model.

There are some key characteristics of this Kajiya-based model.

First to say that the model is phenomenological, meaning that it’s modeled empirically,
based on observation of the phenomena only seen in hair, rather than an approximation of
the actual physics of what's really happening.

As such, our Kajiya-based BSDF models the following three phenomena:

There is first the dual specular terms.

Effectively this is approximating the initial specular lobe that forms due to reflection of
incident light on a hair cuticle scale.

The second specular term is meant to approximate the specular lobe that forms from
incident light that get transmitted into the hair fiber, internally reflects at the back of the
cuticle, and finally transmits a second time slightly shifted from the point of entry; tinted in
color due to absorption by the hair fiber cortex.

Secondly there is a special transmission term. This approximates incident light that
transmits once into the hair fiber, and transmits a second time at the cuticle wall on the

opposite side.

Finally, there is the diffuse term, which ultimately is meant to coarsely approximate the
multiple scattering

Especially for darker hair where multiple scattering is barely observable, you can get very,
very far in terms of quality by carefully tuning this model… however, there were still some
issue with achieving consistent results across lighting scenarios and a non-physically
meaningful inputs to the model

To summarize our motivation to improve HDRP’s hair shading model, we wanted to
achieve three things:

First, a more intuitive parameterization of the model, mainly to reduce the number of color
inputs required.

Of course we require it to be energy conserving and work across any lighting scenario.

Last but not least, we would also like to approximate the advanced multiple scattering that
occurs within a volume of hair fibers.

A typical animal hair follicle is composed of three substructures: the cuticle, the cortex, and
the medulla.

The Cuticle is the outermost scale-like structure on the fiber and the barrier to its interior.
Cuticles are arranged similarly to roof tiles, with a slight overlap to one another and with a
slight degree of inclination that effects the reflection and refraction of the incident light.

The Cortex makes up most of the fiber interior, and is most responsible for the absorption
that occurs with refracted light, giving the hair its color.

The Medulla is the innermost structure of the fiber and contributes further to the scattering.
For animal fur, this structure is much larger than humans and is what gives fur it's generally
more diffuse appearance.

Together these three structures produce the unique scattering of incident light on hair.

Obviously it is unfeasible to explicitly geometrically model the fiber structures, and solve the
scattering and absorption with a traditional microfacet model, even in a path traced setting.

We need to look to a way that simplifies this structure and the way it reflects, refracts, and
absorbs incident light.

So if you have looked into implemented physically based hair shading before, then
diagrams like the one on the right are more than likely burned into you mind. But to ensure
everyone has full context, let me provide a quick recap.

Hair reflectance models consider hair fibers as cylinders, and use a BCSDF (Bidirectional
Curve Scattering Distribution Function) to represent the scattering that occurs on and within
a fiber.

The Kajiya-Kay model for example is a BCSDF, and it treats hair as opaque solid cylinders.

There is already nearly two decades of research on the topic of physically based hair
shading, so we have a lot to work from.

Nearly all of that research rests on Marschner’s factorization, which essentially showed that
it’s actually possible to separate the scattering analysis for each path in a fiber into a
product of two 1D profiles, which you can see in the diagram on the right.

The longitudinal scattering is an analysis of the scattering along the length of the fiber and
the azimuthal scattering is an analysis of the scattering along the width of the fiber.

You will also notice in the diagram that there is really no consideration for the medulla
structure. This is because since we are targeting human hair for now, and since the
medulla is very small, it can be safely factored out of the model.
This leaves us with a model that treats hair fibers as glass-like dielectric cylinders.

So now let’s discuss a little bit about implementation.

To begin, we decided it was crucial to begin with a path traced reference before attempting
to approximate anything.

This way, we could make well informed optimization decisions. As well as have a good
understanding of the usual visual vs. performance tradeoffs.

The equations in this slide are for future reference when these slides are shared online.

If there was more time to speak I would go in greater detail here, but for now just know that
these are the building blocks for our path-traced model, and what we will eventually try to
approximate.

Speaking of approximation, let’s talk about that now.

Here is a closer look at the primary equations from our path traced model that we need to
approximate.

Some initial observations:
- Immediately we see that it is not feasible to solve for an infinite series of paths. So

we will compromise on the loss of about 15% of the energy and only solve for the
first three paths.

- We’ll also see that the energy conserving longitudinal scattering is pretty costly
compared to Marschner’s original gaussian.

- Finally we will see that the near field azimuthal scattering is almost unusable, since
before we were relying on the monte carlo integration of the path tracer to integrate
this function over the fiber width. So only sampling it once would result in a lot of
aliasing and inaccurate results. Additionally, we cannot simply numerically integrate
the function for a far-field result because this would also be too expensive.

We already decided to simplify to the first three paths. I will explain next how we simplified
the longitudinal scattering and azimuthal scattering.

So for longitudinal scattering, I have this slide simply for completeness’

sake, since we do what others in the past have done already.

For all three paths, we simply defer to the original Marschner gaussian

in place of the energy conserving one.

The gaussian takes the standard deviation representing the fiber

roughness, and it is a function of the half angle between the longitudinal

light and camera vector.

The alpha term represents the cuticle angle in radians, and this is how

we factor in the shifting that occurs due to the reflection and refraction

on the cuticles.

For the azimuthal scattering we have to be a little more creative.

We take the approach of approximating the azimuthal scattering to be

the product of the approximated attenuation and approximated

distribution for each path.

First I will talk about what we did for the distribution function underlined

in orange, and then the attenuation function underlined in blue.

A reminder that attenuation accounts for the fresnel and absorption that

occurs at each event, while the distribution determines the radial

angular distribution.

And an extra reminder to explain the H term.

If you look back at our diagram explaining the analysis of the azimuthal

scattering in the normal plane, you can visually see that H represents

the offset of the incident light from the fiber.

Since we analyze this on the unit circle, H is in the range of -1 to +1.

The near field model works by computing the exact H value based on

the normal of fiber and the incident angle. The far field model works by

integrating for H over the entire fiber width.

We would really like to preserve the radial smoothness parameter as it gives artists a lot of
flexibility for species differentiation even though we still mostly try to focus on human hair.

Because of this, we decided to pre-integrate the distribution over the fiber width and store it
in a 3D look up table, this basically gives us the far field result at each sample.

It’s parameterized by phi, the azimuthal angle around the fiber
The cosine of the angle theta d, which is the longitudinal difference angle between the light
and camera vector.
And finally beta N, which represents the azimuthal roughness (to users, radial
smoothness).

Since the distribution is just a scalar for each path, and the LUT sample is path
independent, we can get the distributions for all three paths with one sample.

Now on to the approximation for the attenuation.

The R path we do not need to do anything special as no absorption

occurs.

For TT and TRT we took an approach as demonstrated by Epic and

Frostbite which basically tries to select the dominant H value for each

path.

For TT this ended up being 0, which makes sense since the forward

scattering is observed to be most dominant when incident light strikes a

fiber dead-on.

For TRT we select the H term of sqrt(3) / 2 for similar reasoning.

One more thing of note, It’s also not enough to consider this problem in isolate of a single
hair fiber, for good results we need to factor in the fact that we will be shading an entire
volume of hair.

The reason for this is most easily seen in a blonde (or low absorbing) head of hair.

Since the absorption is low for the fiber, the light is able to scatter further into the volume of
strands.

This is what gives lighter colored hair its soft and volumetric appearance.

So, we must take this into account as well.

The main idea of the dual scattering method is to approximate the multiple scattering
function with a Global Multiple Scattering (Psi G) and Local Multiple Scattering component
(Psi L).

The global multiple scattering function computes the irradiance arriving at the neighborhood
of the shading point inside the hair volume.

The local multiple scattering function approximates the multiple scattering of this irradiance
within the neighborhood of the shading point.

So basically, the multiple scattering function is the sum of the global multiple scattering and
the global multiple scattering that undergoes further local multiple scattering.

To build an intuition for what causes multiple scattering in hair let’s revisit the original
integral that gives us the outgoing radiance in a certain direction from a given point.

The top integral shows that to compute the outgoing radiance we integrate over the sphere,
the product of our hair BSDF and the incident radiance.

We already know about our fiber scattering model, so it’s the incident radiance that we care
about.

When observing the incoming radiance, we can decompose it into two contributions, the
first (Ld) is the radiance incoming from outside of the hair volume.

The second is the radiance that is scattered inside of the hair volume and finally arriving at
the shading point, we can call this the multiple scattering function.

In a path traced setting it’s extremely easy to get this information since this integral is
solved directly via monte carlo, but in a rasterized setting we really have to approximate.

We use the dual scattering method to approximate this multiple scattering function which
can be seen in the bottom equation.

Both the global and local multiple scattering are dependant on the average forward and
backward scattering intensity.

We simplify the more complicated scattering lobes into a generalized singular forward lobe
and singular backward lobe, this is best explained visually in the diagram.

We compute this by solving this integral on the front and back hemisphere. Note how we
directly re-use our BCSDF.

We do this as a pre-integration step and store the result it in a 3D LUT.

The local scattering can be computed analytically and I won’t mention anything else about
that, but the global scattering function is a very intensive aspect of the dual scattering
approximation.

The core of this is because we need to compute the average attenuation and variance for
each hair fiber intersection that occurs between the shading point and the light, best
explained again by the diagram and equations.

The equations listed here are a decomposition of the global multiple scattering equation.
Upon closer inspection, we can see that the transmittance and total variance calculations
are the primary culprits for the cost of this routine. N here represents the number of strands
between the shading position and the light.

We basically need to compute those equations at every fiber intersection. How do we do it?

Traditionally this is solved by using deep opacity maps for example at Frostbite, which are
basically a more robust shadow map algorithm, but we didn’t have time to sort this out on
the CPU side and to be honest, it doesn’t seem like a very great option to have one of these
maps for every light that you want to contribute to multiple scattering.

Ignoring the fact that we need to somehow get the number of strands between the shading
point and the light, we can at least make this initial simplification proposed by Disney.

Basically what this does is make the assumption that all strands that exist between the
shading point and the light have the exact same orientation.

This allows us to move the fiber-dependent information out of the sum and product,
effectively decoupling them from the strand count.

So we have at the very least isolated this problem into computing the strand count in the
shadow ray direction as fast as possible.

To compute N, we can benefit from the voxelized hair structure that is produced by the hair
simulation that Lasse presented in the previous section of this talk.

The voxelized structure already produces numerous useful volumetric data, like velocity,
density, pressure, and so on.

Pictured above is a quick visualization of the voxelized structure of the hair and some of its
data, drawing the isosurface and strand density.

Here’s what we do.

We begin by knowing that the density data has already been calculated for each voxel.

The density at each voxel represents the fractional occupancy of strands to the total volume
of the voxel.

It is a term that we can directly derive an approximate strand count per-voxel from.

So for each voxel, we trace against the density volume over the sphere of directions until
we hit the volume extents.

For every step, we convert the density into strand count, and aggregate it to the current
trace result.

Then we project all of this down into an L1 Band spherical harmonic and store it in a new
volume buffer.

During shading, sample from the closest voxel to the shading position, and submit the L1
harmonic to the BSDFData.

During the lightloop evaluation, we can quickly decode the coefficients and retrieve the
approximate strand count for any light type, including area lights.

This allows us to compute the multiple scattering for both analytic and area lights whether or
not those lights cast shadows.

Finally, I wanted to quickly explain a topic very unrelated to shading, but nonetheless
extremely important for rendering hair.

And that topic is software rasterization for hair strands.

We were deeply inspired by Frostbite’s demonstration of a compute-based rasterizer to
solve the infamous problems of hair strands rendering, mainly being anti-aliasing and
fragment composition for proper transparency, two things which the traditional graphics
pipeline struggles with in terms of both image quality and performance for strand geometry.

I will defer you to their excellent 2020 talk on this subject, which goes into far greater detail
than I can now due to time.

For now, I will explain to you some of our approach, which is similar in spirit, but with its
differences.

Here is a quick overview of the stages required to complete a draw call of some line
topology in our software rasterizer.

First the vertex setup. This is a very simple kernel, that scales in complexity with the
material graph. We dispatch this in compute, rather than in the normal graphics pipe. It is 1
lane per Vertex and outputs a post transform vertex cache.

Next is the segment setup. This is where we bind the index buffer and determine segment
connectivity and visibility. Using the result from the previous vertex setup stage, we perform
viewport clipping, and other visibility culling tests.
Here we output a compacted stream visible segments that may proceed to the latter stages.

Up next we have the shading pass. Here we render shading samples into an atlas for every
visible segment. Since our hair BCSDF is a far-field model, we can get away with shading
1-dimensionally.
Right now we have one shading sample per visible vertex, but there’s room for
improvement in the future. These shading samples are interpolated later, in the fine raster
stage.

Next is the binning stage. This stage is indirectly dispatched based on our visible segment
counter. Every lane is assigned a segment.

The segment’s tile space bounding box is assigned computed, and we then perform a
segment intersection test for each tile in the bounding box.
Tile’s have a dimension of 8 by 8 pixels.
For passing intersections, we emit a recording of the intersection into global memory.
These recordings are coordinated through wave intrinsics and local atomics.
The output of this stage represents a long list of work that needs to be organized /
rearranged before we can begin resolving per-fragment coverage and color.

So now it’s time to organize the data. In the work queue stage, the goal is to prepare the
segment-tile intersection records so that we have good work distribution on the subsequent
fine raster stage.
Rather than getting too into the weeds on what we do to organize this list of work, I will just
say that it ultimately produces two important lists:

The first list is just a massive list of segment keys, with a log2 encoded depth in the 8 Most
significant bits, and the actual segment index in the 24 least significant bits. These keys are
organized such that all segments in the same tile are contiguous in memory.
The second list is a list that allows us to coherently look up into that first segment index
buffer, providing an offset and count into that buffer.

Last but most definitely not least is the fine raster stage. In this final stage it is our goal to
produce and compose anti-aliased fragments in a correctly sorted order as fast as possible.

This kernel follows a persistent thread style, meaning that the size of our dispatch will never
be with respect to the amount work that needs to get done, but rather how much resources
there physically is in the hardware, and we will manage the work distribution ourselves.

The benefit of doing this is that we can process our work queue in ways that we can control,
ultimately resulting in better performance, rather than if the work was scheduled more
randomly.

Each thread block has a size of 64 threads and they will run until the tile queue is empty.

Coordination between thread block happens once via a global atomic where the next tile
index is popped from the queue.

Then, we load that tile’s segment offset and count. Each thread is responsible for loading
batches of segment keys into LDS.

We then perform an LDS-based sort on the 8 most significant bits of the segment keys,
producing a re-arranged LDS list of segments in the tile from front to back order.

[CLICK]
Now that all the data is right where it needs to be, let’s rasterize.

We process the sorted segments from front to back in batches of 32. We load these batches
in parallel, pulling the actual segment record from memory with the segment index that was
encoded in the sorted key.

Once we have our segment records in local memory, we compute a coverage mask that is
stored in an 8x8 uint tile in local memory.

Threads coordinate to render out 8 points for each segment into the coverage mask, doing
this for all 32 segments in the batch.

Coverage is easily determined by transforming the NDC position onto the LDS tile.

Since the segments are already sorted, ordering of the coverage mask is easily preserved by
setting the Nth bit in the coverage mask based on the Nth segment’s index in the batch.
Coverage mask samples are composited with an atomic OR.

[CLICK]
Once we have finished generating the coverage mask, we dilate the mask using an atomic
OR. The dilation makes the mask wide enough for when we produce anti-aliased fragments.

Finally, each lane in the thread group grabs a uint from the mask. This 32-bit element from
the mask represents a list of ordered segments for that pixel to produce fragments for.

This is only place in the kernel where the threads diverges, selecting their next segment
index to process with the firstbitlow() intrinsic.

After producing a fragment, the result is blended, the bit in the per-lane work queue is
cleared, and we repeat this process again as long as the per lane queue is non-zero.

This entire batched raster process is repeated until the tile is deemed to be opaque,
something we ballot for with a wave intrinsic that checks up on the minimum opacity in
across the tile. If it’s around 1, we are done rasterizing that tile.

Once we are done rasterizing a tile to the internal color, depth, and motion vector targets, we
pick a new one and restart the process, otherwise we exit the loop and are done with the
rasterization process.

Last but most definitely not least is the fine raster stage. In this final stage it is our goal to
produce and compose anti-aliased fragments in a correctly sorted order as fast as possible.

This kernel follows a persistent thread style, meaning that the size of our dispatch will never
be with respect to the amount work that needs to get done, but rather how much resources
there physically is in the hardware, and we will manage the work distribution ourselves.

The benefit of doing this is that we can process our work queue in ways that we can control,
ultimately resulting in better performance, rather than if the work was scheduled more
randomly.

Each thread block has a size of 64 threads and they will run until the tile queue is empty.

Coordination between thread block happens once via a global atomic where the next tile
index is popped from the queue.

Then, we load that tile’s segment offset and count. Each thread is responsible for loading
batches of segment keys into LDS.

We then perform an LDS-based sort on the 8 most significant bits of the segment keys,
producing a re-arranged LDS list of segments in the tile from front to back order.

[CLICK]
Now that all the data is right where it needs to be, let’s rasterize.

We process the sorted segments from front to back in batches of 32. We load these batches
in parallel, pulling the actual segment record from memory with the segment index that was
encoded in the sorted key.

Once we have our segment records in local memory, we compute a coverage mask that is
stored in an 8x8 uint tile in local memory.

Threads coordinate to render out 8 points for each segment into the coverage mask, doing
this for all 32 segments in the batch.

Coverage is easily determined by transforming the NDC position onto the LDS tile.

Since the segments are already sorted, ordering of the coverage mask is easily preserved by
setting the Nth bit in the coverage mask based on the Nth segment’s index in the batch.
Coverage mask samples are composited with an atomic OR.

[CLICK]
Once we have finished generating the coverage mask, we dilate the mask using an atomic
OR. The dilation makes the mask wide enough for when we produce anti-aliased fragments.

Finally, each lane in the thread group grabs a uint from the mask. This 32-bit element from
the mask represents a list of ordered segments for that pixel to produce fragments for.

This is only place in the kernel where the threads diverges, selecting their next segment
index to process with the firstbitlow() intrinsic.

After producing a fragment, the result is blended, the bit in the per-lane work queue is
cleared, and we repeat this process again as long as the per lane queue is non-zero.

This entire batched raster process is repeated until the tile is deemed to be opaque,
something we ballot for with a wave intrinsic that checks up on the minimum opacity in
across the tile. If it’s around 1, we are done rasterizing that tile.

Once we are done rasterizing a tile to the internal color, depth, and motion vector targets, we
pick a new one and restart the process, otherwise we exit the loop and are done with the
rasterization process.

Last but most definitely not least is the fine raster stage. In this final stage it is our goal to
produce and compose anti-aliased fragments in a correctly sorted order as fast as possible.

This kernel follows a persistent thread style, meaning that the size of our dispatch will never
be with respect to the amount work that needs to get done, but rather how much resources
there physically is in the hardware, and we will manage the work distribution ourselves.

The benefit of doing this is that we can process our work queue in ways that we can control,
ultimately resulting in better performance, rather than if the work was scheduled more
randomly.

Each thread block has a size of 64 threads and they will run until the tile queue is empty.

Coordination between thread block happens once via a global atomic where the next tile
index is popped from the queue.

Then, we load that tile’s segment offset and count. Each thread is responsible for loading
batches of segment keys into LDS.

We then perform an LDS-based sort on the 8 most significant bits of the segment keys,
producing a re-arranged LDS list of segments in the tile from front to back order.

[CLICK]
Now that all the data is right where it needs to be, let’s rasterize.

We process the sorted segments from front to back in batches of 32. We load these batches
in parallel, pulling the actual segment record from memory with the segment index that was
encoded in the sorted key.

Once we have our segment records in local memory, we compute a coverage mask that is
stored in an 8x8 uint tile in local memory.

Threads coordinate to render out 8 points for each segment into the coverage mask, doing
this for all 32 segments in the batch.

Coverage is easily determined by transforming the NDC position onto the LDS tile.

Since the segments are already sorted, ordering of the coverage mask is easily preserved by
setting the Nth bit in the coverage mask based on the Nth segment’s index in the batch.
Coverage mask samples are composited with an atomic OR.

[CLICK]
Once we have finished generating the coverage mask, we dilate the mask using an atomic
OR. The dilation makes the mask wide enough for when we produce anti-aliased fragments.

Finally, each lane in the thread group grabs a uint from the mask. This 32-bit element from
the mask represents a list of ordered segments for that pixel to produce fragments for.

This is only place in the kernel where the threads diverges, selecting their next segment
index to process with the firstbitlow() intrinsic.

After producing a fragment, the result is blended, the bit in the per-lane work queue is
cleared, and we repeat this process again as long as the per lane queue is zero.

This entire batched raster process is repeated until the tile is deemed to be opaque,
something we ballot for with a wave intrinsic that checks up on the minimum opacity in
across the tile. If it’s around 1, we are done rasterizing that tile.

Once we are done rasterizing a tile to the internal color, depth, and motion vector targets, we
pick a new one and restart the process, otherwise we exit the loop and are done with the
rasterization process.

Before I go, I will leave you with some performance numbers captured on PS5, from a
demo we released yesterday, that uses all of the features we just presented.

- Attachments: 1.4ms
- Hair Sim: 3.5ms
- Strand Count Probe for Lion Mane: 0.7ms
- Shading: 3.36ms shading pass (collectively) on PS5
- Fine Raster: 10ms

