
Unreal Engine Substrate: Authoring Materials that matter

Notes have been added to the slides deck because this felt needed since the 
presentation had to go through a lot of details that may not have been restituted 100% 
when we did the presentation live. And this is also better for everyone who missed the 
live presentation.



The current material model in UE is based around the notion of Shading Models. A 
shading model target a specific set of visual features, proper to a given appearance. 
For instance, we have a shading mode for general dielectric/conductor, for ClearCoat, 
for Subsurface scattering, for Cloth, ..

Each shading model is targeting a specific range among the appearance spectrum.

Most of the existing shading model uses state of the art technique / implementation, 
yet remain performance, since UE is targeting high-performance rendering for game. 
For instance Fortnite runs up to 120Hz.

In addition all these shading models remain visually consistent across our rendering 
paths, i.e. rasterization path, ray-tracing effect likeLumen, or our path tracer



However, having such specialized shading models, acting in silo, prevents artists 
from creativity freedom.

For instance what if an artist wants to blend a SSS surface with a metallic surface.

With a shading models approach, since we can represent only one shading model per 
pixel, the blending would lead to harsh transition/discontinuities.

With proper blending of appearance, the transition becomes smoother, as expected.



Another example, what if an artist would like to have a subsurface based material, 
coated with a plastic armor or some sweat. 

Again having a shading model approach, it wouldn’t be possible out of the box as it 
would requires at the same time some feature of our SSS shading model, and some 
feature of our Coat shading model.



Another more advanced example. Imagine an artist wants to build an advanced cloth 
material. The material would be made of two sets of silky threads (i.e. with anisotropic 
highlight), perpendicular to each other to mimic a woven pattern. And the cloth would 
be covered by a plastic sheet. 

Yet again, it wouldn’t be possible out of the box with a shading model approach.



Here a limitation of our existing shading models, more tight with our implementation.

UE default shading model uses the notion of metalness to make the distinction 
between conductor and metallic. When transiting between the two types, an 
undesired halo can appear. This is a known limitation in PBR, but something we 
couldn’t address before dropping the notion of metalness in Substrate. 



All these examples highlight the fact that, if an artists want to get certain type of 
advanced appearance, it requires a modification of existing shading models, or even 
an entirely new shading model.

Adding new shading model each time for such a case would lead to a combinatorial 
explosion of shading models. 

Adding new shading models means engineering cost to implement and ensure 
everything work as intended.

It also adds, in the long run, an overall increase of shading cost. As more complex 
shading models are implemented, it is likely that branching & register pressure will 
increase, dropping performance even for our simple/most used shading models.

To combat these performance regression, one can leverage project settings to only 
enable these advanced shading models on projects needing them. But that create a 
maintenance/testing issue.

Furthermore, UE is based on a deferred architecture, which make the number of 
storable inputs limited.

With all these restrictions, it feels hard to be able to import & support advanced 



materials



This is where Substrate comes in light.

Substrate is composition framework, made of building bricks that an artist can 
assemble to create complex appearance.

Yet, this framework needs to remain as performant as the old system, and also 
remain visually consistent between our different rendering paths (raster/raytracing 
effect/pathtracing)

Furthermore, this framework needs to be scalable. Having complex materials is one 
goal, but we don’t want to reauthor variants of the same material for high-end 
hardware up to for lower-end hardware.



Many material standards & specifications exist in the industry. MaterialX seems to the 
one getting the most tracking across the industry.

However all these specifications have some limitations which didn’t fit our 
requirements.

Either they rely on fixed topology (Autodesk Std Surface, Adobe Surface, OpenPBR) 
which prevent to build more advanced surfaces.

Or they rely on a soup of BSDFs, which makes efficient implementation trickier (lot of 
switches, and loops), and harder to scale material complexity down with simplification 
rules.



This is why we started developing Substrate. As said, Substrate is a framework. It is 
build around three concepts:

● Slab which is how we represent the matter
● Operators which manipulate the pieces of matter
● Tree which represents the topology of the material, i.e., how the different 

pieces of matter are arranged respectively to each other.



To illustrate this, let's take an example.

Here is a material made of two types of matter.

A base layer made of metallic & anisotropic fiber. This is represented by a Slab.

Another layer made of a dielectric and having some absorption. This is represented 
by another Slab.

And the two Slabs are layered on top of each other with a vertical layering operator



This will be our agenda for today.

Describing the different parts of the framework: Slab / Operators / and Tree.

And then we will dive into details around scalability, storage, and evaluation.



Let’s start with the Slab



The slab is the building block of the framework for representing a piece of matter. It is 
our mean to unify most of the existing shading models.

You can really thing about as a piece of matter, made of an interface and a medium 
with a certain thickness.

All the properties are based on physical properties, which helps to describe the matter 
without too much convoluted reparametrization. This allows to keep things consistent, 
in particular by using proper units. It helps to resonate/think about what we 
manipulate and how light would interact when dealing with these properties. A 
counter example would be gltf, or other specification where diffuse transmission/ color 
absorption, … are just different features you manipulation, but does not makes sense 
as a whole. 



The interface is as simple as you can think.

It defines the separation between two media, and modelled as a microfacet field. 
Nothing fancy, the industry’s standard are good & simple!

This interface is parameterized with different properties, and we will dive into a few of 
them.



For describing the reflectivity, we use a F0 parameterization (i.e. reflectivity of the 
surface a normal incidence) which is convenient since it is normalized unlike 
(complex) IOR.

For describing more advanced conductor we used a F90 parameterization, which only 
affect the chromaticity, not the intensity, do not reduce the energy at grazing handle. 
This parameterization is the most unphysical one we have, and we might revisit this 
later in favor Adobe’s F82. This features is opt-in meaning you will pay for it only if 
you used it.



For the microfacet description, we use a simple GGX NDF. Again the industry 
standards are good, so no need to reinvent the wheel. 

By default our primary specular roughness is coupled with our diffuse roughness.

For the anisotropy, we use Kulla & Conty parameterization, as it is simple & behave 
well.

We adapt our tangent basis representation based on usage. If a surface is isotropic 
we will store a simple normal, but if the surface is anisotropic we will store a full 
tangent basis with two octahedral encoding (quantized onto 32bits). 

Note: as we will see later, a material can be made of several Slabs, which might 
share the same tangent a basis and stored only once to save memory. More on this in 
the Storage section.



Maybe a bit more esoteric, we have a secondary GGX lobe, which is mixed with the 
primary lobe with a free weight.

The primary intent was to represent surface with longer ‘specular tail’. A GGX NDF 
have a certain tail, but for certain manufactured materials, the specular-lobe’s tail 
might be longer. By mixing two specular lobes, we can recreate this hazy 
appearance, where we can see at the same time sharp reflections and a hazy veil. 

We also exposed a helper node for mixing the two lobe in a perceptual manner as 
showed by Barla et al. 



A slab can represent asperity on the interface. This asperity layer scatters like in an 
horizontal manner, unlike specular lobes. 
These asperity are always on top of the specular lobes, and have a complete 
parameterization (roughness, albedo, coverage). 



As mentioned, we use a microfacet field to model our interface. These microfacets 
have a certain size and so when we zoom-in on a surface, we should expect to see 
them. This is where ‘glints’ comes into play.

You can opt-in to glint and control their size through a density control, parameterized 
over the surface UV. For achieving this in real-time, we use Chermain et al. approach 
which uses a precomputed LUTs for defining how the glint behave at different LODs.

For a given ‘glint’ density, when you zoom-out from the surface, the pixel footprint 
slowly encompass more & more glints. At a certain distance, it will converge to a 
single lobe GGX lobe.

This is mainly used for car paints, snow, or any glittering effects.



In addition to the reflectivity parameters presented earlier, a Slab can have a 
‘SpecularLUT’ asset plugged-in. This LUT defines a uniform ‘tinting’ for the slab, 
parameterized based on view and light angles.

The LUT can be controlled with some ramps or with a texture, parametrized again by 
view and light angles.

It is useful for advanced cases like opalescence, or complex car paint having 
view/light correlation, which are not simulated by slab models.



When the interface’s roughness is non-null, the light will be scattered. This creates a 
rough transmission appearance. In this case, the rough appearance is caused by the 
interface, not the medium scattering (i.e. subsurface transmission)

To simulate this we retrieve the IOR from the interface reflectivity. (A user can be a 
different methods as well)

For our raster path, we use a precomputed LUT parametrized by roughness and 
depth/thickness to compute ‘light spread’. Then a post-process pass compute the 
blurring accordingly.
For our RT/PT path, we can simply rely on ray intersection to compute this.



One aspect we haven’t  touched yet is how to manage energy between different parts 
of the slab.

When an incident light ray hits the interface, it will hit a given microfacet. At that point, 
it might be reflected, transmitted, or hit another microfacet as it get reflected

In the latter case, we need to simulate these multiple ‘bounces’ to not lose any 
energy. This is very visible at high roughness value, in particular for conductor. To 
simulation this energy conservation, we rely on Turquin’s approach.

The second important aspect is to ensure we are transmitting the correct amount 
energy to the medium. I.e. all light which is not reflected & not absorbed by the 
interface, need to be transmitted to the medium. For this we rely on precomputed 
table of directional albedo, as described again in Turquin’s approach.. 



This concludes the interface part. Now let’s dive into the medium part of a slab.

Our medium is based on a volumetric formulation. The intent was to have a unique 
parameterization which can represent the continuum between diffuse to fully 
transparent surface and abstract any artistic parametrization.

As such, a medium is described in terms of:
● Mean free path, i.e. the free-travelling distance of a photon before hitting a 

medium’s particle
● Albedo, i.e. overall medium reflectivity after multiple scattering
● Phase function anisotropy, which describes the scattering directionally when 

hitting a medium’s particle.
● Thickness, i.e. the depth of the medium

Mean Free Path, or MFP for short, and Albedo are just the dual of scattering & 
absorption coefficients.



With such a parameterization we can cover the whole spectrum of appearance.
From fully diffuse to full transparent.

In simple terms, you can think of it as:
● Diffuse albedo controls the ‘milkyness’ of the appearance
● The mean free path controls how much you can see through the surface



From an implementation point of view, you can divide this space into 4 parts:
● The opaque diffuse part, where we can’t see through the surface, and no 

light bleed beyond the pixel footprint
● The optical thick part where, you can’t see through the surface, but some 

light bleed beyond the pixel footprint
● The optical thin part where you can see through the surface, but there are 

still some scattering happening
● The translucent part, which is the special case of optical thin part, without any 

scattering.

Let’s dive into how we support/implement each of these parts.



For the diffuse part, we use a retroreflective model, based on Chan.

This approximates a diffuse microfacet model, who the roughness is coupled with the 
primary specular.

The roughness controls the amount of retro reflection, i.e. the light bouncing back at 
grazing angle. This is particularly visible at high roughness.

As per our diagram earlier, this ‘regime’ is used when the pixel footprint is large 
compared to the MFP.



When this ‘regime’ is used when the pixel footprint is smaller compared to the MFP, 
we enter into the Optically thick regime

For this we use regular SSS techniques.
● For our raster path we use a post process method based Xie et al.
● For our RT/PT paths, we use random walk algo.

Note that, in our implementation, if a material is made of several slabs, this is applied 
only on the most bottom visible slabs.

For the raster path, we can fallback on other method like wrap lighting for 
performance reason.



The optically thin case is rather uncommon in real-time rendering as it is rather hard 
to handle. It combines at the same time some translucency (you can see through) and 
some large-scale scattering (haze look).

In our case, we focused on the special case of an optically-thin slab 
stacked/layered on top of another slab. 

In such a regime, there are two parts: the light scattering back, and the light 
transmitted through the surface.

● For the transmission part we use a simple Beer Lambert model for the 
absorption.

● For the scattering, we rely on precomputed LUT, parameterized by single 
scattering albedo (estimated from the Diffuse Albedo), rescaled MFP (rescaled 
for 1m thick slab), and view & lights angles. This LUT was computed offline by 
computing the luminance scattered back by a piece of medium under various 
MFP/albedo/view/light conditions. 

This approaches only solves the first moment, i.e. the amount of energy, but does not 
handle the ‘spreading’ which cause the  hazy look of such a surface. We leave that for 
future work.



Finally the special case of optically-thin surface, where we can ‘see through’ but 
doesn’t have any scattering.

We simply handle this with a beer-lambert approach. 
For our raster path, we use dual source blending to properly handle the transmission 
part. Again nothing fancy, just industry standard.

The important part here is that we decoupled the notion of transmission from the 
notion of coverage. This split the convoluted ‘opacity’ term into two explicit notions. 
More on that later.



As we have seen, the scale at which a surface is looked at, dictates what regime 
should be used. A surface with a given MFP value looked from far away will be 
rendered as diffuse, while same surface looked at closely, will be rendered as 
optically-thick with some subsurface scattering. 

I really want to emphasize that units are important. Having pixel footprint and MFPs 
expressed proper world units help to know how to render a surface.



Finally, the thickness of the medium need to be taken into account. It defines the 
distance travel by the light path when crossing a medium, which impact ‘the light 
attenuation’.

When there is a single layer or the most bottom one (if there are multiple layers): we 
need to consider two cases

● If the surface is considered ‘thick’, the thickness is defined by the geometry’s 
boundary. For the raster path, we can use a constant value, a SDF or a 
shadow map to estimate the thickness. For the RT/PT, this is given by the 
distance to the ray’s intersection.

● If the surface is thin, i.e. the geometry is a flat surface (e.g. foliage, cloth, …), 
the thickness needs to be defined in some way. In such a case we define the 
thickness at the material level, with a Surface Thickness input on the root 
node

For other layer, we also define the thickness through the graph. This is only 
necessary when a slab is ‘coating’/’layered on top of’ another slab. In such case, the 
thickness of the top slab is provided by the Vertical operator.



This concludes the Slab section. Let’s now dive quickly onto the operators to 
manipulate the matter.



We have mainly 3 operators.
● Horizontal mixing - think of it as a lerping/blending between two materials
● Vertical layering - think of it as a coating/layering between two material
● Coverage weighting, that you can think of it as alpha blending, to make a 

material more ‘transparent’



But first, let’s define properly our terminology to ensure we are talking about that 
same thing

Let say we have a rough metallic sphere at the base. When the light hits the surface, 
it reflects directly from this rough metal.

Now, let say we coat it with a greenish dielectric material. 
On the left most part, the thickness of the material is so thick, that when the light hit 
the surface, it only reflects from the dielectric layer. All the transmitted light is 
absorbed by the dielectric layer. In such a case, the transmittance of the dielectric 
layer is 0

If we reduce the thickness of that dielectric material the transmitted light will be 
absorbed but only partially. And so the the light will be able to reach the rough metal 
beneath. In such a case, the transmittance of the dielectric layer start to be >0

If we reduce the thickness even more, then less light will be absorbed, and so the 
transmittance will increase even more.

In the first three cases, the dielectric layer is always there, i.e. if the light travel from 
the camera to the surface, it will hit 100% the dielectric layer. The coverage of the 
dielectric layer is 1
On the other hand, on the last case, the dielectric layer was never there. The 



coverage of the dielectric layer is 0

By extrapolating, having a coverage of 0.5 means that you have 50% of change of 
hitting ‘the dielectric layer and then rough metal surface’, and 50% of change for 
hitting only the rough metal surface.

So coverage defines the probability of presence of a slab, while the transmittance 
defines 1-attenuation of a slab

Combined, the coverage and the transmittance of a slab defined its throughput

Now let’s dive into the operators



The horizontal mix operator blends materials.

Let’s say we have a gold material, and we ‘horizontally mix’ it with a SSS material: it 
means that we will evaluate both materials, and mix their evaluation. The mix factor 
defines the coverage of the slabs. The first slab will have a coverage of ‘mix’, while 
the second slab will have a coverage of ‘1-mix’



The vertical layering operator, allows to stack a slab on top of another one.

Let’s say we have a aniso fiber material. We want to coat it with a dielectric material. 
By doing so the transmittance of the dielectric material will affect the appearance of 
the anisotropic material, given it a reddish tint. Layered operations can be combined. 
For instance we stack another dust layer on top of it, which again will affect 
transmittance and throughput of the bottom layers.



Lastly, the coverage weight operator.

We start first with a dielectric with some absorption. The light traveling through the 
surface get partially absorbed, giving this yellowish transmittance.



By weighting such a surface with a coverage operator we can affect the coverage of 
the slab, i.e. the amount of ‘presence’ for a given pixel.

● If the coverage is 1, we completely see the surface
● If the coverage is 0, we don’t see the surface
● If the coverage is in-between we see a portion of that surface.



It is important to have this clear distinction between varying thickness and varying 
coverage.

Let’s say again, we have a metal surface coated with an orange dielectric.

With a vertical layering operator, when we vary the thickness of the top layer, we 
affect both the transmittance & the throughput of the top slab, but we can alway see 
its specular reflection

While a coverage weight operator, when we vary the coverage of the top layer, the 
top slab transmittance remains the same, only its throughput vary (accordingly to the 
coverage). But when the coverage reaches 0, we can no longer see the specular 
reflection.



So as you can see, one can create material using slab of matter assembled using 
operators. But how do we organise such data in order to be able to evaluate the 
lighting at the end?



First let’s say you have want to render such a yellow piece of rough metal covered 
with a clear coat feature blue specular.
In term of Substrate, this would be represente by a slab B for the rough metal, with a 
slab A covering it, achieved using a vertical layering operator.
But we cannot evaluate those two slabs directly and add the two lighting 
contributions. That would be wrong because we need first to evaluate the effect that 
slab A has on slab B when it comes to throughput accounting for the medium 
transmittance or fresnel effect for instance.

In order to account for such effect, we represent the material topology using a 
tree, operators being nodes and slabs being leaves.

We are going to process/walk/evaluate this tree in order to be able to output closures. 
Closures represent a bag of parameters that can be sent to the renderer for lighting 
evaluation, accounting for all the different operators effects on the visual result.
In this case, we can see that Slab A is at the top of the material topology, so the 
lighting can be evaluated as is. While we see that slab B is at the bottom of the 
hierarchy, so we need to account for the light path through SlabA, and for instance its 
effect on throughput and perceived roughness, in order to be able to evaluate Slab B.

Once evaluated, a Slab outputs a closure. Each of those closures can be 
evaluated in any order or in parallel. Each Closure evaluation output a luminance 
color, all of them can be summed up together in order to form the final image.



Let’s have a look at a more complex exemple.

Here we have carbon fiber, horizontally mixed with a rough metal. You can see a 
transition region between both slabs. That is why those two slabs are linked with each 
other using an horizontal mixing operator.
And on top of that, you can see a colored clear coat that is layered on top of both the 
other slab using a vertical layering operator.



From this tree we are going to evaluate many closure quantities so that we can 
evaluate the effect that each operators and slabs have on each other.
For instance 

● The ToViewThroughput, being affected by horizontal mixing weight, top 
layers throughput, or coverage weight.

● The TopTransmittance representing the transmittance of all the surfaces 
above a given slab, that we can reuse when evaluating the lighting, remapping 
it to the actual light direction using a simple formula.

● We also output roughness and thickness data used for rough refraction 
effect (detailed later on)



So how do we process and walk the tree? To remains simple on those slides, we are 
only going to look at how we update the Coverage and Transmittance of a slab that 
will be used by the closures for lighting evaluation.

Firstly, we evaluate the coverage and transmittance from each slab. You can see 
that both slab at the bottom are opaque so coverage is 1 and transmittance is 0.
The colored coat slab has coverage of 1 and a transmittance mapping resulting from 
the mean free path as seen when viewing the material in isolation along the normal of 
the surface.



Secondly, we are going to process each operator, deeper first, in order to gather 
information from slabs.
So that horizontal operator here gathers a representative Coverage/Transmittance 
from its children. And two opaque slabs result in an opaque surface in this case.



Then, the vertical operator is the tree root: it gathers a representative 
Coverage/Transmittance from its children. 
Layering a clear coat on top of an opaque material still results in an opaque surface in 
this case.

That Coverage/Transmittance value on the root node of the Substrate tree is 
important: it is a representation of the material total coverage and total transmittance 
that can be used to compute the throughput, itself used when alpha blend the surface 
with the scene color, if a translucent rendering mode is selected by the user.

Also, please note that we also store a separate representation of the isolated top 
layer Coverage/Transmittance that will be used later to compute some values.



Thirdly, we have each slab walk the tree up to the root node in order to compute 
other values such as ToViewThrouput or TopTransmittance as explained a few 
slides back.

We see that the colored coat walk through the Top side of the vertical operator: its 
ToViewThrouput and TopTransmittance are thus unchanged.



The carbon fiber slab has first to walk up through the horizontal mixing operator.
As such, its ToViewThrouput will be affected by the mixing weight according to the 
side it comes from.



Then the carbon fiber slab walks up through the vertical layering node. It comes from 
the bottom side of the node, so it have its ToViewThrouput or TopTransmittance 
affected by TopCoverage and TopTransmittance of the vertical node.



And this continues one and on for each slab.



We also compute more data while processing the substrate tree such as :
● Energy preservative transfert between layered slab
● We account for the perceptual effect a rough top layer can have on a 

bottom layer perceive roughness using roughness tracking. For exemple: a 
rough top layer will make the bottom layer slab appear rougher because the 
ray of incoming light will refract more at the top layer interface.

● We also account for the refraction of view path as a function of for the top 
layer roughness. The bottom layer is blurred according to the top layer 
roughness and thickness. The Point Spread Function of a specular lobe is 
approximated using a gaussian blur using an hardcoded air to water
refraction. To achieve that, we basically separate the bottom layer and top 
layer into different buffers. We blur the bottom layer according to the refracted 
specular lobe. Then we recompose both buffers together.



Some more details: when we compile a material topology, we do it for the worst 
case topology. This is needed because we need to flatten the tree parsing code. 
Compilers could not handle dynamic tree processing using for loop unfortunately 
(weird behaviors and crashes at compilation time would happen).

We also gather all the tangent bases and if some slabs use the same, we only store 
a single copy to limit allocated memory in the GBuffer.

As you can see in blue, we also track each enabled features for each slab in order to 
know more about the worst case complexity and byte per pixel requirement of the 
material once stored in the GBuffer. This is so that we can simplify it according to 
project setting driving the maximum GBuffer bytes per pixel as I will explain later.



So we have seen that we can output closures from the processing of the Substrate 
tree made of operators and slabs.
But how do we get that closure count under control according to the project 
quality settings?



First, we have to fight against closure combinatorial explosion.

We illustrate this in this example where slab 3 in blue is coverage with a complex 
topology of slabs in two layers, each with different coverage.
If we want to represent that material topology faithfully to its definition, we would have 
to to account the different path light can take within this material.
For instance, light can traverse S0, then S2 then reach S3. Or it can traverse S0, then 
air then reach S3. And so on, leading to 6 different paths resulting in different 
throughput and perceived roughness for slab 3.
This should effectively results in 6 different closures that would need to be 
evaluated (different ToViewThroughput, TopTransmittance and specular Roughness). 
That is too expensive.

To simplify this case, we have come up with a way to statistically represent the 
combination of any slabs according to the operators linking them. In this case, slab 
3 would then be layered with a single virtual slab aggregating the properties of all the 
other slabs. That would then result in a single closure.



In this statistical representation we came up with, a slab, or an aggregate of 
multiple slab, is represented by a fixed set of attributes: transmittance, coverage, 
roughness and a refraction lobe.
It assumes there is no correlation between the coverage of the matter of each Slab.

For instance, what is the effect of a coverage operator on a slab? It will basically 
reduce the coverage of a slab, without affecting it matter transmittance, roughness 
and refraction lobe.
We also have more complex solution for horizontal mixing and vertical layering 
operators. Please refer to the bonus slides for more details.



Now that we have the closure count under control, we still need to scale according to 
a target platform and quality settings.

For instance, we can adapt
● The shading quality, 
● The enabled features (roughness tracking or rough refractions) 
● And, in the deferred shading case, we also have to be able to fit the material 

in the GBuffer. That is represented by an set of byte per pixel constraint. 
Even when forward shading is used, it could be that a project running on 
mobile would not want to evaluate more than a single closure per pixel.



So for this example of complex material with horizontally mixed and vertically layered 
slabs: how can we simplify the tree to reduce the amount of closure we output?

You have to remember that a slab is a principled representation of matter. So we 
understand its components and can think about ways to combine multiple slabs.
Thus our solution to the simplification problem: progressive tree simplification 
using parameter blend of slabs descriptions based on some empirical rules. If that 
is not enough, we can even simplify by disabling special features.

It is important to note that this would not be possible to do with a soup of BSDF as 
proposed by MDL or MaterialX. Because a Specular BSDF and a DiffuseBSDF 
cannot be combined for instance.



Here is a simple exemple:
● Here is a Slab A with some diffuse, F0, F90 and normal.
● And another Slab B with different diffuse, F0, F90 and normal.
● It is relatively straightforward to think that a way to parameter blend horizontal 

mixing is a simple lerp of the parameters.



This is the default material with all the lobes, 3 closures stored as 72 bytes.



We can simplify this material by using parameter blending for the horizontal mix 
operator first (because we start by margin the subtree that are the deepest in the 
tree).
In this case, we end up with 2 slabs, resulting in 2 closures stored as 48 bytes.



Finally, we can simplify this material by using parameter blending for the vertical 
layering operator (because we start by margin the subtree that are the deepest in the 
tree).
In this case, we end up with 1 slabs, resulting in 1 closures stored as 12 bytes.



So now that we can output closures that respect the constraints for targets platforms. 
Let’s see how we can use then in order to light a scene.



So the philosophy here is that you should only pay memory and lighting cost for what 
you effectively use.
We can adapt per pixel the storage and its memory footprint so the cost will adapt to 
what is on screen. And remains cheap if most of the materials are simple. All that 
while allowing more advance hero materials in some scenes.

As you may know already, unreal engine has different lighting path: 
● Deferred, where the closures as stored in the gbuffer first and then later read 

by the lighting passes
● Forward, where lighting is evaluated in line during the base pass
● Lumen ray tracing, where material is stored inside a ray tracing payload
● And similarly path tracing.



Let’s have a look at what happens during the life of a material:
1. The material is compiled. If the compiler identifies that some slabs will 

always have a weight of 0, those will be culled away by the static compilation 
analysis after code has been flatten.

2. When the base pass material shader is executed
a. Closures are evaluated and written into the gbuffer. 
b. If a closures has a weight of 0, it is skipped and removed from the list 

written to the gbuffer.
3. Later, closures are read by the lighting passes for evaluation



Let’s have a look in a bit more details on how the gbuffer is used:
1. The material closures are stored in the gbuffer with aggressive packing to 

use the least amount of byte as possible.
2. The gbuffer first bits are read in order to read the complexity of each pixel and 

the screen is categorised as tiles according to the required shading 
complexity (simple slab, slab + features, multiple slabs, etc. ).

3. Each of our lighting passes are tiled so that the shader code can be 
optimised in order to read and process the closures for lighting in an efficient 
way. This basically reduces register pressure, increase occupancy and reduce 
render cost on GPU.



A small illustration of the dynamic culling of closures happening in real time (as 
discussed on the previous slide).

Here you can see 2 slabs been horizontally mixed together. On the tile classification 
debug view on the right, you can see that we only pay the cost of complex tiles where 
the material actually output two closures per pixel. The closure having a mixing 
weight of 0 is simply evicted from the evaluation passes.



So what do we store per pixel in the GBuffer / material buffer?

A header, representing the complexity of the material for categorisation and 
containing closures count, tangent bases count, etc.
Then we have the list of closures with associated data for each closures according 
to the enabled features, e.g. SSS or Fuzz.
After that we have the list of tangent bases used by all the closures. Note that if two 
closures share the same basis, a single basis will be written out.
Last but not the least, we also store other data such as TopLayer data (e.g. normal, 
roughness) and SSS data in order to be able to communicate with out post processes 
such as  SSR, SSAO, DFAO or SSS without having them reading all the material 
data.

That list of data is adapted according to complexity and we have different packing for 
different cases.



For instance, this is a SIMPLE material: only relying on diffuse, specular and 
roughness. Only 12 bytes of data



This is a SINGLE material: a slab with any features. In this case, haziness is used. 
Number of bytes per pixel used goes up to 20 bytes per pixel.



This is a COMPLEX material, feature many slabs. 

You may recognise the Opal material feature in our latest GDC demo:  Electric 
Dream. It consists of two raymarched height field slabs with colored specular layered 
with a clear coat.

This is stored using a general representation of a material as closures. It uses 76 
bytes of data per pixel.



This is a SPECIAL material, featuring advanced visual effects such as Glint or 
SpecularLUT.
This can be used for instance to accurately render realistic car paint with mesoscopic 
faceted glint effect or the advanced pearlescent look of triple layer paints.



For each closure, their parameters are  aggressively packed using quantization. And 
we use dithering in order to avoid seeing any banding artefact.
All the closures in the end form a stream of UINT that is  written into our GBuffer.

Our GBuffer is a 2D texture array of UINT (we like to, we like to call it material 
buffer).
During the base pass, the first 3 layers are mapped to Render Target Output, 
because it is faster on some hardware to leverage the caching mechanism of the 
merger output.
The remaining layers are mapped onto a single UAV and all the UINT overflowing 
the RT count simply are written through it.
On low end platforms, our goal is to avoid more expensive UAV writes by 
packing all our legacy material to 3 UINT maximum.

When it comes to the allocation strategy of that buffer: we allow it to grow its slice 
count according to what material is present on screen. But we never shrink it back in 
order to avoid memory re-allocation hitches and fragmentation.



Once the closures are packed and stored in the GBuffer, we can read them back for 
lighting evaluation.

We simply loop over all closures, we load them. For each of this closure we can 
evaluate the lighting according to the enable features.

And as mentioned before, the tile complexity classification helps optimise the GPU 
cost of each of those passes.



When it comes to hardware ray tracing, as you may know, we need to send the 
material data from the hit shaders to the RGS (Ray Generation Shader). This is done 
through the ray tracing payload structure. And this structure needs to remain 
small in order to be efficient. We restrict ourselves to 64 bytes.

However, we cannot send the entire substrate tree material for processing into the 
RGS because it simply would not fit when multiple slabs are present. Similarly, 
multiple closures would not fit in many cases.

For Lumen, were all the lobes and reflections details are less important for global 
illumination, we enforce a full simplification of the substrate tree to a single slab 
which will output a single closure. A single closure can thus fit in the payload and then 
be evaluated by lumen in the RGS.

However, for the path tracer, we are interested in all the reflection details and 
interactions. In this case, we simply stochastically select a closure for the list 
resulting from the substrate tree processing in the hit shader based on its 
directional albedo. That closure pdf is then reweighted accordingly to all the closure 
directional albedo. Then the path tracer can continue its job of selecting and sample a 
lobe of that closure.
That is a choice, trading off increased variance for better performance. With a little bit 
more samples and our denoiser, we are able to reach noise free result in the use 
cases we have tested. As you can see on those images.



Here, we give deferred shading performance for the GBuffer lay down and light 
passes on PS5 @1080p for a full screen material and lighting.

You can see that 
● For the simple case, we are on par, 
● For the single case we do have a small overhead related to the extra buffers 

we have to write in order to communicate with our post process passes 
through the TopLayer and SSS data buffer. This is something we want to 
improve going forward.

● For the complex case, not supported by the legacy GBuffer, the cost will 
increase linearly with the number of closure as expected.



When it comes to memory allocations, you can see here the legacy gbuffer memory 
usage.

When substrate is enabled, we do allocate more memory. This overhead is related to 
the extra buffers we have to write in order to communicate with our post process 
passes through the TopLayer and SSS data buffer. This is something we want to 
improve going forward.



However, it is very important to remember that even if we allocate more 
memory, we do not write it all. We adapt the memory footprint with the complexity 
of the material per pixel.
We have also some special optimised paths for some of the legacy shading models 
we want to precisely maintain the cost going forward.

And we are not done yet, optimisation for memory and performance are going to be 
worked on from now on.





To conclude, we have presented Unreal Engine Substrate: what we believe is a 
modern material framework that will scale the performance and cost of material 
from hero to simple one. Together with a scalability system to adapt to many 
platform Unreal has to support.
This is our solution to a scalable GBuffer, something we believe is crucial to be 
able to move forward in the future and be able to scale the visual complexity of 
material in the future.
We are able to also include advanced use cases such as glints or specular lut, 
without impacting the cost of simpler materials.
This system unleash artist creativity, freeing them from the fixed shading model list 
we had before. Opening the door to a composable material framework.

Substrate is supported in most of our systems and platforms, with scalability 
controls. Maintain critical performance for platform that requires it, scaling quality with 
refresh rates or quality as priority.

When it comes to the timeline, we have shipped the electric dreams demo during 
GDC 2023 with Substrate enabled across the board.
Next, we are going to focus on production readiness of Substrate, with more 
performance and memory optimisations.



There are some limitations you have to be aware of.

First, we require a depth prepass. This is due to the possibility of some of the 
material writing material and closures data through UAV.
Secondly, we require a separated decal accumulation pass, often called DBuffer. 
This is needed because the GBuffer is not blendable anymore. So decals needs to be 
composited after, during the base pass over the closures that are generated.

There are also some challenges related to shader compilation: more compilation 
and packing path that can be encountered during the base pass. So shaders are 
bigger and also takes more time to compile. Nothing comes for free but this is a 
situation we want to improve upon.

We would also like to mitigate the extra cost & overhead related to the extra buffers 
we have to write in order to communicate with our post process passes through the 
TopLayer and SSS data buffer. 

Last but not least, we would like to experiment with more user experience 
improvements because the slab parameterisation in itself has a steep learning curve 
as compared to the previous parameterisation we had. This is likely going to come 
with a way to abstract that complexity with simpler parameterisation, for instance 
mapping to the shading model we have before, that artists are used to.



Substrate open the box to many more improvements down the line:
● We would like to have a solution for the multiple refraction and reflection 

bounces that can happen in between multi layered materials
● We would like to experiment with spectral rendering in order to simulate 

metamerism of fluorescence for instance
● Last but not least, we would like to extend this framework to support 

material with volumetric content, rendering colored multiple scattering 
effects, self shading, internal details such as bones and organs, etc.



Thanks you for reading our presentation notes!
Do not hesitate to contact us for any interesting discussions.



Bibliography for all the papers and book that have been extensively used and 
implemented along the development of Substrate for Unreal Engine.



Here are some bonus slides coverage in more details some of the parts that were left 
off during the presentation for the sake of time.





In the future we want to use an analytical solution instead of the 4D LUT that is 
expensive to sample for each RGB component.





This statistical representation assumes there is no correlation between the coverage 
are by the matter of each Slab.



This statistical representation assumes there is no correlation between the coverage 
are by the matter of each Slab.



This statistical representation assumes there is no correlation between the coverage 
are by the matter of each Slab.



This statistical representation assumes there is no correlation between the coverage 
are by the matter of each Slab.












