
Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

Hello.

Advances in Real-Time Rendering in Games course, SIGGRAPH 20232

Jorge Jimenez
General Manager & Director of Creative Engineering
@iryoku1

My name is Jorge Jimenez. I am the Director and Head of Striking Distance Studios Spain.

In this talk we are going to present the rendering of The Callisto Protocol. A survival horror
game released in 2022 using a modified version of Unreal Engine 4.

The game was designed as a linear AAA narrative experience, with emphasis in close quarter
combat, characters and visual innovation.

This narrow but ambitious focus made for something special that we leveraged for the
technical visuals of The Callisto Protocol.

I will play next a movie showcasing our game.

PHOTOREALISM

We worked in each piece of technology to elevate one of the main pillars of the game.

Photorealism.

4

Here we have a render of Jacob, our protagonist, compared with a reference photograph.

We pursued having the quality we see in this slide not only on cinematics, but during
gameplay.

On any lighting. On any view condition.

5

On the previous render we composited the hair and background, as they were not part of the
digital double process given the necessity of a different hairstyle.

We often do this process to visually isolate the areas we want to replicate.

In this slide we have the raw rendering results without the composited hair and background.

6

And this was the final version used in the game, where the jawline of the mesh was adjusted
for stylization purposes.

This version will be used in the rest of this presentation.

7

This is another example, of our character Elias, with composited hair…

8

…and without.

Ground Truth.

Consistency.

Observation.

To achieve this quality, we based on three concepts that define our core foundation.

Ground truth.

Consistency.

And Observation.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202310

OUR VISION

• Ground Truth

• Minimize shortcuts

• Pure runtime raytracing + Accurate cached lighting

• Long range light attenuation radius

Ground truth is the first goal we rally around.

It means for us to minimize the shortcuts taken in real time.

For that we heavily invested in raytracing, and specifically investigated how much we can do
offline, before the game even runs, so that we can invest the runtime dollars where it matters
the most.

Ground truth for us also means for lights to have large attenuation radiuses, allowing for
natural and believable environments.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202311

OUR VISION

• Ground Truth

• Minimize shortcuts

• Pure runtime raytracing + Accurate cached lighting

• Long range light attenuation radius

• Consistency

• Materials to respond correctly in all situations

• Virtually all lights to have shadows (raytraced)

• Virtually all surfaces to have accurate reflections (raytraced)

But what is ground truth if we cannot be consistent while executing the vision.

For materials to respond correctly in any view or light condition.

For all lights to have shadows, for them to be precise and using raytracing, and capable of
representing the nuances of the lighting.

And finally for all surfaces to reflect light correctly, grounding the different elements into their
surroundings, allowing for them to belong to a single unique and cohesive composition.

With this goal in mind, we relied in the most robust solution that exists today, which is
raytracing. Which accurately predicts how light behaves in the real world.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202312

OUR VISION

• Ground Truth

• Minimize shortcuts

• Pure runtime raytracing + Accurate cached lighting

• Long range light attenuation radius

• Consistency

• Materials to respond correctly in all situations

• Virtually all lights to have shadows (raytraced)

• Virtually all surfaces to have accurate reflections (raytraced)

• Observation

• Train to discern subtleties

• Photo reference

• Digital Doubles

Which leads me to the last concept. Observation of our world. Because ground truth is not an
absolute measure. It is a moving target, and changes as our understanding of the real world
advances.

With photorealism in mind, our ultimate ground truth is the reality, rather than what our
current state of the art models predict.

Observation is for us the art of learning how to discern the subtleties of lighting. The nuances
of the materials and textures. The details that set apart what is synthetic, and what is real.

To understand them we invested in controlled capture environments. Which is where our
digital doubles workflow was born. The process of taking an object of the real world, and
turning it into a digital representation.

125+ milliseconds away.

[Note that the figure was updated since the official presentation to account for more up to
date values]

Following ground truth, consistency and observation is not simple.

This philosophy set us 125 milliseconds away from our performance target.

To put that number in perspective, it is what it takes to render 8 entire videogames at 60fps.

This, defined the start of our journey.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

Miguel Petersen
@miguel_oenp

14

Martin Contel
@martincontel

Jorge Jimenez
@iryoku1

Miguel Rodriguez
@MiguelRodRic

Jose Naranjo
@_aborres

Pablo J de Andres
@pablojdeandres

Jon Diego
@CrazyMoai

Isaac Lascasas
@double_coder

Edu Martin
@edumarting

Fran Nuñez
@ioennirdev

Jesus Serrano
jesusserranogarcia

Ruben Segura
rubenseguramayor

Rendering

Core Tech Art

A journey that could only succeed thanks to this team.

Three years ago, we opened a studio in Zaragoza, Spain, with the main goal of pursuing
visuals innovation in videogames.

I will cover in this presentation the direction, the philosophy and core concepts we used to
pursue photorealism, and Miguel Petersen will follow up with the challenges we found and
overcame as the project advanced.

Building a traditional clock is a unique challenge.

You need to blend the engineering behind the mechanics, with the artistic choices of the
aesthetics.

You need to understand both art and engineering to really master the design.

This is core to how we approached characters in the Callisto Protocol, and in general, the
technical visuals in our game.

With art and technology working as one.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202316

I found over the years that a unique talent one might have, is to be able to understand the
varied processes behind digital humans creation, such as:

Capturing data, cleaning, processing and altering textures and models,

or working with pixel shaders.

I call this, controlling from captured texel to rendered pixel, and was key to achieve
photorealistic looking characters in our game.

For engineering to cross the boundary of art, and for artists to grow curiosity on the
technologies they work with. This is possibly one of the first challenges we find when
pursuing photorealism.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202317

But it is not the only one. People often look for the key feature, the key solution to unlock
photorealism.

As in these doors, thinking one of them is hiding the treasure that will made us overcome the
uncanny valley.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202318

Reality is, that it is not one door but many.

It is a maze where we have to make many turns, and where each turn must be made
correctly.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202319

Start Position

Imagine we are authoring a digital human and the process is represented by a walk from this
starting position…

Advances in Real-Time Rendering in Games course, SIGGRAPH 202320

Start Position

Target
(Photoreal Digital Human)

…towards a target.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202321

Target
(Photoreal Digital Human)

Every decision we make either gets us closer or further away from the target.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202322

Target
(Photoreal Digital Human)

Sometimes we move forward.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202323

Target
(Photoreal Digital Human)

And sometimes the decisions are so unclear and difficult to make correctly that we can go
backwards.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202324

Target
(Photoreal Digital Human)

It is not difficult…

Advances in Real-Time Rendering in Games course, SIGGRAPH 202325

Target
(Photoreal Digital Human)

...to rapidly get back to square one.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202326

Target
(Photoreal Digital Human)

Perceived Differences an Untrained Person Can See

To make things more difficult, this is what most people will be able to see, or perceive, easily
on images.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202327

Target
(Photoreal Digital Human)

Perceived Difference We Need to See

But this is eye for photorealism you need. Smaller than the individual steps you have to take.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202328

Target
(Photoreal Digital Human)

Statistically, it is difficult to find the solution as probabilities multiply at every decision.

And without a compass, escaping the maze is tremendously difficult.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

A step can be:

Which gloss value to use.

How much subsurface we need.

Or as simple as which skin color to use.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202330

We often take concentric circles when trying to resolve a problem.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202331

But in my experience, there is often a clear path to what has to be achieved.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

But rather than taking it, sometimes we take side turns.

For example, the physics of the light transport are fascinating and important for rendering.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202333

And I personally heavily invested on it.

The more I understood the models we use to render, the more I realized how uncomplete
they are on certain regards.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202334

[Hoffman2019] Fresnel Equations Considered Harmful

Hoffman presented in 2019 how using the more accurate Fresnel equations could yield less
accurate results than Schlick Fresnel, if we don’t use them in a carefully precise and correct
way.

There are multiple steps that have to be taken for Fresnel equations to be accurate.

And you need all of them to beat the Schlick Fresnel Approximation.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202335

We can make a similar observation regarding approximations when trying to find the correct
value to use for the reflectance of the eyes.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202336

EYE REFLECTION

• Back and forth in previous projects, never settled down in a good value

• PBR predicts 2% using index of refraction of tear film

• Too low in practice

If you go by the book, and you take the index of refraction of the tear film, which is the most
obvious choice, you get 2 percent.

That is too low reflectance in many situations.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202337

Going further, I always wondered about what could be causing the sparkle in the eye.

Why when we are emotional the reflections on the eyes became brighter.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202338

WHAT CAUSES THE SPARKLE OF THE EYE?

• Reflection is function of:

• Specular (depends on IOR)

• Roughness (tear film is a mirror)

• How can brightness of reflection increase with emotions?

How can that be explained using Physically based rendering?

Reflection is function of the specular reflectance and roughness.

The former depends on the index of refraction, which is a property of the medium and cannot
change over time.

In that sense, it cannot fluctuate when we are happy, or sad.

The roughness cannot change either, as the tear film is mirror-like on the cornea.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202339

Surprisingly, both the eyes and soap bubbles have a common property.

They showcase a phenomena called thin film interference, which causes the color variations
we see here.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202340

THIN FILM INTERFERENCE

Constructive Interference

Destructive Interference

Thin film interference manifests when you have multiple mediums stacked with different
indices of refraction.

In the case of this picture, we have air, oil and water. That causes light to bounce twice, first
on the oil, and second in the water.

In brief, because of wave properties of the light, it can make reflection weaker or stronger.

It is a function of the thickness of this thin film, and depending on how much of this film we
have in the eyes, the reflections will be more, or less visible.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202341

This is known since the eighties in the medical field, where they measure the reflectance, and
use inverse rendering to infer the thickness of this precorneal film.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202342

PBR VS. REALITY

• Without thin film interference we cannot:

• We cannot infer correct regular reflectance (2.5 – 5.5%)

• Effectively model emotions through the eyes (4%+ reflectance)

• Incomplete physical models used rigidly are Dangerous

What I learnt from this, is that physical models can be dangerous if we take them as the
ground truth.

Specially if we are missing important components, such as in this case, thin film interference.

If you want to base exclusively on physical models, then you must model every single nuance
of the rules defined by physics.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202343

WORKING WITH ROBUST REFERENCES

When working in new BRDFs, my proposal is to always validate with real measured data.

To make sure that, like in the case of the Fresnel equations, every step we do is getting us
closer to photographs, which is one of the main goals of using those physical models.

In other words, the target for us is not to achieve more correct physically based rendering
results, but to get closer to a photograph.

This sequence of images that we see on this slide represent the ultimate reference for
photorealism.

OLAT, or one light at a time. A subject or object captured under multiple light and view
directions. This defines the target we rally around.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202344

IMPLICT VS EXPLICIT BRDF BEHAVIOUR

• Implicit

• Assume our model is correct

• Input index of refraction and roughness

• Everything else automatically driven by physics

• Explicit

• Recognize our models are not universal and still not complete

• Expose explicit controls to drive visual features

It has been a trend to drive parameters automatically with physically based models, which
show implicit behaviors.

For example, driving retroreflection or Fresnel properties using roughness.

If we acknowledge that real-time physical models are, as of today, uncomplete, we could opt
instead for a more explicit behavior.

Giving us today, the control required to match photographic reference.

This line of thought was the foundation of our approach to materials.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202345

SWITCHING CAMERA / LIGHTS
FOR VALIDATION

ITERATING MATERIALS CORRECT VISUALIZATION

With that target defined, now the challenge is to accelerate the processes to create digital
doubles.

First problem is how to iterate materials fast, which we covered in our Character Rendering
Art talk in GDC.

Second is The time it takes to constantly switch lights for validating different light or view
directions.

Third is that we cannot do a side by side in different software, as the reference OLAT images
are in linear space, but the engine is tonemapping the colors.

That is not apples to apples.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202346

SWITCHING CAMERA / LIGHTS
FOR VALIDATION

ITERATING MATERIALS CORRECT VISUALIZATION

OLAT TOOL

For that, we built the OLAT Tool.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202347

This tool allows us to compare with measured data rapidly.

Switching lights or cameras is a click or even, a hotkey away.

This allows working under multiple lighting conditions much faster.

We will see this tool during the presentation, as it was a key element for us to observe and
learn about photorealism.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202348

I like to think of photorealism as a problem that we can divide in scales.

And all of them matter.

From the small scale properties defined at the material level, to the larger scaler detail that
lighting provides.

I will start with how we approached designing BRDFs to better match photographic reference.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202349

To motivate the problem, here we are matching the teeth appearance when lighting from the
front.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202350

If we move the light to the side, the teeth is too dark.

There are no values in the textures that would help us with this, as this is a problem in the
BRDF.

Material consistency over light incidence and view angles.

This led us to this goal.

Consistency over light incidence and view angles.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202352

BRDF SLICE

Example BRDF Slice

That consistency can only by achieved with a tool called BRDF.

A BRDF tell us how much a material reflects at a given light incidence angle and outgoing
view direction.

A useful way to look at BRDFs is through a BRDF slice visualization.

The inputs are the vertical and horizontal axes. The output is the value in the image.

The brighter, the more light it reflects. It has four important regions.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202353

BRDF SLICE

[Burley2012] Physically Based Shading at Disney Example BRDF Slice

The Fresnel peak, located on the top side of the image, which defines what happens when
you backlit an object.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202354

BRDF SLICE

[Burley2012] Physically Based Shading at Disney Example BRDF Slice

The specular peak, located on the left side of the image, which defines the area of maximum
specular reflection.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202355

BRDF SLICE

[Burley2012] Physically Based Shading at Disney Example BRDF Slice

The retroreflection, which is how much light comes back at you when you front lit an object
but the surface points to the sides.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202356

BRDF SLICE

[Burley2012] Physically Based Shading at Disney Example BRDF Slice

Finally, the diffuse reflection, which covers everything else.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202357

MERL DATABASE

[Matusik2003] A Data-Driven Reflectance Model

A Data-Driven Reflectance Model

A Data-Driven Reflectance Model

Matusik

MATCHES PHOTOGRAPHS?

BEHAVIOUR IN MERL DATABASE?

New Controls

Pragmatic

General

Now let me introduce the MERL database, which contains captured BRDF data for 100
different materials, including plastics, metals and cloth.

We used this database to make sure the controls we added to match the reference
photography would also add behaviors exhibited in this database, to ensure generality
outside of our use cases.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202358

MERL DATABASE

MERL Database BRDF Slices

For each of the materials in this database we can draw its BRDF slice.

There is a variety of differences on them, and some models like Oren Nayar or Burley,
approximated the appearance of some of them through implicit behavior.

But to match a photograph we found useful to have finer control than that.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202359

MERL DATABASE CLASSIFICATION

We classified the materials in this database into categories that exhibit similar characteristics.

A, B, C, D and E.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202360

LOOKING FOR PATTERNS

Now if we take them apart, we can see that they look different but like previous work also
found, they have some common characteristics.

They brighten or darken in the top and right side of the image.

Sometimes they have a darker top right corner.

They are Fresnel, retroreflection and smooth terminator effects. This is exactly what we also
found in our own measurements when comparing regular shading models against
photographs of humans.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202361

BRDF EXPRESIVENESS

• [Lambert1760]

• Assumes Lambertian radiator

• No expressiveness

To model this, we are looking for expressiveness in the BRDF design.

Lambert, the gold standard, and longstanding for centuries cannot model these subtleties.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202362

BRDF EXPRESIVENESS

• [Lambert1760]

• Assumes Lambertian radiator

• No expressiveness

• [Oren-Nayar1994]

• Microfacets with Lambertian behavior

• V-Cavity assumption

Oren Nayar, can show retroreflection and some Fresnel properties, dependent on roughness.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202363

BRDF EXPRESIVENESS

• [Lambert1760]

• Assumes Lambertian radiator

• No expressiveness

• [Oren-Nayar1994]

• Microfacets with Lambertian behavior

• V-Cavity assumption

• [Burley2012]

• Follows behavior observed on Merl Database

• Self-driven visual features based on roughness

Burley accurately represents materials of the MERL database but also has an implicit behavior
based on the roughness.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202364

BRDF EXPRESIVENESS

• [Lambert1760]

• Assumes Lambertian radiator

• No expressiveness

• [Oren-Nayar1994]

• Microfacets with Lambertian behavior

• V-Cavity assumption

• [Burley2012]

• Follows behavior observed on Merl Database

• Self-driven visual features based on roughness

• We found existing models not expressive enough to match photographic reference

If we adjust the roughness for the speculars, sometimes the diffuse appearance we get is not
what we are looking for.

Possibly because in complex materials like human skin, there is a composition of layers that
interact with each other, which cannot be described with simple implicit rules.

Can a simple pragmatic model express reality?

Now our question was, can we use something simple that will still allow us to match
photographs?

Not really paying attention to what statistics predict but something expressive and general
that we can use to directly match behavior that we observe.

CALLISTO BRDF

With this goal in mind we created the Callisto BRDF.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202367

CALLISTO BRDF: DESIGN PRINCIPLES

• Create a universal and expressive BRDF

• Future proof and capable of representing any material outside of MERL

• Avoiding magic numbers in the math other than to facilitate range sanity

• Using simple arithmetic

• Using orthogonal parameters

• Pursuing an empirical visual match rather than physics

• Artist and Machine Learning friendly

• Default values match Lambert + GGX

• Perform well against the MERL database and in our digital doubles (OLAT)

We followed a set of rules for that.

First, we wanted the BRDF to be universal and expressive, avoiding magic numbers, and
using simple arithmetic.

Second, we wanted it to be useful for artists, with few parameters, but also future proof and
machine learning friendly.

Third, we wanted the default values to match the industry standard, which is lambert and
GGX.

Finally, we wanted it to perform well both in the MERL database and in our own digital
doubles.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202368

CALLISTO BRDF

Callisto BRDF Callisto Diffuse BRDF

Lambert

Retroreflection

Diffuse Fresnel

Modified Dual GGX Specular

Dual Specular

Specular Fresnel Falloff

Smooth Terminator

Smooth Terminator

(Developed with Jose Naranjo and Miguel Rodriguez)

Like most BRDFs, it has two components. Diffuse and specular.

For diffuse we use Lambert as baseline, but with configurable retroreflection and Fresnel
elements.

For speculars we use dual ggx, with new Fresnel controls.

Finally, a smooth shading terminator is applied to both the diffuse and specular components.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202369

CALLISTO BRDF: DIFFUSE FRESNEL

Lets dive first into the diffuse Fresnel controls.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202370

CALLISTO BRDF: DIFFUSE FRESNEL

They allow to brighten or darken the Fresnel response of the diffuse to taste.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202371

CALLISTO BRDF: DIFFUSE FRESNEL

And to control how fast that will happen with a falloff.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202372

Baseline

We found these controls to be important teeth and eyes.

If we match the albedo of the eyes for frontal lighting, when we are side lighting, they will
look too dark, as we can see in this image.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202373

+ Diffuse Fresnel

The new diffuse Fresnel controls allow to correct for this, while preserving the look when
lighting from the front.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202374

Baseline

Advances in Real-Time Rendering in Games course, SIGGRAPH 202375

+ Diffuse Fresnel

Advances in Real-Time Rendering in Games course, SIGGRAPH 202376

CALLISTO BRDF: RETROREFLECTION

We added symmetrical controls for the retroreflection.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202377

CALLISTO BRDF: RETROREFLECTION

Retroreflection Controls

So we can adjust the reflection on the right side of the BRDF slice.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202378

CALLISTO BRDF: RETROREFLECTION

Retroreflection Controls

And also control the falloff over which this happen.

The retroreflection controls allow to flatten or enhance the look of an object when lit and
observed from the front.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202379

Baseline

Retroreflection is important for the teeth and skin.

In this image we can see how it allows to render the green hues visible in the silhouette of
human skin.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202380

+ Retro Reflection

[back and forth]

Advances in Real-Time Rendering in Games course, SIGGRAPH 202381

Baseline

Now again but taking a closer look.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202382

+ Retro Reflection

[back and forth]

Advances in Real-Time Rendering in Games course, SIGGRAPH 202383

Baseline

Advances in Real-Time Rendering in Games course, SIGGRAPH 202384

+ Retro Reflection

Advances in Real-Time Rendering in Games course, SIGGRAPH 202385

CALLISTO BRDF: FRESNEL AND RETROREFLECTION

𝐿𝑜 = 𝑐1 𝜃𝑑, 𝜃ℎ 𝑓𝑙𝑎𝑚𝑏𝑒𝑟𝑡 𝜔𝑖 , 𝜔𝑜 + 𝑓𝑔𝑔𝑥 𝜔𝑖 , 𝜔𝑜 𝑐2 𝜃𝑖 𝐿𝑖 cos𝜃𝑖 𝑑ω𝑖

𝑐1 𝜃𝑑, 𝜃ℎ = 𝑙 1, 𝝆𝑓 , 𝛼𝑓 𝑙 1, 𝝆𝑟 , 𝛼𝑟

𝐿𝑜 = 𝑓𝑙𝑎𝑚𝑏𝑒𝑟𝑡 𝜔𝑖 , 𝜔𝑜 + 𝑓𝑔𝑔𝑥 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 cos𝜃𝑖 𝑑ω𝑖

𝝆𝒓 Retroreflection * [0, 256] 1

𝑛𝑟 Retroreflection Falloff [0, 1] 0.75

𝑚𝑟 Retroreflection Tangent Falloff [0, 1] 0.75

𝝆𝒇 Diffuse Fresnel * [0, 256] 1

𝑛𝑓 Diffuse Fresnel Falloff [0, 1] 0.75

𝑚𝑓 Diffuse Fresnel Tangent Falloff [0, 1] 0.75

* Exposed as intensity multiplied by a tint

Range Default

Fresnel Retroreflection

(Developed with Jose Naranjo and Miguel Rodriguez)

ℎ 𝜃, 𝑛,φ,𝑚 = (1 − 𝑐𝑜𝑠𝜃)5𝑛 𝑐𝑜𝑠φ
5𝑚

𝛼𝑓 = ℎ 𝜃𝑑 , 𝑟 𝑛𝑓 , 𝜃ℎ, 𝑟 𝑚𝑓

𝛼𝑟 = ℎ 𝜃ℎ, 𝑟(𝑛𝑟), 𝜃𝑑 , 𝑟 𝑚𝑟

ҧ𝑥 = max(𝑥, 0)
𝑟 𝑥 = 2 1 − 𝑥

𝑙 = 𝑙𝑒𝑟𝑝
𝑓𝑙𝑎𝑚𝑏𝑒𝑟𝑡 𝜔𝑖, 𝜔𝑜 = Τ𝝆 𝜋

LAMBERT + GGX BRDF

CALLISTO BRDF

It was designed using the simplest mathematical building blocks.

Hence the mathematical definition of this is completely straightforward, so I won’t get into
the detail.

We share common grounds with Burley, with the main difference being avoiding implicit
behavior and instead exposing more parameters by design.

(Note that the mathematical expression of the Callisto BRDF has slightly evolved since our
prior GDC 2023 presentation)

Advances in Real-Time Rendering in Games course, SIGGRAPH 202386

CALLISTO BRDF: SMOOTH TERMINATOR

Smooth

Harsh

We also found the Lambert shading terminator to be sometimes too harsh compared to
reality.

Looking at the MERL database we found evidence of materials that had a much smoother
transition than Lambert, like in the example in the bottom.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202387

CALLISTO BRDF: SMOOTH TERMINATOR

To get to that look, we added controls to smooth the terminators, which give us the results
we see in this slide.

The traditional BRDF slice display does not show the impact of this feature effectively, so it is
instead more convenient to look into the render directly.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202388

Baseline

It allowed for a much better match of our digital doubles.

Here we can see without a smooth terminator…

Advances in Real-Time Rendering in Games course, SIGGRAPH 202389

+ Smooth Terminator

… and here with it.

[back and forth]

Advances in Real-Time Rendering in Games course, SIGGRAPH 202390

CALLISTO BRDF: SMOOTH TERMINATOR

𝐿𝑜 = 𝑓𝑙𝑎𝑚𝑏𝑒𝑟𝑡 𝜔𝑖 , 𝜔𝑜 + 𝑓𝑔𝑔𝑥 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 cos𝜃𝑖 𝑑ω𝑖

𝐿𝑜 = 𝑐1 𝜃𝑑, 𝜃ℎ 𝑓𝑙𝑎𝑚𝑏𝑒𝑟𝑡 𝜔𝑖 , 𝜔𝑜 + 𝑓𝑔𝑔𝑥 𝜔𝑖 , 𝜔𝑜 𝑐2 𝜃𝑖 𝐿𝑖 cos𝜃𝑖 𝑑ω𝑖

𝑐2 𝜃𝑖 = 𝑙 1, 𝑠 0, 𝛼𝑠 𝑝, cos𝜃𝑖 , 𝛼𝑠 𝑜

𝒐 Smooth Terminator* [−1, 1] 0

𝒑 Smooth Terminator Length [0, 1] 0.5

* Exposed as intensity multiplied by a tint

Range Default

(Developed with Jose Naranjo and Miguel Rodriguez)

Smooth Terminator

𝛼𝑠 = 1 − (1 − 𝜃𝑑)
3 1 − 1 − 𝜃ℎ

3

𝑙 = 𝑙𝑒𝑟𝑝
𝑠 = 𝑠𝑚𝑜𝑜𝑡ℎ𝑠𝑡𝑒𝑝

LAMBERT + GGX BRDF

CALLISTO BRDF

The implementation is straightforward, so I defer again to the offline slides for more details.

The mask defined by alpha allows for the smooth terminator to leave the retroreflection and
Fresnel areas untouched, to make the parameters orthogonal, allowing to avoid iteration
loops while setting the parameters.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202391

We love to backlit portrait shots.

One problem with them is that standard rendering techniques lack controls over the specular
Fresnel peak.

And remember, what we have just presented was related to the diffuse response not
speculars.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202392

SPECULAR FRESNEL FALLOFF

Specular Fresnel Falloff 0.5 Specular Fresnel Falloff 0.75Specular Fresnel Falloff 0.25

We verified that the Hoffman F82 parameter gave us the Fresnel control that we needed, but
we wanted to evaluate if simpler solutions would be sufficient.

In that context, a simple change of the exponent in Schlick gave us the control we needed.

Rather than hardcoding to 5, we expose it as a parameter to control the behavior.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202393

Baseline

Applied to skin rendering, this is what we get with standard Fresnel controls…

Advances in Real-Time Rendering in Games course, SIGGRAPH 202394

+ Specular Fresnel Falloff

…and this with the new ones.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

𝐿𝑜 = 𝑐1 𝜃𝑑, 𝜃ℎ 𝑓𝑙𝑎𝑚𝑏𝑒𝑟𝑡 𝜔𝑖 , 𝜔𝑜 + 𝑓𝑔𝑔𝑥 𝜔𝑖 , 𝜔𝑜 𝑐2 𝜃𝑖 𝐿𝑖 cos𝜃𝑖 𝑑ω𝑖

𝑓𝑔𝑔𝑥 𝜔𝑖 , 𝜔𝑜 =
𝐹 𝐺 𝐷

4 cos𝜃𝑖 cos𝜃𝑣

𝐹 = 𝑓0 + 𝑡 2 − 𝑟 𝑛𝑠 1 − 𝑓0 1 − cos 𝜃 5 𝑟 𝑛𝑠

95

CALLISTO BRDF: SPECULAR FRESNEL FALLOFF

𝐿𝑜 = 𝑓𝑙𝑎𝑚𝑏𝑒𝑟𝑡 𝜔𝑖 , 𝜔𝑜 + 𝑓𝑔𝑔𝑥 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 cos𝜃𝑖 𝑑ω𝑖

𝑟 𝑥 = 2 1 − 𝑥
t(x) = min(max 𝑥, 0 , 1)

𝑛𝑠 Specular Fresnel Falloff [0, 1] 0.5

Range Default

(Developed with Jose Naranjo and Miguel Rodriguez)

LAMBERT + GGX BRDF

CALLISTO BRDF

The implementation has two features.

The first one allows to control the power of Schlick’s Fresnel.

The second allows to fully remove the Fresnel component completely, which proven useful for
matching some materials in the MERL database.

The remap r(x) sets the parameter in 0 to 1 range, with 0.5 being the default value, which
will make it match Schlick’s Fresnel results.

We also used this parameterization for the diffuse falloffs presented before.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202396

Lambert + GGX

The combined effect of all Callisto terms can be strongly apparent in glazing angles, as we
can see on this comparison…

Advances in Real-Time Rendering in Games course, SIGGRAPH 202397

Callisto

[back and forth]

Advances in Real-Time Rendering in Games course, SIGGRAPH 202398

CALLISTO BRDF PARAMETERS

• Diffuse Fresnel
• Retroreflection
• Diffuse Fresnel Falloff
• Retroreflection Falloff
• Smooth Terminator

• Diffuse Fresnel Tint
• Retroreflection Tint
• Smooth Terminator Tint
• Specular Fresnel Falloff
• Dual Specular Roughness Scale
• Dual Specular Opacity

• Diffuse Fresnel Tangent Falloff
• Retroreflection Tangent Falloff
• Smooth Terminator Length

Base
Non-Specialized Users

Advanced
Technical / Material Artists

Full
Machine Learning

With the goal of being universal, we designed three tiers.

The first one, which we called Base, exposes five controls. The intensity of the diffuse Fresnel
and retroreflection, the falloff at which they peak, and how smooth should be the
terminators.

The second tier, called advanced, allows to specify the color of those components, the
specular Fresnel falloff, and dual specular properties.

While the default values work well in most cases, the full model exposes all the parameters,
avoiding all the constants and directly exposing them, which we thought useful for machine
learning approaches.

Advances in Real-Time Rendering in Games course, SIGGRAPH 202399

Now how we use this in practice?

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023100

CALLISTO BRDF WORKFLOW

Light Red Paint

Yellow Phenolic

Gold Metallic Paint2

Albedo
Light: 0°

Roughness
Light: 0°

Dual Specular
Light: 0°

Retroreflection
Light: 0°

Smooth Terminator
Light: 90°

Fresnel
Light: 120°-140°

Parameters Base Color Roughness
Metallic

Dual Spec. Roughness
Dual Spec. Opacity

Retroreflection
Retroreflection Tint

Retroreflection Falloff

Smooth Terminator
Specular Fresnel Falloff

Diffuse Fresnel
Diffuse Fresnel Tint

Diffuse Fresnel Falloff
Specular Fresnel Falloff

We first set the most basic parameter.

The base color.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023101

CALLISTO BRDF WORKFLOW

Light Red Paint

Yellow Phenolic

Gold Metallic Paint2

Albedo
Light: 0°

Roughness
Light: 0°

Dual Specular
Light: 0°

Retroreflection
Light: 0°

Smooth Terminator
Light: 90°

Fresnel
Light: 120°-140°

Parameters Base Color Roughness
Metallic

Dual Spec. Roughness
Dual Spec. Opacity

Retroreflection
Retroreflection Tint

Retroreflection Falloff

Smooth Terminator
Specular Fresnel Falloff

Diffuse Fresnel
Diffuse Fresnel Tint

Diffuse Fresnel Falloff
Specular Fresnel Falloff

Next comes the roughness and metallic properties.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023102

CALLISTO BRDF WORKFLOW

Light Red Paint

Yellow Phenolic

Gold Metallic Paint2

Albedo
Light: 0°

Roughness
Light: 0°

Dual Specular
Light: 0°

Retroreflection
Light: 0°

Smooth Terminator
Light: 90°

Fresnel
Light: 120°-140°

Parameters Base Color Roughness
Metallic

Dual Spec. Roughness
Dual Spec. Opacity

Retroreflection
Retroreflection Tint

Retroreflection Falloff

Smooth Terminator
Specular Fresnel Falloff

Diffuse Fresnel
Diffuse Fresnel Tint

Diffuse Fresnel Falloff
Specular Fresnel Falloff

If the speculars cannot be matched with a single lobe, we adjust the dual specular properties.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023103

CALLISTO BRDF WORKFLOW

Light Red Paint

Yellow Phenolic

Gold Metallic Paint2

Albedo
Light: 0°

Roughness
Light: 0°

Dual Specular
Light: 0°

Retroreflection
Light: 0°

Smooth Terminator
Light: 90°

Fresnel
Light: 120°-140°

Parameters Base Color Roughness
Metallic

Dual Spec. Roughness
Dual Spec. Opacity

Retroreflection
Retroreflection Tint

Retroreflection Falloff

Smooth Terminator
Specular Fresnel Falloff

Diffuse Fresnel
Diffuse Fresnel Tint

Diffuse Fresnel Falloff
Specular Fresnel Falloff

Then we set the diffuse retroreflection, flattening or enhancing the shape as the shading
turns around the object.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023104

CALLISTO BRDF WORKFLOW

Light Red Paint

Yellow Phenolic

Gold Metallic Paint2

Albedo
Light: 0°

Roughness
Light: 0°

Dual Specular
Light: 0°

Retroreflection
Light: 0°

Smooth Terminator
Light: 90°

Fresnel
Light: 120°-140°

Parameters Base Color Roughness
Metallic

Dual Spec. Roughness
Dual Spec. Opacity

Retroreflection
Retroreflection Tint

Retroreflection Falloff

Smooth Terminator
Specular Fresnel Falloff

Diffuse Fresnel
Diffuse Fresnel Tint

Diffuse Fresnel Falloff
Specular Fresnel Falloff

We then turn the light to the side, and smooth the shading terminators as necessary.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023105

CALLISTO BRDF WORKFLOW

Yellow Phenolic

Gold Metallic Paint2

Albedo
Light: 0°

Roughness
Light: 0°

Dual Specular
Light: 0°

Retroreflection
Light: 0°

Smooth Terminator
Light: 90°

Fresnel
Light: 120°-140°

Parameters Base Color Roughness
Metallic

Dual Spec. Roughness
Dual Spec. Opacity

Retroreflection
Retroreflection Tint

Retroreflection Falloff

Smooth Terminator Diffuse Fresnel
Diffuse Fresnel Tint

Diffuse Fresnel Falloff
Specular Fresnel Falloff

Light Red Paint

Finally, we turn the light further, and adjust the Fresnel properties, both for the diffuse and
specular response.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023106

CALLISTO BRDF SLICE SELECTION

The next question is, how this new model does against the MERL database?

To answer that, we selected 2 materials per type, and fitted them with both Burley and
Callisto.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023107

CALLISTO BRDF SLICE SELECTION
Black Soft Plastic Burley Callisto Blue Fabric Burley Callisto

Error 14.75% Error 3.84% Error 11.63% Error 2.79%

• Base Color: (20, 20, 20)
• Metallic: 0
• Subsurface: 0
• Specular: 0.2
• Roughness: 0.6
• Specular Tint: 0
• Anisotropic: 0
• Sheen: 0
• Sheen Tint: 0.5
• Clear Coat: 0
• Clear Coat Gloss: 1

• Base Color: (20, 20, 20)
• Diffuse Fresnel Tint: (255, 255, 255)
• Diffuse Fresnel: 175
• Diffuse Fresnel Falloff: 0.7
• Diffuse Fresnel Tangent Falloff: 0.75
• Retroreflection Tint: (255, 255, 255)
• Retroreflection: 3
• Retroreflection Falloff: 0.7
• Retroreflection Tangent Falloff: 0.75
• Smooth Terminator: 0
• Metallic: 0
• Specular: 0.2
• Specular Fresnel Falloff: 0
• Roughness: 0.6
• Dual Specular Roughness Scale: 2
• Dual Specular Opacity: 0

• Base Color: (38, 44, 66)
• Metallic: 0
• Subsurface: 0
• Specular: 0.25
• Roughness: 0.6
• Specular Tint: 0
• Anisotropic: 0
• Sheen: 0.15
• Sheen Tint: 1
• Clear Coat: 0
• Clear Coat Gloss: 1

• Base Color: (40, 42, 66)
• Diffuse Fresnel Tint: (255, 218, 185)
• Diffuse Fresnel: 40
• Diffuse Fresnel Falloff: 0.6
• Diffuse Fresnel Tangent Falloff: 0.95
• Retroreflection Tint: (255, 255, 255)
• Retroreflection: 3
• Retroreflection Falloff: 0.5
• Retroreflection Tangent Falloff: 0.75
• Smooth Terminator: 0
• Metallic: 0
• Specular: 0.2
• Specular Fresnel Falloff: 0
• Roughness: 0.77
• Dual Specular Roughness Scale: 2
• Dual Specular Opacity: 0

Given the explicit controls, as expected, we can see it matches well the captured data.

For time constrains, we are leaving the remaining comparisons for the offline slides.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023108

CALLISTO BRDF SLICE SELECTION
Yellow Phenolic Burley Callisto Yellow Plastic Burley Callisto

Error 9.48% Error 7.02% Error 6.75% Error 4.08%

• Base Color: (148, 125, 92)
• Metallic: 0
• Subsurface: 0
• Specular: 0.5
• Roughness: 0.04
• Specular Tint: 0
• Anisotropic: 0
• Sheen: 0
• Sheen Tint: 0.5
• Clear Coat: 1
• Clear Coat Gloss: 0.9

• Base Color: (152, 130, 93)
• Diffuse Fresnel Tint: (255, 255, 255)
• Diffuse Fresnel: 0.6
• Diffuse Fresnel Falloff: 0.85
• Diffuse Fresnel Tangent Falloff: 1
• Retroreflection Tint: (255, 255, 255)
• Retroreflection: 0.3
• Retroreflection Falloff: 0.85
• Retroreflection Tangent Falloff: 1
• Smooth Terminator: 0.25
• Metallic: 0
• Specular: 0.5
• Specular Fresnel Falloff: 0.5
• Roughness: 0.055
• Dual Specular Roughness Scale: 4.25
• Dual Specular Opacity: 0.15

• Base Color: (130, 121, 56)
• Metallic: 0
• Subsurface: 0
• Specular: 0.05
• Roughness: 0.5
• Specular Tint: 0
• Anisotropic: 0
• Sheen: 0
• Sheen Tint: 0.5
• Clear Coat: 0
• Clear Coat Gloss: 1

• Base Color: (128, 124, 55)
• Diffuse Fresnel Tint: (255, 200, 255)
• Diffuse Fresnel: 5
• Diffuse Fresnel Falloff: 0.6
• Diffuse Fresnel Tangent Falloff: 0.85
• Retroreflection Tint: (225, 191, 255)
• Retroreflection: 3.5
• Retroreflection Falloff: 0.25
• Retroreflection Tangent Falloff: 1
• Smooth Terminator: 0
• Metallic: 0
• Specular: 0.1
• Specular Fresnel Falloff: 0.375
• Roughness: 0.5
• Dual Specular Roughness Scale: 2
• Dual Specular Opacity: 0

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023109

CALLISTO BRDF SLICE SELECTION
Gold Metallic Paint 2 Burley Callisto Light Red Paint Burley Callisto

Error 19.68% Error 6.39% Error 9.22% Error 6.62%

• Base Color: (105, 95, 84)
• Metallic: 0.86
• Subsurface: 0
• Specular: 1
• Roughness: 0.45
• Specular Tint: 0.689
• Anisotropic: 0
• Sheen: 0.77
• Sheen Tint: 0.5
• Clear Coat: 3
• Clear Coat Gloss: 0.75

• Base Color: (105, 96, 88)
• Diffuse Fresnel Tint: (255, 255, 255)
• Diffuse Fresnel: 1
• Diffuse Fresnel Falloff: 0.5
• Diffuse Fresnel Tangent Falloff: 1
• Retroreflection Tint: (255, 255, 255)
• Retroreflection: 1
• Retroreflection Falloff: 0.5
• Retroreflection Tangent Falloff: 0.75
• Smooth Terminator: 0
• Metallic: 0.85
• Specular: 1
• Specular Fresnel Falloff: 0
• Roughness: 0.21
• Dual Specular Roughness Scale: 2
• Dual Specular Opacity: 0.9

• Base Color: (173, 60, 27)
• Metallic: 0
• Subsurface: 0
• Specular: 0.175
• Roughness: 0.55
• Specular Tint: 0
• Anisotropic: 0
• Sheen: 0
• Sheen Tint: 0.5
• Clear Coat: 0
• Clear Coat Gloss: 1

• Base Color: (173, 58, 23)
• Diffuse Fresnel Tint: (255, 255, 255)
• Diffuse Fresnel: 1
• Diffuse Fresnel Falloff: 0.5
• Diffuse Fresnel Tangent Falloff: 1
• Retroreflection Tint: (200, 240, 255)
• Retroreflection: 6.5
• Retroreflection Falloff: 0.5
• Retroreflection Tangent Falloff: 0.65
• Smooth Terminator: 0.2
• Metallic: 0
• Specular: 0.25
• Specular Fresnel Falloff: 0.4
• Roughness: 0.6
• Dual Specular Roughness Scale: 2
• Dual Specular Opacity: 0

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023110

CALLISTO BRDF SLICE SELECTION
Red Fabric 2 Burley Callisto Specular Red Phenolic Burley Callisto

Error 6.52% Error 5.39% Error 7.23% Error 5.52%

• Base Color: (105, 33, 10)
• Metallic: 0
• Subsurface: 0
• Specular: 0.5
• Roughness: 1
• Specular Tint: 0
• Anisotropic: 0
• Sheen: 0.2
• Sheen Tint: 1
• Clear Coat: 0
• Clear Coat Gloss: 1

• Base Color: (106, 29, 8)
• Diffuse Fresnel Tint: (180, 160, 255)
• Diffuse Fresnel: 25
• Diffuse Fresnel Falloff: 0.6
• Diffuse Fresnel Tangent Falloff: 0.97
• Retroreflection Tint: (255, 0, 255)
• Retroreflection: 1.25
• Retroreflection Falloff: 0.5
• Retroreflection Tangent Falloff: 0.75
• Smooth Terminator: -0.1
• Metallic: 0
• Specular: 0.5
• Specular Fresnel Falloff: 0.5
• Roughness: 1
• Dual Specular Roughness Scale: 2
• Dual Specular Opacity: 0

• Base Color: (151, 58, 27)
• Metallic: 0
• Subsurface: 0
• Specular: 0.5
• Roughness: 0.057
• Specular Tint: 0
• Anisotropic: 0
• Sheen: 0
• Sheen Tint: 0.5
• Clear Coat: 0.35
• Clear Coat Gloss: 1

• Base Color: (154, 57, 32)
• Diffuse Fresnel Tint: (255, 255, 255)
• Diffuse Fresnel: 0.4
• Diffuse Fresnel Falloff: 0.9
• Diffuse Fresnel Tangent Falloff: 1
• Retroreflection Tint: (255, 255, 255)
• Retroreflection: 0.5
• Retroreflection Falloff: 0.8
• Retroreflection Tangent Falloff: 0.95
• Smooth Terminator: 0.2
• Metallic: 0
• Specular: 0.55
• Specular Fresnel Falloff: 0.5
• Roughness: 0.03
• Dual Specular Roughness Scale: 4
• Dual Specular Opacity: 0.125

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023111

CALLISTO BRDF SLICE SELECTION
Two Layer Silver Burley Callisto Yellow Matte Plastic Burley Callisto

Error 13.26% Error 7.08% Error 8.17% Error 4.63%

• Base Color: (125, 125, 125)
• Metallic: 0.9
• Subsurface: 0
• Specular: 0.5
• Roughness: 0.41
• Specular Tint: 1
• Anisotropic: 0
• Sheen: 0.5
• Sheen Tint: 1
• Clear Coat: 1
• Clear Coat Gloss: 0.9

• Base Color: (250, 250, 250)
• Diffuse Fresnel Tint: (255, 255, 255)
• Diffuse Fresnel: 1
• Diffuse Fresnel Falloff: 0.5
• Diffuse Fresnel Tangent Falloff: 1
• Retroreflection Tint: (255, 255, 255)
• Retroreflection: 1
• Retroreflection Falloff: 0.5
• Retroreflection Tangent Falloff: 0.75
• Smooth Terminator: 0
• Metallic: 0.97
• Specular: 0.5
• Specular Fresnel Falloff: 0.5
• Roughness: 0.027
• Dual Specular Roughness Scale: 14
• Dual Specular Opacity: 0.18

• Base Color: (145, 96, 43)
• Metallic: 0
• Subsurface: 0
• Specular: 0.15
• Roughness: 0.3
• Specular Tint: 0
• Anisotropic: 0
• Sheen: 0
• Sheen Tint: 0.5
• Clear Coat: 0
• Clear Coat Gloss: 1

• Base Color: (148, 97, 48)
• Diffuse Fresnel Tint: (255, 255, 255)
• Diffuse Fresnel: 0.25
• Diffuse Fresnel Falloff: 0.75
• Diffuse Fresnel Tangent Falloff: 1
• Retroreflection Tint: (255, 255, 255)
• Retroreflection: 0.6
• Retroreflection Falloff: 0.85
• Retroreflection Tangent Falloff: 1
• Smooth Terminator: 0.25
• Metallic: 0
• Specular: 0.16
• Specular Fresnel Falloff: 0.25
• Roughness: 0.165
• Dual Specular Roughness Scale: 2
• Dual Specular Opacity: 0.9

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023112

CALLISTO BRDF ON THE PRISONER SUIT

Lambert + GGX

We are going to show the results of Callisto BRDF on the prisoner suit.

This is Lambert and GGX…

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023113

CALLISTO BRDF ON THE PRISONER SUIT

Photo Reference

…this is the photo reference…

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023114

CALLISTO BRDF ON THE PRISONER SUIT

Callisto

…and this Callisto BRDF.

We found Callisto BRDF to better capture the characteristics of the cloth we used as reference
for the prisoner suit.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023115

DUAL NORMAL

Standard

Dual Normal

(Developed by Hampus Siversson and Miguel Rodriguez)

Standard Dual Normal

We added support for dual normals, split for specular and diffuse.

This was important to render sweat in a more accurate way.

Material consistency over distance.

We have described so far how we work on consistency over light and view direction.

But how we can make materials more consistent over distance?

[Note that the ideas in this section did not shipped in our game, as they were developed late
in the product cycle]

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023117

PROBLEM: LIGHTING AND MIPMAPPING

• Lighting(Downsample()) ≠ Downsample(Lighting())

• As surfaces get further away, information is lost

• Resulting in incorrect lighting

• Caused by mipmapping Normal and Roughness input maps

• Texture Space Lighting? (GT)

• We can’t pay for this

D
ow

ns
am

pl
e(

L
ig

h
ti
n
g
()

)
La

m
be

rt
 +

 G
G

X
Li

gh
ti

ng
(D

ow
ns

am
pl

e(
))

Mip 0

Mip 4

Mip 0

Mip 4

(Developed with Jon Diego, Jay Ryness, Jose Naranjo and Miguel Rodriguez)

NN

For that we can start describing the problem space. It is not the same to downsampling the
inputs first, then performing the lighting, than lighting first, then performing the
downsampling, which would be the same as using texture space lighting, which we will use as
our ground truth.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023118

SPECULAR ANTIALIASING

• [Chan18] Material Advances in Call of Duty: WWII

• Two versions: Macro vs Micro surface information

• Offline Preprocess of normal maps

• Stablish a relationship between normal length and
roughness

• Convert lost normal length to roughness to use at
runtime

• We have compared with ground truth to see how it
compares for the specular

(Developed with Jon Diego, Jay Ryness, Jose Naranjo and Miguel Rodriguez)

To mitigate this problem [Chan18] established a relation from normal lengths and roughness.

The premise is that a normal from a normal map eventually becomes a microfacet when seen
from far away.

This allows to take roughness information created by normal maps and store them into the
roughness maps.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023119

SPECULAR ANTIALIASING [CHAN18]

(Developed with Jon Diego, Jay Ryness, Jose Naranjo and Miguel Rodriguez)

Normal
Map

Roughness
Map

Shortened
Normal

Map

Roughness
to normal

length

Downsample Downsample

Normal length
to roughness

Roughness
Mip 1

Offline

...

Normal length
to roughness

Roughness
Mip 2

Normal
Mip 1

Normal
Mip 2

The process is as follows.

Roughness is converted to normal length, and then combined with the normal map.

These normal maps are downsampled for mipmapping, and then the resulting normal lengths
are converted back to roughness values.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

Ground
Truth

Naïve

[Chan18]
Micro

[Chan18]
Macro

M
ip

 0
M

ip
 1

M
ip

 2
M

ip
 3

M
ip

 4

L = 0° L = 45° L = 63.5° L = 76° L = 83° L = 89.5°

120

SPECULAR ANTIALIASING [CHAN18] RESULTS

V
=

0°
V

=
0°

V
=

0°
V

=
0°

V
=

0
°

Here we see how [Chan18] micro and macro versions compare with the ground truth, and the
improvements over doing nothing about the problem, which we called naive.

There is a drastic improvement in the speculars for some of the cases.

[Note that we used 50% reflectance at normal incidence to help visualization]

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023121

M
ip

 0
M

ip
 1

M
ip

 2
M

ip
 3

M
ip

 4

L = 0° L = 45° L = 63.5° L = 76° L = 83° L = 89.5°

121

SPECULAR ANTIALIASING [CHAN18] RESULTS

V
=

83
°

V
=

76
°

V
=

63
.5

°
V

=
45

°
V

=
0

°

Ground
Truth

Naïve

[Chan18]
Micro

[Chan18]
Macro

And here we have results for different view angles.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023122

DIFFUSE ANTIALIASING

• Can we apply [Chan18] to Diffuse?

• Yes, but we would need to introduce
microsurface information (roughness)

• [Heitz14] Understanding the Masking-Shadowing Function in
Microfacet-Based BRDFs

• Defines this but no closed form solution is provided

• We wanted to create a LUT

• But would have 4 dimensions

• Our initial approach:

• We fixed 𝜙, assuming Light and View Coplanar

• Reduces the dimensions to 3 (3D LUT)

• Assume 𝐺2 = 1 as normal maps do not have visibility
information

(Developed with Jose Naranjo, Jon Diego, Jay Ryness, and Miguel Rodriguez)

𝜌 𝜔𝑜, 𝜔𝑖 =
1

𝜋

1

𝜔𝑔𝜔𝑜 𝜔𝑔𝜔𝑖

න
𝛺

𝜔𝑜, 𝜔𝑚 𝜔𝑖 , 𝜔𝑚 𝐺2(𝜔𝑜, 𝜔𝑖 , 𝜔𝑚) 𝐷(𝜔𝑚) 𝑑𝜔𝑚

[Heitz14]

𝜌 𝜔𝑜, 𝜔𝑖 =
1

𝜋

1

𝜔𝑔𝜔𝑜 𝜔𝑔𝜔𝑖

න
𝛺

𝜔𝑜, 𝜔𝑚 𝜔𝑖 , 𝜔𝑚 𝐺2(𝜔𝑜, 𝜔𝑖, 𝜔𝑚) 𝐷(𝜔𝑚) 𝑑𝜔𝑚

Ours

𝜙𝑣 == 𝜙𝑙

[Chan18] solution is only applied to the specular component.

We would like to also perform the same approximation for the diffuse. For that we would
need a diffuse model that would account for roughness, and using the same microsurface as
GGX, so a single map could be shared for both specular and diffuse.

[Heitz14] defines such a model, but unfortunately does not have a closed form solution.

We have created a LUT for that function, assuming light and view are coplanar, which allows
to reduce the number of dimensions to 3.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023123

Ground
Truth

Naïve

3D LUT

M
ip

 0
M

ip
 1

M
ip

 2
M

ip
 3

M
ip

 4

L = 0° L = 45° L = 63.5° L = 76° L = 83° L = 89.5°

123

DIFFUSE ANTIALIASING: 3D LUT

*Specular contribution removed from the image

V
=

0°
V

=
0°

V
=

0°
V

=
0°

V
=

0
°

Bruteforce
[Heitz14]

Here are some results of the 3D LUT approximation, compared with the ground truth and
bruteforce evaluating [Heitz2014] when viewing the surface from the front…

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023124

Ground
Truth

Naïve

3D LUT

M
ip

 0
M

ip
 1

M
ip

 2
M

ip
 3

M
ip

 4

L = 0° L = 45° L = 63.5° L = 76° L = 83° L = 89.5°

124

DIFFUSE ANTIALIASING: 3D LUT

*Specular contribution removed from the image

V
=

0°
V

=
0°

V
=

0°
V

=
0°

V
=

0
°

Bruteforce
[Heitz14]

…and from grazing angles.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023125

FUNCTIONAL APPROXIMATION: PROXIMA BRDF

• Observing the 3D LUT:

• Most representative:

• Normal and View are similar

• Light and Normal close to 90 degrees

• Similar to Lambert:

• Roughness approaching zero

• Other Light and Normal angles

• Functional approximation to the 3D LUT:

• 2D fit for Normal and View being equal

• Fallback to Lambert as Light and View go past
90 degrees

• We called this functional approximation:

• Proxima BRDF

(Developed with Jose Naranjo, Jon Diego, Jay Ryness, and Miguel Rodriguez)

... ...

Slice 0 Slice N

Roughness

NoL

NoV

Slices of the LUT most representative section and line fits (9 roughness values)

N

Next step was making a functional approximation.

We observed the most characteristic behavior to happen when light and normal approximate
90 degrees from each other, and when normal and view are similar.

Other cases were well approximated by Lambert.

Following those observations, we first fitted multiple roughness cases for this most
representative cases, and then we fallback to Lambert in other cases.

We called our functional approximation, Proxima BRDF.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023126

Ground
Truth

Naïve

Proxima
BRDF

M
ip

 0
M

ip
 1

M
ip

 2
M

ip
 3

M
ip

 4

L = 0° L = 45° L = 63.5° L = 76° L = 83° L = 89.5°

126

PROXIMA BRDF: RESULTS

*Specular contribution removed from the image

V
=

0°
V

=
0°

V
=

0°
V

=
0°

V
=

0
°

Bruteforce
[Heitz14]

Here we can see the results of Proxima BRDF against the ground truth, and brute force
evaluating [Heitz14] with [Chan18], for a frontal view.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023127

Ground
Truth

Naïve

Proxima
BRDF

M
ip

 0
M

ip
 1

M
ip

 2
M

ip
 3

M
ip

 4

L = 0° L = 45° L = 63.5° L = 76° L = 83° L = 89.5°

127

PROXIMA BRDF: RESULTS

*Specular contribution removed from the image

V
=

83
°

V
=

76
°

V
=

63
.5

°
V

=
45

°
V

=
0

°

Bruteforce
[Heitz14]

And here for grazing angles.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023128

PROXIMA BRDF

𝐿𝑜 = 𝑓𝑙𝑎𝑚𝑏𝑒𝑟𝑡 𝜔𝑖 , 𝜔𝑜 + 𝑓𝑔𝑔𝑥 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 cos𝜃𝑖 𝑑ω𝑖LAMBERT + GGX BRDF

𝐿𝑜 = 𝑓𝑝𝑟𝑜𝑥𝑖𝑚𝑎 𝜔𝑖 , 𝜔𝑜 + 𝑓𝑔𝑔𝑥 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 cos𝜃𝑖 𝑑ω𝑖PROXIMA BRDF + GGX BRDF

𝑓𝑝𝑟𝑜𝑥𝑖𝑚𝑎 Proxima BRDF

𝑓𝑙𝑎𝑚𝑏𝑒𝑟𝑡
𝝆

𝜋

𝛼 GGX Alpha

(Developed with Jose Naranjo, Jon Diego, Jay Ryness, and Miguel Rodriguez)

𝑓𝑝𝑟𝑜𝑥𝑖𝑚𝑎 𝜔𝑖 , 𝜔𝑜 =
𝝆

𝜋
𝛼 −0.55 + 0.19 cos 𝜃𝑖

−1 1 − cos𝜃𝑘
Τ1 2 + 1

cos𝜃𝑘 = −𝑉 ∙ 𝐿

Notes:
• 𝛼 here has a different meaning to the 𝛼 in other slices
• For numerical stability we recommend to pre-multiply by
𝑐𝑜𝑠 𝜃𝑖 to remove the division

Finally, here we have the math for our functional approximation to the GGX-based microfacet
diffuse BRDF, which we termed Proxima BRDF.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023129129

M
ip

 0
M

ip
 1

M
ip

 2
M

ip
 3

M
ip

 4

L = 0° L = 45° L = 63.5° L = 76° L = 83° L = 89.5°

129

CALLISTO + PROXIMA BRDF: RESULTS

Naïve

Callisto +
Proxima

Bruteforce

Callisto +
Proxima

Fit

Ground
Truth

*Specular contribution removed from the image

*Using Light Red Paint Fitting

V
=

0°
V

=
0°

V
=

0°
V

=
0°

V
=

0
°

One question is, how we combine Callisto and Proxima BRDF together?

Given the number of parameters that Callisto has, it would not be practical to create a LUT
for how it behaves over the distance.

Instead, we just approximated it by replacing the lambert term by Proxima (math will be
shown later on).

Here we compare doing supersampling of Callisto together with Proxima (in blue), versus the
approximation of replacing the Lambert term by Proxima, within the Callisto BRDF.

We did comparisons for a front view…

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

CALLISTO + PROXIMA BRDF: RESULTS

130

Ground
Truth

Naïve

Callisto +
Proxima

Bruteforce

Callisto +
Proxima

Fit

M
ip

 0
M

ip
 1

M
ip

 2
M

ip
 3

M
ip

 4

L = 0° L = 45° L = 63.5° L = 76° L = 83° L = 89.5°

130
*Specular contribution removed from the image

V
=

83
°

V
=

76
°

V
=

63
.5

°
V

=
45

°
V

=
0

°

*Using Light Red Paint Fitting

…and for grazing angles as well.

We found the results to hold up well in practice when using this approximation.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023131

CALLISTO BRDF + PROXIMA BRDF

CALLISTO + GGX BRDF

CALLISTO + GGX +
PROXIMA BRDF

(Developed with Jose Naranjo, Jon Diego, Jay Ryness, and Miguel Rodriguez)

𝐿𝑜 = 𝑐1 𝜃𝑑, 𝜃ℎ 𝑓𝑝𝑟𝑜𝑥𝑖𝑚𝑎 𝜔𝑖 , 𝜔𝑜 + 𝑓𝑔𝑔𝑥 𝜔𝑖 , 𝜔𝑜 𝑐2 𝜃𝑖 𝐿𝑖 cos𝜃𝑖 𝑑ω𝑖

𝐿𝑜 = 𝑐1 𝜃𝑑, 𝜃ℎ 𝑓𝑙𝑎𝑚𝑏𝑒𝑟𝑡 𝜔𝑖 , 𝜔𝑜 + 𝑓𝑔𝑔𝑥 𝜔𝑖 , 𝜔𝑜 𝑐2 𝜃𝑖 𝐿𝑖 cos𝜃𝑖 𝑑ω𝑖

𝑓𝑝𝑟𝑜𝑥𝑖𝑚𝑎 Proxima BRDF

𝑓𝑙𝑎𝑚𝑏𝑒𝑟𝑡
𝝆

𝜋

𝛼 GGX Alpha

cos𝜃𝑘 = −𝑉 ∙ 𝐿

𝑓𝑝𝑟𝑜𝑥𝑖𝑚𝑎 𝜔𝑖 , 𝜔𝑜 =
𝝆

𝜋
𝛼 −0.55 + 0.19 cos 𝜃𝑖

−1 1 − cos𝜃𝑘
Τ1 2 + 1

Notes:
• 𝛼 here has a different meaning to the 𝛼 in other slices
• For numerical stability we recommend to pre-multiply by
𝑐𝑜𝑠 𝜃𝑖 to remove the division

Here we finally have the math of how we combined Proxima and Callisto BRDF.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023132

All this is great for rendering the balls that we often use to experiment with shading
techniques.

But some objects are a bit more complex than that.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023133

Going back to our photorealism scale figure, events that happen at patch level play a huge
part in the realism of an image.

From texture authoring errors, to micro shadowing and global illumination.

Every surface point has a different look, and it would be perhaps naïve to think that we can
represent all of them in the same way.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023134

REALITY

To match reality, we often take a start in the statistical models that PBR give us.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023135

SIMULATION OR STATISTICAL PBR
RENDERINGREALITY

While they offer a very solid foundation, they make assumptions and have limitations.

Getting to reality with them is difficult, and I think it will take years or perhaps decades to
fully understand the path to get there.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023136

CAPTURE
SIMULATION OR STATISTICAL PBR

RENDERINGREALITY

However, reality is readily available for us to capture, today.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023137

CAPTURE
SIMULATION OR STATISTICAL PBR

RENDERINGREALITY

DATA-DRIVEN RESIDUAL

Our proposal is then, why we do not try to get as close as possible with state-of-the-art PBR
techniques, and then bridge the gap with a data driven residual.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023138

DATA-DRIVEN
RESIDUAL

SIMULATION OR STATISTICAL PBR
RENDERING

CAPTURE

REALIS

This residual is the error from what we capture using highly controlled photography, and
standard rendering techniques.

This is where Realis, our technology to reproduce reality takes the spotlight.

It calculates differences from photographs to renders and bakes them into a database.

This data is then used in the runtime to reconstruct the shading error for a given light
direction.

[Mostly for diffuse corrections]

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023139

POLYNOMIAL TEXTURE MAPS

• Capture a patch under multiple lighting
conditions

• Project complete captured lighting into
a basis

• In our case we project the error

This idea is not dissimilar from polynomial texture maps, but in that case they bake the entire
lighting into a basis, creating severe interpolation errors as light direction changes.

In our case only the error interpolates, so those errors are harder to notice.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023140

Realis OFF

So here we have what realis does.

Everything that we were unable to capture in art, Realis brings it back from the photograph.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023141

Realis ON

[back and forth]

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023142

Base Delta Result(amplified 10x)

+ =

Conceptually, it takes what we can’t do in realtime, and applies it back in the runtime.

Miguel will dive later into the details of how this was implemented.

Ground truth and consistent lighting.

To finalize our journey towards photorealism, lighting consistency gets as much weight as
materials.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023144

To achieve photorealistic results during gameplay all lights have to behave in the same way.

All the attention put into a material will be lost, if it does not behave the same way under
different type of lights.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023145

LIGHTING CONSISTENCY GOALS

• Defining consistency:

• Using full class lights:

• Stationary (most accurate)

Unreal offers static, stationary and movable lights, which create a different look on the
materials.

Stationary lights are the most accurate ones, so we wanted them to be the foundation of the
lighting in the game.

Unreal Engine only supported 4 overlapping stationary lights, which was not enough for our
game, so we first extended that to 16.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023146

LIGHTING CONSISTENCY GOALS

• Defining consistency:

• Using full class lights:

• Stationary (most accurate)

• With shadows enabled

• Without aggressive attenuation

• Fully featured over raytracing, volumetrics, transparents
(IES Profiles, Material Functions, etc.)

More importantly, we made all lights full class.

That means they have shadows, avoid aggressive attenuation where possible, and are fully
featured, in that they will look identical in raytracing, volumetrics and transparent surfaces.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023147

LIGHTING CONSISTENCY GOALS

• Defining consistency:

• Using robust foundation:

• Raytraced shadows

• Raytraced reflections

We also wanted lighting to have a robust foundation.

For us, this meant investing in raytracing.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023148

From my point of view, shadows are the most important salient feature of many images,
which is specially true for horror videogames.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023149

They contain the broad strokes and foundation that will give support for the rest of the details
to follow up.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023150

RAYTRACED SHADOWS CONSISTENCY

• Light leaks are most dangerous
enemies of photorealism

• Shadow mapping is not consistent
• Raytracing:

• Is robust
• Can be on ballpark of raster if

using caching
• Unlike raster, scales efficiently

with screen size
• Allowing for large amounts of

shadowed lights if small

Shadow Mapping

Raytraced Shadows

The usage of shadow mapping heavily limits the quality of the results, if we look at the
problem from a consistency perspective.

Raytracing in the other hand is robust, and as Miguel will show later, can be performant if
using caching and other techniques.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023151

RAYTRACED REFLECTIONS CONSISTENCY

• Traditional techniques limited by screen info and baked data

• Light leaks on probe reflections

• Objects not always grounded

Reflection Probes + SSR Raytraced Reflections

Similar thoughts apply to reflections.

Traditional screen space techniques came with significant artifacts in form of either over
occlusion or leaking.

On the other hand, raytracing allows to ground all the scene elements correctly regardless of
their screen space complexity.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023152

GROUND-TRUTH GLOSSY REFRACTIONS

• Goal: Have proper light refraction behavior in
specific surfaces (like curved glass)

• For performance reasons, we used Screen
Space for the traces

• PBR based implementation
• Renders in Arnold as ground truth
• Rays follow GGX distribution function

• Pure ground truth solution in screen space had
inherent issues
• We had to add workarounds

(Developed by Hampus Siversson, Edu Sanchez and Miguel Rodriguez)

We also implemented a screen-space glossy refraction technique, trying to stay as close to
the PBR ground truth as possible.

For that we compared with Arnold to evaluate the results.

But unfortunately, we had to take some shortcuts to address some of the inherent issues
coming from tracing in screen space.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023153

GROUND-TRUTH GLOSSY REFRACTIONS

• For refraction within Materials (Tissue):
• We opted for a Texture Space approach
• Revealing inner layer within the surface

• Same ray-marching logic as the Screen Space
Refraction system

• Using heightmap of the inner layer height/depth

• Similar to Parallax Occlusion Mapping

• Supported flipbook & reveal mask animation for a
variety of effects

Material Surface

Inner Surface Heightt = 2

t = 3
t = 4

Ray setup: GGX & IOR

t = 1

(Developed by Hampus Siversson, Edu Sanchez and Miguel Rodriguez)

To also have refraction in tissues we implemented a texture space version of the technique,

which works in a similar way to parallax occlusion mapping.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

GROUND-TRUTH GLOSSY REFRACTIONS

(Developed by Hampus Siversson, Edu Sanchez and Miguel Rodriguez)

These techniques were used to render the visors and translucent tissues in creatures.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023155

LIGHTING CONSISTENCY GOALS

• Defining consistency:

• Supporting large numbers of lights

Shortcuts were not an option given our vision, but consistency comes at a high price.

So we had to find our way to make a large number of shadowed lights with long attenuation
radiuses fully performant.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023156

THE PROBLEM: CORRIDORS

(Developed by Andy Yelland, Jay Ryness and Jose Naranjo)

Render Photo

Corridor 1

Corridor 2

If we recall our game genre, it was linear in nature, with long corridors, side paths and
rooms.

This means light overlap can be very high and we might be rendering more lights than
needed.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023157

THE PROBLEM: CORRIDORS

(Developed by Andy Yelland, Jay Ryness and Jose Naranjo)

Render Photo

Corridor 1

Corridor 2

In this case for example the light marked in green will still be rendered from the corridor 1,
even if it only has effect in corridor 2.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023158

HULL-BASED LIGHT CULLING

• UE4 uses occlusion queries

• Lights evaluate/bleed across walls

• Even when not visible

• Performance loss

• Artificially increases overlap on
stationary lights

Bleed

(Developed by Andy Yelland, Jay Ryness and Jose Naranjo)
Wall

Unreal Engine uses occlusion queries, which use the full shape of the light, but not accounting
for shadowing.

In this case it would render from the left side of the wall, even if the light would not be visible
from that location.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023159

HULL-BASED LIGHT CULLING

• Fitted Light Hulls during light bake

• Point clouds around the shadow edge

• Points converted into fitted sets of planes

Cloud points

Planes

• Light Hulls used for:

• CPU light rejection

• Classic deferred lighting bounding

• Forward grid tile culling

• Allowed us to reduce overlap

• ~2ms perf improvements

To address this, we fit light hulls during light bakes using a set of bounding planes.

This allows for the lights to be constrained to the corridors and rooms where they belong,
drastically reducing the number of lights required to be rendered.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023160

In this scene we were able to render up to 45 shadowed lights, most of them using
raytracing.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023161

EXPOSURE ZONE SYSTEM
• Gran Turismo “GT Tonemapper”

• Has a linear part

• Helps to portray photorealism

• Zone Exposure System

• Used to calibrate the final frame Toe

We used the Gran Turismo tonemapper to further our pursuit of photorealism.

The motivation for this decision is that it has a linear portion that we believe helps to convey
natural and believable results.

We used the Zone System, a photographic technique used to determine optimal film
exposure, to help guide the process of selecting the proper dynamic range for the game.

We added a mode to overlay multiple grayscale tones on top of the screen, where each one is
one stop more intense than the one before.

The original Zone System defined 11 zones, but we used 17 instead more to account for high
dynamic range (HDR).

We also added the ability to color code the image so that the toe, the linear and shoulder
parts of the tonemapper are clearly displayed.

Observing the world.

Observing the world is crucial in the pursue of photorealism.

Given the time constraints I will skim over this section but still give an overview.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023163

LIGHT RIG

(Developed by Pablo J de Andres)

This took multiple forms in our project.

One of them was building a simple light rig for capturing photographic reference.

For example the prisoner suit…

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023164

…and glass.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023165

BLOOM DIGITAL DOUBLE

Reference Reference With
Radial Blur

Render

(Developed with Pablo J de Andres)

We also used this to fit the bloom in our game to match photographic reference.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023166

RIVER DIGITAL DOUBLE

(Developed by Pablo J de Andres, Edu Sanchez and Martin Contel)

Here we have another digital double that we built to learn about water visual mechanics.

We got out of the office to film the Ebro river in Zaragoza, to then create a loose digital
double of it.

What we learnt was applied directly into the execution of the pipeslide in our game.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023167

BLOOD DIGITAL DOUBLE

Render Photograph

(Developed by Pablo J de Andres)

Here we have a digital double of blood drops, compared with photographic reference.

This experiment allowed to learn insights about blood appearance, as we are about to show.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023168

OUR BLOOD COLOR STUDY

(Developed by Pablo J de Andres)

Gore and blood is an important element for our game.

What is color of blood is not an easy question to answer, as there are many valid colors.

The color depends in the amount of oxygen in the blood.

That means depending on where the blood comes from, and how much time has been
exposed outside of the body, the color will be brighter or darker.

To find a valid range of colors, we captured blood drops over the course of 3 hours, for
different thicknesses, and recorded the results.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023169

OUR BLOOD COLOR STUDY

Material Graph

(Developed by Pablo J de Andres)

With this information we created a palette of realistic blood colors, and created a material
function that would give you the corresponding blood color based on the opacity and the
time.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023170

PHOTOREALISM THROUGH TRADITIONAL VFX

• Blood is very important for our game
and traditionally it has been simulated
or eyeballed.

• Technical Traditional VFX: We wanted
to approach it with a rigid forensic
observation base and then use
traditional VFX captures to achieve a
photorealistic result.

(Developed by Pablo J de Andres)

Color is only one metric.

But mechanics and motion are as important.

Rather than relying in simulation we used a more traditional vfx approach, capturing blood
drips using a mixture of artificial blood and viscous paste made with almonds.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023171

BLOOD STUDIES

• Blood has been studied by forensics for a very long time.
They study blood spatter patterns
to determine where it originated.

• We have the opposite
scenario, we know where a spatter starts
and we want to know the end result.

(Developed by Pablo J de Andres)

We also studied forensics to create realistic blood spatters.

They want to find where the blood came from, given a blood pattern.

We have the same problem but opposite.

We know where it comes from, but we want to determine the correct shape the resulting
blood spatter should have.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023172

BLOOD STUDIES

Low Speed Medium Speed High Speed

The classification of forensics was a good start.

You have low, medium and high speed spatters.

Low speed spatters are generated by gravity, and typically means a subject is moving after
being wound.

Medium speed are caused by melee impacts.

And high speed by gun shots.

We followed a similar structure to give spatters the correct patterns according to speed.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023173

BLOOD STUDIES
Speed Angle

Daniel Attinger, Yu Liu, Ricky Faflak, Yalin Rao, Bryce A. Struttman, Kris De Brabanter, Patrick M. Comiskey, Alexander L. Yarin,
A data set of bloodstain patterns for teaching and research in bloodstain pattern analysis: Gunshot backspatters,
Data in Brief, Volume 22 (2019), pp 269-278,

D
is

ta
nc

e
+ -

+

-

Similarly, blood spatters have different characteristics depending on the distance from source
to receiver and the angle at which they arrive at the receiving surface.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023174

BLOOD STUDIES

Daniel Attinger, Yu Liu, Ricky Faflak, Yalin Rao, Bryce A. Struttman, Kris De Brabanter, Patrick M. Comiskey, Alexander L. Yarin,
A data set of bloodstain patterns for teaching and research in bloodstain pattern analysis: Gunshot backspatters,
Data in Brief, Volume 22 (2019), pp 269-278,

Our CapturesForensic Captures

(Developed by Pablo J de Andres)

This is described and documented on forensic bibliography.

To develop our understanding of blood spatter behaviors and mechanics, we did experiments
with artificial blood to create realistic patterns.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023175

BLOOD SPATTERS
High Speed / Wall

Close Range Medium Range Long Range

(Developed by Pablo J de Andres, Hampus Siversson and Jon Diego)

We used the captured information to create patterns that would react realistically to the
distance from the blood source to the receiver surface.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023176

BLOOD SPATTERS
High Speed / Wall

Core / Border / Outer Border / Mist / Drips

(Developed by Pablo J de Andres, Hampus Siversson and Jon Diego)

These patterns are composed of multiple type of decals: core, border, outer border, mist and
drips.

When put together procedurally in the runtime, they create a look that represents well the
observed appearance in the real world.

In that sense, each blood spatter in our game is different.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023177

BLOOD STUDIES
Medium Speed / Floor

Close Range Medium Range Long Range

(Developed by Pablo J de Andres, Hampus Siversson and Jon Diego)

We followed a similar strategy for medium speed spatters…

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023178

BLOOD STUDIES

Low Speed / Floor

(Developed by Pablo J de Andres, Hampus Siversson and Jon Diego)

…and low speed ones.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023179

BRAIN DRIPS

(Developed by Pablo J de Andres)

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023180

Miguel Petersen
Senior Rendering Engineer, leading RayTracing.
@miguel_oenp

So that was the vision and theory, and I will now pass the torch to Miguel, for him to go over
to the implementation, the technical challenges we found in our journey and how we
managed to overcame them.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023181

DEVELOPMENT METHODOLOGY

• We see Unreal as a stock implementation

• Take what we need

• Improve what we can

• Replace what we must

• Insurmountable list of improvements not covered in this talk

• Optimizations, visual improvements, etc.

• But the good bits are here

We’re here to make a game, not reinvent the wheel.

Unreal offers a fantastic base of support from which we can focus only on the bits we want to
improve.

The topics covered in this talk is far from all changes, there are years worth of optimization
changes behind the scenes, but the most impactful changes are here.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023182

REALIS

Now, onto the first major feature, REALIS. And it’s all about character rendering.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023183

A lot of effort, truly.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023184

REALIS

• State of the art rendering techniques are a marvel

• Imperfect by nature

• Realis is an acknowledgement of this

• BRDF error correction term

• Multi-dimensional problem tied to BRDF

𝑓𝑟 𝜔𝑖 , 𝜔𝑟

𝑓𝑟 𝜔𝑖 , 𝜔𝑟 +𝑒 𝜔𝑖 , 𝜔𝑟

So, state of the art techniques are a marvel, truly, but by nature they are imperfect.

We’re approaching the problem bottom-up, and we’re close. But, we wanted to try bridging
that gap today.

Enter Realis, at its core a BRDF error correction term. Whose initial dimensionality is tied to
that of the BRDF.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

OFF PHOTO-REFERENCE

And first, to sell the impact of Realis once more.

On the right you may find the photo reference, on the left is the in game render.

This is without Realis.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

ON PHOTO-REFERENCE

This is with realis.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023187

REALIS

• Reduce dimensionality as much as possible

• Diffuse only

• Ignore view vector

• Demodulate and reduce lighting parameters

• Inverse lighting components invariant to incident

𝑓𝑟 𝜔𝑖 , 𝜔𝑟 +𝑒 𝜔𝑖 , 𝜔𝑟

𝑓𝑟 𝜔𝑖 , 𝜔𝑟 +𝑒 𝜔𝑖

Now, excessive dimensionality is a bit of a problem.

We need to reduce it as much as possible, to do that we limited the scope to:

- Diffuse only

- View invariant

- Invariant to (most) lighting parameters and models

And from this we end up with the incident angle of the light.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023188

REALIS

• Error term dimensionality

• RGB?

• Full color is exceptionally close to reference

• Memory and bandwidth requirements costly

• Luminance?

• Close match, error to full-color acceptable

• Memory reduced to 1/3rd

But, there’s more.

What about the actual error itself, we saw two choices, either full RGB (three dimensions) or
simply luminance.

From our tests luminance by itself was a very close match to the ”accurate” RGB delta. We
decided to go with this.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023189

REALIS

• Represent light vector with spatial distribution

• Windowed spherical gaussians

• Model space

• Non-uniform distribution

• Sparse input data

• Limited number of gaussians due to cost

• Converge optimal distribution offline

We represent the error associated with a lighting vector through a spatial
distribution, specifically spherical gaussians tied in model space.

This did not end up being a uniform distribution due to sparse input data, so the optimal
distribution is automatically computed offline.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023190

Here you may find our protagonist in an internal authoring tool, and on the bottom right you
can see the final distribution chosen.

Red implies optimal coverage, we only wanted Realis contribution on the face, hence the
hemispherical distribution.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023191

REALIS

OFFLINE RUNTIME

CAPTURE / BAKING G-BUFFER LIGHTING

That’s the idea, so, onto implementation. First, baking.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023192

REALIS

Theory is simple, 𝑬 𝑫 = 𝑹𝒆𝒇𝒆𝒓𝒆𝒏𝒄𝒆𝑫-𝑹𝒆𝒏𝒅𝒆𝒓𝑫

Well, should be simple, error is reference minus render.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023193

REALIS

Render

Reference

𝐹𝑙𝑖𝑔ℎ𝑡
−1 (𝐷) 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑆

Unwrap

CoefficientsCoefficientsCoefficientsCoefficients-

Let’s visualize it.

- subtract the two

- invert the lighting function

- project it to texture space

and we’ll have our coefficients!

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023194

REALIS

• Render data

• Captured in linear-space

• Before tone mapping

• Reference data

• Color calibrated

• Moved to linear-space

• That’s it?

Rendering data is captured in linear space just before tone mapping, reference data is
calibrated and then moved to linear space.

So, are we done?

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023195

REALIS

• Data is imperfect, and will always be

• Camera noise

• Foreign objects, render or reference

• Geometric mismatch

• Shadowing mismatch

• Specular removal

• Texture space stretching

No, because data is imperfect, and will always be.

You have noise, foreign objects, geometric mismatches, shadowing is off, speculars are
different, texture space projection stretching, error data is captured at a specific view,
projection back to texture space can result in artifacts due to stretching.

Fun stuff.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023196

REALIS

RENDER REFERENCE DELTA

Camera Noise Shadow MismatchSpecular Mismatch

For example.

Plenty of camera noise here.

Shadows are not entirely aligned, naive baking would result in false errors.

Speculars aren’t exactly the same.

This was a challenge to address, for the purposes of this session we are not going over the
exact implementation specifics, but you may find some hidden slides on this.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023197

REALIS

• Weight out large projection gradients

• UV space stretching prone to artifacts

• Compare view vectors against gradient

𝒘 = 𝒇 ∗ 𝒃 ∗ (𝟏 − 𝑽𝒄𝒂𝒎𝒆𝒓𝒂 ∙ 𝑽𝒍𝒐𝒃𝒆)

𝒇 =
𝒅𝑷𝑻𝑺

𝒅𝑷𝑪𝑳𝑰𝑷

𝒂

𝒂 : Gradient strength

𝒃 : Fade speed

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023198

REALIS

• Shadowing mismatch

• Detect shadow borders

• Well, one part’s dark, one part’s not

• Average texel center to neighboring

• 𝑽 =
𝟏

𝒏
σ 𝑻𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓 − 𝑻𝒄𝒆𝒏𝒕𝒆𝒓

• Two averages, one for shadowed areas and one for lit areas

• Weighted threshold

• Dot product represents the likelyhood of a shadow contour

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023199

REALIS

• Two shadow contours

• Reference contour

• Render contour

• Mismatch shadow area is the gap between the two

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023200

REALIS

• For a given texel, do a spherical line trace

• Inbetween a contour?

• Reduce coefficient weight

• The larger the contour distance the bigger the problem

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023201

REALIS

OFFLINE RUNTIME

CAPTURE / BAKING G-BUFFER LIGHTING

So, let’s move on to the runtime.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023202

REALIS

• Model coefficients exported during gbuffer rendering

• No bindless support at the time

• Memory and bandwidth

• Highly compressed coefficients

• Offline precision multiplier to make best use of the bits

• Temporal jittering

• Reduce dataset by exporting relevant coefficients

• Per-texel dominant light source mask

At the time we did not have bindless support, so we decided to export the relevant data
during gbuffer rendering.

This is potentially a lot of data, in the interest of memory and bandwidth this was heavily
compressed.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023203

REALIS

• Source data is imperfect, runtime data is a lie

• Artistic changes on content due to gameplay

• Dirt

• Grime

• Blood

Unfortunately not, not only is the source data imperfect, but the runtime data lies.

There are plenty of gameplay events that can trigger changes to the material properties, such
as albedo, normals, etc...

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023204

REALIS

• Realis error term captured at specific material properties / conditions

• Artistic direction can invalidate this

• Compute difference at runtime, weigh out contribution in affected areas

CoefficientsCoefficientsCoefficientsCoefficients
CoefficientsCoefficientsCoefficientsBake Time

Properties

Problem is, the error term is exactly tied to the material properties at capture time.

To combat this we export a very thin version of the bake time properties, and then compare
the runtime properties against the offline properties. If they differ greatly, fade out the realis
contribution.

Not very complicated, but very important.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023205

REALIS

OFFLINE RUNTIME

CAPTURE / BAKING G-BUFFER LIGHTING

So now that we have the data, let’s use it.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023206

REALIS

• Any given light may have Realis contribution

• Project incident vector to model / skinning space

• Evaluate gaussians from exported dominant mask

• Re-apply lighting function

• Functional inverse of baking process

Every single light may have realis contribution.

To apply it, we first project the incident vector to model space. Then evaluate the relevant
spherical gaussians, and apply the resulting contribution.

What is really pretty about this is that it’s a functional inverse of the baking process. Let me
show you.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023207

REALIS

Render

Reference

𝐹𝑙𝑖𝑔ℎ𝑡
−1 (𝐷) 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑇𝑆

Unwrap

Coefficients
Coefficients

Coefficients
Coefficients 𝐹𝑙𝑖𝑔ℎ𝑡(𝐷)𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑆𝑆

UV

-

Render

Reference

+

OFFLINE RUNTIME

First, we subtract. Demodulate and invert the lighting function, and store our coefficients in
texture space. That’s all offline.

Then, at runtime, we technically project to screen space, modulate and apply the lighting
function. Then add it to the current render.

We start with the render and end up with the reference. A functional inverse, exactly what we
want.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023208

REALIS

• End result is great

• Primary drawback is geometric and texture alignment

• Our character content pipeline assisted this drawback

• Further reduced memory and bandwidth with bindless support

• Problem space is a multi-dimensional feature fit

• Machine Learning is the modern day solution

• Being actively researched

And that’s it.The concept is simple in nature, but its complexity comes from from the data
processing.

Our particular character content pipeline reduced the overhead associated, greatly, as it
provided near perfect geometric and texture alignment.

And to the future, bindless for sure.

And, given the inherit nature of this problem, i.e. A multi dimensional feature fit, it really
does scream machine learning. This is something we’re looking at today.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023209

RAYTRACED SHADOWS

We don't just want shadows, we want raytraced shadows.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

Shadows on everything.

And we want it on everything, at every place, in every moment.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023211

RAYTRACED SHADOWS

• Accurate shadowing is vital

• A difficult problem space

• Typically numerous lights on the player and sorroundings

• Potentially hundreds of lights visible overall

• Pure raytracing, no hybrid rasterization

Shadowing is one of the most important effects to sell immersion, but it's a difficult problem
space.

We typically have a bunch of lights around the player alone. Potentially hundreds overall.

And I cannot stress this enough, we follow a pure raytracing approach, there is no hybrid
rasterization.

212

So, a challenge, but we're quite proud of the results.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023213

RAYTRACED SHADOWS

• Unreal offers a great base

• Material hit shader generation, shader record setup, etc...

• The pipelining is there!

• Our needs greatly differed from the original intentions

• Virtually all lights raytraced

• Large screen coverage, up to 16 large lights at a time around you!

• Because of this, we wrote our own raytracing implementation

Unreal offers a great base, all the relevant pipelining is there.

However, we found that our needs greatly differed from the original intentions, and types of
content it applies for. So, because of this, we wrote our own raytracing implementation.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023214

RAYTRACED SHADOWS

CACHING VARIABLE CULLING

DENOISING TRANSMISSIONSPECIALIZATION

Real-time, raytraced shadows follows six pillars.

Caching, variable rate tracing, culling, specialization, denoising, and transmission.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023215

RAYTRACED SHADOWS

CACHING

• Stationary lighting

• Offline cache

• Shadow projection masks

• Separate TLAS’es

Let's start with caching.

Going over stationary lighting, offline caching, shadow projection masks, and separate tlases.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023216

RAYTRACED SHADOWS

• Caching schemes easy with rasterization

• Shared light-space

• Depth compositing straightforward

• Difficult with raytracing

• No shared sampling space

With rasterization caching schemes are easy, as a shared light space allows for simple re-
composition.

However, with raytracing it's difficult as there is no implicitly shared sampling space.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023217

RAYTRACED SHADOWS

• First, a primer on Unreal lighting

• Offline

• Computation of static-on-static interactions

• Volumetric computation of static-on-dynamic interactions

• Runtime

• Realtime computation of dynamic interactions

• Three light types

• We avoid static lights

Before getting into it, just a quick primer on unreal lighting to set the stage.

Unreal offers both offline and runtime lighting, offline for static interactions, runtime for
dynamic interactions.

And three lighting types within.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023218

RAYTRACED SHADOWS

Static Receiver

Movable Light

Static shadow / caster

Movable shadow / caster

Stationary Light Static Light

Fully dynamic Mixed offline / dynamic Fully offline

Movable, stationary, and static.

Please note that green denotes static interactions. And blue denotes dynamic interactions.

So, movable lights. [next]

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023219

RAYTRACED SHADOWS

• Movable lights

• Exclusively runtime shadowing

• Runtime diffuse & specular

Movable Light

Movable lights offer exclusively runtime shadowing, and runtime lighting.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023220

RAYTRACED SHADOWS

• Stationary lights

• Offline shadows for static objects

• Runtime shadows for dynamic objects

• Runtime diffuse & specular

Stationary Light

The second kind, stationary lighting, offers offline shadowing for static objects, and runtime
shadowing for dynamic objects.

An interesting split, with a fully runtime direct lighting solution.

Please note that I am not going over static lighting, as that did not fit our use case.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023221

RAYTRACED SHADOWS

• Stationary lighting fits

• Offline static-on-static interactions

• De-facto caching system

• Lightmap space acts as
shared sampling space

• Runtime dynamic interactions

• Future, fully runtime caching

• Use offline cache as a starting point

• Refine over time based on sampling needs

Stationary Light

In comes stationary lighting.

The offline static interactions becomes the de-facto caching system in lightmap sampling
space. It's a perfect fit.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023222

RAYTRACED SHADOWS

• Dynamic on static contribution can be reduced

• Conservative estimation by projecting the caster AABB from light

• Parallels to recent paper
[Sammy Fatnassi 2023, Shadow Techniques from Final Fantasy XVI]

Light

Static Receiver

Movable Caster

Potential Contribution No Contribution

With stationary lighting, we can also make assumptions based on movable projections.

By projecting the effective caster frustum from the light, we can determine where we may
find potential contribution, and most importantly where no contribution is possible!

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023223

RAYTRACED SHADOWS

Shadow

Frustum

(Developed with Luke Ilwanski)

To show this in practice, on the left you may find an enemy projecting a runtime shadow on
the floor.

On the right you may see the effective caster frustum. We only perform runtime tracing
inside that.

[Readers Note]

The implementation is a retro-fit of the stock-UE4 shadow projection masks for the rasterized
counterpart.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023224

RAYTRACED SHADOWS

• Separate acceleration structures

• Static & Dynamic TLAS, static on dynamic shadowing

• Dynamic TLAS, dynamic on static shadowing

STATIC & DYNAMIC DYNAMIC

The separation of offline and runtime shadowing allows for an interesting optimization.

We have two TLAS's, one for static and dynamic objects, and one for just dynamic objects.

Dynamic objects may receive both shadowing from both static and dynamic objects.

However, static objects already have the static interactions precomputed, so, we just need to
trace the dynamic counterpart, a vastly simpler acceleration structure.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023225

RAYTRACED SHADOWS

CACHING VARIABLE CULLING

DENOISING TRANSMISSIONSPECIALIZATION

So, that's caching, now onto variable rate tracing.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023226

RAYTRACED SHADOWS

VARIABLE

• Variable rate raytracing

• Shadow variance

• Perceptual weighting

• Bilateral upsampling

Which consists of, the actual variable rates, shadowing variance, perceptual weighing, and
bilateral upsampling.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023227

RAYTRACED SHADOWS

• Reduce sample count while
maintaining quality

• Majority intra-quad shadowing can be
reduced to one sample

Variable Rates Intra-Quad Shadowing

Quarter, 1:4

Half, 1:2

Full, 1:1

The whole point is to reduce the sampling count while maintaining quality, to do this we
enable three rates, quarter rate, half rate and full rate.

The majority of shadowing can be reduced to one sample, i.e. quarter rate, as seen in the
example on the right.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023228

RAYTRACED SHADOWS

As you can see in the video. What this means in practice is that we focus our samples on the
silhouette of the shadows.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023229

RAYTRACED SHADOWS

• No way to calculate the perfect rate before tracing

• Compute variance of shadow occlusion after tracing

• Determine an appropriate rate given thresholds

• Feed rates to next frame

• Difficult to spot error, denoising will help

Variance Based

Rates
RayTracing RayTracing

Shadowing

Frame N+0 Frame N+1

To determine appropriate rates we compute the variance of the shadowing occlusion after
tracing.

This is then fed to the next frame.

We find it difficult to spot errors due to latency, especially as the denoiser will help any
affected areas.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023230

RAYTRACED SHADOWS

• Shadowing variance does not equate to visually perceptive variance

• Low light intensity

• Auto exposure

• Bloom

• Etc...

Light (1000 nits)

Pixel Intensity

Light (50 nits)

However, variance may not equate to the visually perceptive variance.

Lights may be less important due to low intensity, auto exposure, bloom, etc...

In the example we have one light with 1000 nits, and one with 50, and the pixel intensities
associated. One clearly brighter than the other.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023231

RAYTRACED SHADOWS

• Weight the rate based on the lights perceptual importance

• During culling? Same problem, difficult to guess.

• After lighting! Perfect information, - frame latency.

• Weigh rate based on tile luminance compared to average scene luminance

• Alternatively could have worked in absolute tonemap space

Average Scene Luminance

Low perceptive importanceHigh perceptive importance

Pixel Intensity

To combat this we weight the rates based on the lights perceptual importance after lighting.

Implementation wise, we weigh the rates based on the tiles luminance compared to the
average scene luminance. More on tiles later.

In the example below, with the same set of lights, the left light has a high perceptive
importance, but the right light has a low perceptive importance when compared to the
average scene luminance.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023232

RAYTRACED SHADOWS

RayTracing RayTracing

Frame N+0 Frame N+1

Lighting
Perceptual

Weighting

Variance Based

Rates

And to visualize it, first we trace, then compute the variance based rates, do the lighting, and
only then weigh the rates on the perceptual importance.

All fed to the next frame.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023233

RAYTRACED SHADOWS

RayTracingRayTracing Lighting
Variance Based

Rates
Lighting Lighting

Perceptual Weighting

Perceptual Weighting

Perceptual Weighting

Frame N+0 Frame N+1

This is extended to any number of lights in the scene.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023234

RAYTRACED SHADOWS

• Great improvements

• May reduce more than half of the samples to one sample per quad

• Heavily depends on the scene and its lighting conditions

OFF ON

(Developed with Jose Naranjo)

In practice this works great. Left is without the feature, right is with the feature, a large
reduction in samples.

This of course depends on the scene and its lighting conditions.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023235

RAYTRACED SHADOWS

• Traditional scheduling

• Work queues per variable rate with pixel wise offsets

• Indirect parameters / signatures

• We did not ship a traditional scheduler

• Early limitations made this difficult

• Preferred path today

• Instead followed a “tile packing” mechanism

Traditional scheduling is apt, such as, a work queue with pixel wise offsets, followed by
indirect parameters. However, we actually did not ship a traditional scheduler due to early
limitations, and instead follow a tile packing mechanism. Due to time constraints, we will not
be going over that today.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023236

RAYTRACED SHADOWS

• Variable rates leaves gaps

• Patch holes with bilateral upsampling

• Sampling positions before tracing

• Reconstruction after tracing

¼ Rate ½ Rate Full Rate

½ Res. MinMaxOff ½ Res. MinMaxOn(Developed with Jose Naranjo)

And of course, variable rates leaves holes in shadowing. So we need to patch them with
bilateral upsampling.

This is done in those phases, first, traces, then reconstruction.

Caution: the nature of the tile culler makes it so your lanes end up reshaped in your wave, be
careful when reading your neighbours, they might not be sampling what you think.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023237

RAYTRACED SHADOWS

Quarter Rate
• Trace top-left
• Reconstruct by averaging with

neighbors

Half Rate: Borders
• Trace in the two most

significant samples (MinMax Z)
• Reconstruct by copying into

nearest neighbors

Half Rate: Flat
• Trace diagonally
• Reconstruct by averaging both

samples

(Developed with Jose Naranjo)

For quarter rate, we simply reconstruct gaps by averaging them with the neighbours.

For half rate on borders, we trace from the two most significant pixels in a quad. And then
copy them into the gaps.

For half rate on flat areas, we employ diagonal sampling, and then average the gaps to fill
the gaps.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023238

RAYTRACED SHADOWS

CACHING VARIABLE CULLING

DENOISING TRANSMISSIONSPECIALIZATION

And that's it for variable, onto culling.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023239

RAYTRACED SHADOWS

CULLING

• Working in tiles

• Depth culling

• Static cache culling

• Surface to light cone culling

Consisting of tiles, depth culling, static cache culling, and cone culling.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023240

RAYTRACED SHADOWS

• Tiled classification approach

• Each light is allocated a set amount of tiles

• Allocated on conservative
CPU estimation of influence

• Typical classification output

• Job Queue

• Indirect Parameters / Signature

• Oversampling limited to tile dimensions

• Where we trace is a matter of reduction

We follow a tiled classification approach, where each light is allocated a conservative set of
tiles,

and then produces a typical classification output of a queue and the indirect parameters.

The advantage to this is that oversampling is limited to the tile dimensions, from which it
becomes a matter of reduction.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023241

RAYTRACED SHADOWS

• Depth bounds testing, a classic

• Lane samples the pixel depth

• Reduce min / max over the tile area

• Reject the lights tile if it does not intersect said bound

Min Max

So, the first reduction, a classic, reduce the tiles based on the depth bounds.

We reduce the min / max over a tile area, and then reject it if the light doesn't intersect.
Simple stuff.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023242

RAYTRACED SHADOWS

G-BUFFER DEPTH CULLED TILES

Left, in game render. Right, what the tiled culler sees. Brighter tiles imply lots of lights,
darker tiles imply very few.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023243

Offline cache

Dynamic

Going back to the stationary caching, we can perform a very useful optimization.

The shadow on the bottom comes from the offline cache, the shadow on the middle right is
purely runtime.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023244

RAYTRACED SHADOWS

• Dynamic shadowing only relevant on known lit areas

• Reject tile if the offline cache is fully statically shadowed

• Fast static occluder testing

Pass Tile

Light

Lit Statically
Shadowed

Reject Tile

What we can do is use the offline cache for fast occluder checking.

If we have two tiles, first area being known lit, but second area known statically
shadowed, we can simply reject the tile as there is no possible dynamic contribution.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023245

RAYTRACED SHADOWS

OFF ON

Left, without this occluder checking, right, with occluder checking.

Please note the darkening in the denoted areas.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023246

RAYTRACED SHADOWS

• Cone culling

• Reject tiles where the summarized 𝑵 ∙ 𝑳 has no effect

• Two cones

• Tile surface normals

• Tile surface to light

• Reject if cone intersection failed

• Wave intrinsics can perform summarization in a single iteration

N’
Θ’

N

Θ

Light

And then finally, cone culling.

We can reject the tile entirely if the summarized N dot L has no effect.

To do this we summarize two cones, the tiles surface normals, and the tiles surface to light. If
the intersection between the two cones fail, we reject the tile.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023247

RAYTRACED SHADOWS

OFF ON

Left, without, right, with cone culling. Please see the darkening in the denoted areas.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023248

RAYTRACED SHADOWS

• Reuse the forward rendering light grid

• Three dimensional, depth slices

• Collapse all lights within the depth bounds for tile

• One workgroup per tile

• Parallel loop over active tile range

• Collect all visible lights

• Multiple cells may have the same light

• Interlocked check to see if it’s pushed
LDS Light Queue

LDS Mask

Lane 2

Lane 1

Lane 0

1

1

1

2

2

2

2 3

3

3

If not, enqueue it

Has the light been pushed?

An interesting bit is that we reuse the forward rendering light grid for culling.

This allows us to just collapse all the lights within the depth bounds, without having to
perform expensive shape testing all over again.

Initially, more on that later, this was one workgroup per tile. Each carefully reducing the light
set over the tile set.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023249

RAYTRACED SHADOWS

• Standard indirect parameters

• If a light passes the rejection features

• Allocate a new tile

• Append some offsets

LDS Light Queue

Offset

Lane 0

Lane 1

Lane 2

1

2

3

Dispatch X Y Z Tile

From here we produce a standard set of indirect parameters, and the associated tile offsets.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023250

RAYTRACED SHADOWS

• Aligning the tile size to raygen (platform) workgroup size is not enough

• Highly irregular cache signature

• Tile size has to be exactly the workgroup size

• Classification slowdown, 10x

• High resource requirements per workgroup

• Process multiple tiles within a workgroup

• Light set mask stored externally

• Each tile allocated a bit

Workgroup

0 1 2 3

4 5

However, we found that just aligning the tile size, for example 32 by 32, to the platform wise
ray generation workgroup size was not enough.

A full dispatch was not matching the eqv. indirect dispatch. To match this, the tile size has to
be exactly the workgroup size, 8 by 4.

Great, however, classification had a slowdown of 10x, not great.

This is because each workgroup has large resource requirements, the smaller the workgroup
size the less real work we have going on.

So, just process multiple tiles in a single workgroup, specifically 32 of them at a time. That
gets us close.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023251

RAYTRACED SHADOWS

• Accelerate with wave intrinsics? Waves span across tiles

• Reorder scheduling so each wave are aligned to the tile regions

• Wave32 / Wave64?

• High resource requirements per wave, Wave32 sub-par

• Two tiles in flight at a time, compute wave ops for both tiles!

• Mask out other tiles data

• Intrinsics can set lower lane bound 0 6432

Lower

Upper

However, if we're processing multiple tiles at a time. It becomes a bit tedious to accelerate
things with wave intrinsics as they can span across tiles.

To combat this we just reorder the scheduling so each wave is aligned to the tile regions.

Our tiles are 8 by 4, so wave32 right? No, again, the high resource requirements gets in our
way. We need to execute on wave64.

To do this we just process two tiles at the same time, and compute the wave operations for
both tiles at the same time. The upper intrinsic masks out the lower band, the lower intrinsic
masks out the upper band. Really simple, and really fast.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023252

RAYTRACED SHADOWS

CACHING VARIABLE CULLING

DENOISING TRANSMISSIONSPECIALIZATION

That's it for culling, let's specialize the traces.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023253

RAYTRACED SHADOWS

SPECIALIZATION

• Queue selection

• Tile allocation

• Pre-sum

To do this we'll look at queue selections, tile allocation and pre-sums.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023254

RAYTRACED SHADOWS

• Raytracing control flow divergence incurs global slowdowns

• Mechanism to split control flow with localized cost

• Mechanism to add complex features with localized cost

• We need to split the pipeline

The problem is that any control flow divergence,

and additional resource pressure from having the code path at all, incurs a global slowdown.

So, we need a mechanism to split it with localized costs. To do this, we need to split the
pipeline.

A perfect example of specialization is the iris.

We found that decoupling the diffuse and specular shadowing was vital to sell immersion, as
made evident by the video.

But this of course implies two traces per sample.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023256

RAYTRACED SHADOWS

• Improve performance by reducing work per trace

• Shading model feature masks

• Default

• Subsurface Scattering

• Eye

• Branching

• Reduce the feature set as much as possible

• Compile time feature selection

SS | Eye = Branching

SS

So, we need to reduce the amount of work per trace, we do this by employing compile time
feature selection based on the shading model.

So, default, subsurface scattering, eye, and branching if there are multiple models per tile.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023257

RAYTRACED SHADOWS

Let's see it in action.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023258

RAYTRACED SHADOWS

• Depending on the enabled feature set, a light may have multiple queues

• Each queue selection mask has its own queue

• Rapid expansion of memory usage

And now, depending on the feature set, a light may have multiple queues.

A naïve implementation would offset the tiles by the queue stride, but this is a rapid
expansion of memory usage...

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023259

RAYTRACED SHADOWS

• Pre-sum compaction to reduce memory usage

• Compute the sub-queue offsets for a particular feature

• Pre-sum pass before the main classifier (light version)

Sub-Queue 0

Sub-Queue 1

Sub-Queue 2

Combined

Presum [0] Presum [7] Presum [19]

To combat this we run a pre-sum pass that computes the effective intra-queue offsets for a
particular feature.

Once the offsets are known, we can merge the queues at runtime, even with the atomic tile
allocation, without issue.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023260

RAYTRACED SHADOWS

CACHING VARIABLE CULLING

DENOISING TRANSMISSIONSPECIALIZATION

That was specialization, and now a few notes on denoising.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023261

RAYTRACED SHADOWS

• Vanilla denoiser operates over the lights scissor

• Only denoise shadowing tiles, skip culled tiles

• Only denoise tiles with a sufficient variable rate

• i.e. Ignore tiles with a low shadowing variance

• Numerous optimizations

• Platform specific optimizations

• Reduced bandwidth and memory pressure

The inbuilt denoiser works on the lights scissor area, what we do instead of work on the
shadowing tiles, and implicitly skip those that have been culled.

Additionally, we only denoise tiles with a sufficient variable rate, i.e. those with a low
variance.

This, was the greatest speed up, and what allowed us to denoise our shadows. Behind the
scenes we have numerous operations, some platform specific some not, passes on memory
pressure, and so on.

They definitely played a part, but are not as interesting to talk about.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023262

RAYTRACED SHADOWS

CACHING VARIABLE CULLING

DENOISING TRANSMISSIONSPECIALIZATION

And finally, transmission.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023263

RAYTRACED SHADOWS

• What do we want?

• Transmission on all lights for consistency

• Matching Photographic reference

• [Jimenez 2010, "Real-Time Realistic
Skin Translucency“]

• Thickness estimation

• Transmission estimation

(Developed with Miguel Rodriguez)

So, what do we want. As usual, everything, so transmission on all lighting, and matching our
photographic references.

To realize this we base our transmission model on the 2010 real-time realistic skin
translucency, which provides thickness and transmission estimates.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023264

RAYTRACED SHADOWS

• Inbuilt implementation casts 3 rays

• + An optional early rejection ray

• Reverse the ray for ”free” thickness estimation

• No longer stops at first hit, more expensive

• Light to surface for thickness, an approximation

Approximation

Accurate (UE4) s

c

ss
v

s : Traditional Shadow Ray
ss : Subsurface Scatter Ray
v : Visibility Ray for Scatter point

C : Custom combined Shadow & Transmission Ray

(Developed with Miguel Rodriguez)

To inbuilt implementation may cast up to three additional rays for accuracy.

To match our performance budgets, we reverse this ray for free thickness estimation. It no
longer stops at the first hit, so the one trace itself is more expensive, but we get away with a
single one.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023265

RAYTRACED SHADOWS

CACHING VARIABLE CULLING

DENOISING TRANSMISSIONSPECIALIZATION

So, now that we have all of the infinity stones, how are we looking.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023266

RAYTRACED SHADOWS

• Average performance improvement within an order of magnitude

• ~10x per pass!

• Not including general ray optimizations

OFF ON

-36.74ms Saved

-85% Tracing Cost

-89% Denoising Cost

What we get is a speedup of an order of magnitude, roughly 10 times per pass.

And please keep in mind that this does not include general optimizations to our rays, only
what we could cleanly, and fairly, toggle.

In this particular example, indicative of proportional savings across the game, we save 36
milliseconds, remove 85% of the tracing cost, and remove 89% of the denoising cost.

This is what allowed us to ship raytraced shadows.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023267

RAYTRACED SHADOWS

• How does it compare to rasterized?

• Culling & Denoising overhead included

• Not a fair comparison, visual quality exceeds rasterized

SCENARIO RASTERIZED RAYTRACED PERCENTAGE

Europa 01 5.35 +2.5 67%

Tunnels 100 3.57 +4.3 45%

Minetown 01 5.2 +2.3 69%

Minetown 150 2.8 +1.7 62%

Escape 02 3.2 +1.8 64%

Escape 37 7.5 0 100%

Escape 71 9.19 +1.17 88%

Habitat 33 5.7 +4.5 55%

Habitat 21 6.58 +2.9 69%

Habitat 10 2 +2.4 45%

And how does it compare to rasterized? Not that bad, there are certainly cases where
rasterized is far ahead, but we're pretty close.

And, please keep in mind that this is an unfair comparison to raytracing, as the raytraced
result vastly exceeds the rasterized result.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023268

RAYTRACED REFLECTIONS

So, that was shadowing, what about reflections?

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023

Reflections on everything.

Opaques, Translucents, Shadows

Approaching Ground-Truth

As with shadowing, the goal is pretty much the same thing. We want reflections on
everything, opaques, translucents, and with shadowing.

We want to approach ground truth.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023270

RAYTRACED REFLECTIONS

SHADOWS VARIABLETRANSLUCENTS LIGHTING REUSE

INLINE TRACE HOLOGRAMS RAY DISTANCESTEMPORAL

(HOLOGRAMS and RAY DISTANCES in hidden slides)

So, let's start from the beginning. Shadows.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023271

RAYTRACED REFLECTIONS

SHADOWS

• Offline cache

• Pipelining

First, the kinds of shadowing, then the offline caching, and pipelining.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023272

RAYTRACED REFLECTIONS

• What has shadowing?

• Static geometry, offline.

• Movable geometry, runtime.

• Movable lights , runtime.

• What remains unshadowed?

• Movable on static geometry. A known sin

We shadow static geometry, movable geometry, even with movable lighting such as the flash
light.

However, one thing remained unshadowed, and that is movable on static geometry. The good
news is that it's difficult to spot error at runtime, but it is a sin.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023273

RAYTRACED REFLECTIONS

MIRROR, WITHOUT SHADOWS

What you are looking at here is a mirror reflection, first unshadowed.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023274

RAYTRACED REFLECTIONS

MIRROR, WITH SHADOWS

And then with shadows.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023275

RAYTRACED REFLECTIONS

• Shadows in reflections visually significant

• Shadow traces exceedingly expensive

• Offline raytracing cache

• Majority of shadowing already computed by lightmass

• ”Free” (negligble) stationary on static shadowing!

So, it's visually significant, but traces are exceedingly expensive.

The best thing we can do is reuse the offline cache as before.

The absolute majority of shadowing is already computed by lightmass, so we can get free
stationary on static shadowing.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023276

Dynamic geometry
Runtime shadowing

Static geometry
Offline shadowing

On the right hand side all the shadowing is a simple texture fetch, extremely cheap.

However, for movable geometry such as the player in the center, shadowing remains a
runtime trace.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023277

RAYTRACED REFLECTIONS

• Pipelining is key to performance

• Existing ”experimental deferred” path of interest, three step process

• Initial forced-opaque gather, exports hit information

• Sort hits on material ids

• Shade hit positions, with embedded shadow traces

• Re-traverses if any-hit is needed (i.e. Non-opaque)

Shading

Shadows
Gather Sorting

But even with that, we need to make it faster. To do that, we need to pipeline things.

Unreal offers a so-call "experimental deferred" path, from which we base our implementation
on. This is a three step process.

An initial gather, force-opaque so it stops at the first ray. Sorting on the gather hits based on
material ids. Then shading in a manner that promotes material coherence. The last part both
re-traces if we hit a non-opaque, and performs embedded shadow traces. So, it's expensive.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023278

RAYTRACED REFLECTIONS

• Move all remaining shadow traces to a packed separate pass

• Static objects use offline cache, dynamic objects perform runtime traces

• Exports packed shadowing, read back during shading

• Reduced resource usage of benefit to async compute

Gather Sorting ShadingShadows

To combat this we move all the traces to a separate pass, static interactions use offline
caching, runtime traces.

Then, all the shadowing data is packed and fed to the shading pass.

This greatly helps the scheduler, and the reduced resource usage is of benefit to async
compute and related.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023279

RAYTRACED REFLECTIONS

SHADOWS VARIABLETRANSLUCENTS LIGHTING REUSE

INLINE TRACE HOLOGRAMS RAY DISTANCESTEMPORAL

(HOLOGRAMS and RAY DISTANCES in hidden slides)

That's the shadows, what about translucents?

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023280

RAYTRACED REFLECTIONS

TRANSLUCENTS

• Performance

• T-Buffer

• Heuristics

• Future (see hidden slides)

To attack translucents we need to talk about performance, the so-call T-buffer, heuristics,
and what lies ahead.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023281

RAYTRACED REFLECTIONS

• Translucent reflections

• Mirrors, glass, eyes, etc...

• Inbuilt solution casts additional rays, potentially per translucent surface

• Too expensive

• Barely in budget, how do we get ”free” translucent reflections?

• Can’t cast any more rays

When we talk about translucents we're referring to things such as mirrors, glass surfaces, and
eyes.

So, a potentially reflective surface above opaque geometry.

The inbuilt solution casts additional rays, potentially per layer, but we are barely in budget.

What do we want? Free translucent reflections, but we can't cast any more rays.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023282

RAYTRACED REFLECTIONS

• Introducing the TBuffer

• Translucent buffer

• Geometric pass, rendering translucent geometry data

• Depth tested

• Only interested in top-most surface

Introducing the T-Buffer, T being translucents. It's essentially just a geometry pass that
renders the front-most translucent geometry.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023283

RAYTRACED REFLECTIONS

• PIC

T-Buffer

G-Buffer

On the left hand side you may find reflections where the primary ray is derived from the T-
Buffer, in this case a glass pane.

On the bottom you may find reflections where the primary ray is derived from the G-Buffer.
All opaque.

Quite a cool effect if you ask me.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023284

RAYTRACED REFLECTIONS

• Reflection ray uses TBuffer instead of GBuffer if closer

• Top most layer uses raytracing

• Subsequent layers use probe lookups and SSR

Raytraced Probe / SSR

Implementation wise, to avoid casting more rays, the reflection ray simply uses the TBuffer
instead of GBuffer if it's closer.

Given that this may result in multiple layers, last being the GBuffer, the front most layer
always raytraces, and all successive layers either use probe fallbacks or SSR, depending on
which has best visibility.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023285

RAYTRACED REFLECTIONS

• We also tried additional various layer heuristics

• Roughness assumptions

• Reflective estimation, f.x. EnvBRDF evaluation

• ...

• All error prone, fail under certain conditions, a mess

Something I should note is that we tried many heuristics for where to trace, such as making
assumptions on the roughness, environment brdf, etc..

However, we found that it was too error prone, and whenever we though we had something,
it broke somewhere else. Frankly, a mess, simple is best.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023286

RAYTRACED REFLECTIONS

• Future, explore temporal solutions

• Checkerboarding on layers

• Temporally converge samples on layer with greatest contribution

Translucent Opaque

Now, in the future what I believe makes most sense is something akin to checkerboarding on
layering. Then converging the samples on the layer with the greatest contribution temporally.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023287

RAYTRACED REFLECTIONS

SHADOWS VARIABLETRANSLUCENTS LIGHTING REUSE

INLINE TRACE HOLOGRAMS RAY DISTANCESTEMPORAL

(HOLOGRAMS and RAY DISTANCES in hidden slides)

That was translucents, let's talk about reusing lighting data.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023288

RAYTRACED REFLECTIONS

REUSE LIGHTING

• Reusing lighting data

• Rasterization parity

• Volumetrics

Which will cover the refuse, rasterization parity, and volumetrics.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023289

RAYTRACED REFLECTIONS

• Always raytrace, never relies on screen space traces

• Ground truth raytracing

• However, reuse lighting from previous frame, if available

• Our BVH is close to parity with rasterization, but misses a few things

• Tiny Niagara particles (millions), certain decals

• Reusing screen data helps this

However, when I say reusing screen data, it is not in the hybrid sense. We are always
raytracing, we never rely on screen space traces. Stay ground truth!

What I mean is that we reuse lighting data from the previous frame, if available.

Why? First, performance, second, and more importantly. Our BVH is very close to parity with
rasterization, however, it may miss a few things.

Namely large niagara particle systems and certain decals. This is where reusing screen data
helps.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023290

BVH ONLY

This is with a BVH only trace

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023291

REUSING SCREEN DATA

This is with reusing screen data.

[Toggle back and forth]

As you can see, it really helps to bring back some of the missing things.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023292

RAYTRACED REFLECTIONS

• Approaching ground truth requires parity for consistency

• Light functions

• IES profiles

• Volumetrics

• Etc.

So, on this pursuit we had a large push on parity.

Lighting functions need to be the exact same between rasterization and raytracing, same
goes for IES profiles, volumetrics, etc...

But the volumetrics were a large issue.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023293

RAYTRACED REFLECTIONS

• BAD PIC

Missing Volumetrics

Without volumetric contribution, we unfortunately have a massive visual disconnect. And not
a pretty one.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023294

RAYTRACED REFLECTIONS

• Screen sample includes volumetric data, raytracing does not

• Unreal uses a froxel grid for volumetric integration

• Sample volumetric data on occluded hits

• Careful with double contribution,
blend inversely with screen weight

Screen Sample Volumetric Sample

This became a problem when we started to reuse screen lighting data, as it includes
volumetrics while raytracing does not.

Saving point is that unreal uses a froxel grid to represent volumetric integration, which
exceeds the rasterized first hit.

So, in raytracing, we sample said data if we could not sample the previous screen data.
Please be very careful with double contribution, it'll bite you.

And a small note, I think for the future we either go with expensive integration, or
experiment with pre-integrated spaces, my money's on the latter.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023295

RAYTRACED REFLECTIONS

• BAD PIC

WITHOUT

Without sampling on raytracing.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023296

RAYTRACED REFLECTIONS

• GOOD PIC

WITH

With sampling on raytracing.

[Toggle a few times]

Really helps ground the effect.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023297

RAYTRACED REFLECTIONS

SHADOWS VARIABLETRANSLUCENTS LIGHTING REUSE

INLINE TRACE HOLOGRAMS RAY DISTANCESTEMPORAL

(HOLOGRAMS and RAY DISTANCES in hidden slides)

That was lighting, let's talk about variable rate tracing.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023298

RAYTRACED REFLECTIONS

VARIABLE

• Working in tiles

• Variable rate scheduling

• Perceptive importance

• Variable resolution (see hidden slides)

Which will include tiles, variable rates, perceptive important, and variable resolution.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023299

RAYTRACED REFLECTIONS

• Too slow, and too many rays where it doesn’t matter

• Similar problem space to raytraced shadows

• Reintroduce tiles

• Same scheduling paradigm

• Far simpler problem space than raytraced shadows

• Earlier rejection of rays

The problem is similar to shadows, it's still too slow, and we're shooting too many rays where
it doesn't matter.

So, let’s re-introduce tiles. It's a far simpler problem space than raytraced shadows, from it
we get earlier rejection of rays.

Given that I already went over the concepts during shadowing, I won't go into too much
detail here.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023300

RAYTRACED REFLECTIONS

• Variable rate tracing

• Extends [Ray-Traced Reflections in ’Battlefield V’, GDC 2019]

• Used roughness as variable factor

• Roughness not necessarily indicative of final contribution

• Variable rates instead computed from reflection variance

• Calculate variance across tile

• One frame delay, as with raytraced shadows

• Carefully reprojected

And, let's add variable rate tracing.

This is actually extending the work done in the 2019 Ray-Traced Reflections in Battlefield V,
which uses roughness as the variable factor.

However, we believe that roughness is not necessarily indicate of the final contribution, so we
instead compute the rates from the reflection variance across the tiles.

Again, a one frame delay, so carefully reproject things.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023301

RAYTRACED REFLECTIONS

• Perceptive importance equally relevant

• Compare linear reflection results with linear final scene values

• Compute variance on weighted samples

Variable Rates RayTracing Tiled CullingPerceptual WeightingResolve

Frame N+0 Frame N+1

Let's bring over the perceptive importance as well, we compare the linear reflection results
with the linear final scene values. From this we compute the variance on the weighted
samples.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023302

RAYTRACED REFLECTIONS

• VARIABLE PIC

And showing all of those things in action, please note the mirror-like reflections on the floor
below.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023303

RAYTRACED REFLECTIONS

• VARIABLE PIC

And these are the resulting variable rates computed.

[Toggle it a few times]

Note how the samples are concentrated on areas with reflections.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023304

RAYTRACED REFLECTIONS

• Reflection resolution is variable between 50% - 25% (both axes)

• Variable rates and variable resolutions? What?

• Variable resolution came first

• While questionable, it is very scalable

• Variable resolution computed from performance headroom

• Headroom factor expressed as scaled exponential of the frame dynamic resolution

• At target frame resolution 2k 16:9, 25%

• At native frame resolution 4k 16:9, 50%

• Quite a few sequencies hit 4k

In addition to variable rates, we also have general variable resolution. While this is an odd
combination, it's simply because one came before the other, namely variable resolution.

We decided to keep this as it proved very scalable. The general reflection resolution varies
from 50% to 25%, where the actual percentage is derived from the performance headroom
from target, 2k 16:9, to native 4k. Scaled exponentially to give room in the lower bounds.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023305

RAYTRACED REFLECTIONS

4k 16:9
50% RTR

2k 16:9
25% RTR

Headroom factor

Just to visualize things, 2k 16:9 being the target, all the way to native 4k. Our headroom
factor proved most useful as an exponential between the two.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023306

RAYTRACED REFLECTIONS

SHADOWS VARIABLETRANSLUCENTS LIGHTING REUSE

INLINE TRACE HOLOGRAMS RAY DISTANCESTEMPORAL

(HOLOGRAMS and RAY DISTANCES in hidden slides)

With variable rate tracing, let's move on to inline tracing.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023307

RAYTRACED REFLECTIONS

INLINE TRACE

• Any hits

• Inline summarization

And specific to the problem of any hits, and what we call inline summarization.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023308

RAYTRACED REFLECTIONS

• Better! But still not good enough.

• Any hits incredibly (proportionally) expensive

• Many assets over reliant on opacity mapping

• Too late to address, somewhat of an unfortunate situation

• We need to reduce any-hit evaluations, key is unordered traversal

Gather Sorting Shading
Shadow

Trace

The problem is that our any hit stages are proportionally incredibly expensive, with too many
assets over reliant on opacity mapping.

It was unfortunately too late to address through content, so we had to look elsewhere.

To reduce any hit evaluations, we need to attack the unordered traversal.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023309

RAYTRACED REFLECTIONS

• Extend gather pass to perform ”inline summarization”

• Lightweight inline trace that summarizes the effective ranges

• Final opaque hit position

• Effective any-hit ranges

• Reduced by final hit

Gather Sorting Shading
Shadow

Trace

What we do is extend the gather pass, first one, to perform inline summarization, which
essentially determines the effective ranges for any-hits and the final opaque.

And most importantly, reduces the any-hits by the final opaque and other metadata that
could indicate termination.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023310

RAYTRACED REFLECTIONS

• Schedule additional pass Gather Complex if any-hit is needed

• i.e. There is a real any-hit before the final opaque

• Export final opaque hit point

• Shading pass no longer performs traversal

• Only evaluates hit positions / materials (vendor extensions)

Gather

Complex
Sorting Shading

Shadow

Trace
Gather

Then, based on this reduced range, instead of performing additional re-traversal during
shading, we schedule a dedicated pass.

This pass only runs if there is any potential any-hits to evaluate. Once done, it exports the
final hit point.

This not only improves the re-traversal based on the reduced ranges, but also general
shading performance due to the reduced resource usage and better material coherency on
shading, as the sorting pass is now sorting the real final hits.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023311

RAYTRACED REFLECTIONS

Opaque
Non-Opaque

AnyHit0

AnyHit1 AnyHit3

OpaqueHit2 AnyHit4

Summarized Range

AnyHit0

AnyHit1

OpaqueHit2

Expensive Records

Gather Pass

Gather Complex Pass

That was a lot of text, let's visualize it.

First ray, the gather pass, goes through all the potential hits.

Now typically the re-traversal would evaluate the expensive records at the end, but this pass
is fully inline.

And extremely cheap at that, couple hundred microseconds in addition at most. Now that we
know the actual ranges, the gather complex solely operates on this range. And does not
evaluate the expensive records at the end.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023312

RAYTRACED REFLECTIONS

• Great yields

• Up to 3ms in worst offenders

• Average is much lower

• PC drivers uneven gains / losses

• Disabled

The performance you get back from it depends heavily on the platform and implementation,
however, for our use cases this proved great in production. And most importantly, it worked
best in cases where we were bottlenecked by reflections.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023313

RAYTRACED REFLECTIONS

SHADOWS VARIABLETRANSLUCENTS LIGHTING REUSE

INLINE TRACE HOLOGRAMS RAY DISTANCESTEMPORAL

(HOLOGRAMS and RAY DISTANCES in hidden slides)

So, now that we've got a little bit of performance head room, let's talk about holograms.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023314

RAYTRACED REFLECTIONS

• Shading picks up emissive radiance on the final hit point

• Gather Complex pass accumulates radiance along the ray

• Ordered or unordered?

• Kept unordered for performance, may result in missed occlusion

• Inline summarization helps, content rarity made this acceptable

AH OH

The general shading pass already accounts for emissive contribution, however, not along the
ray.

So, let's include it. Whenever the gather complex pass evaluates an any-hit, accumulate the
radiance.

With that comes the question, ordered or unordered? We decided to keep it unordered for
performance, which may result in missed occlusion. However, inline summarization greatly
helps reduce the chances of this, and general content rarity made it acceptable.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023315

RAYTRACED REFLECTIONS

Hologram

And personally, I love the effect.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023316

RAYTRACED REFLECTIONS

SHADOWS VARIABLETRANSLUCENTS LIGHTING REUSE

INLINE TRACE HOLOGRAMS RAY DISTANCESTEMPORAL

(HOLOGRAMS and RAY DISTANCES in hidden slides)

Let's talk a bit about reflections and temporality.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023317

RAYTRACED REFLECTIONS

• Use IGN [Jimenez 2014] across the board

• Hierarchical Blurring

• Temporal counter since disocclusion

• Reduce hierarchical blurring over time

• Moving average instead of exponential
moving average

𝛼 = 1 − (
1

𝑡 + 1
)

Frame N Frame N + 1

Disocclusion

T = Target T = 0T = 1

T -> Time since disocclusion

(Developed with Miguel Rodriguez)

We use IGN noise across the board, as it seemed a better fit for our use cases.

And to deal with disocclusion we simply employ a hierarchical blur, whose size is tied to the
last disocclusion time.

The more recent the disocclusion, the greater the blur. We found that to be sufficient.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023318

RAYTRACED REFLECTIONS

SHADOWS VARIABLETRANSLUCENTS LIGHTING REUSE

INLINE TRACE HOLOGRAMS RAY DISTANCESTEMPORAL

(HOLOGRAMS and RAY DISTANCES in hidden slides)

And finally, ray distances.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023319

RAYTRACED REFLECTIONS

• On a given area, precompute the max ray distance

• Thin corridors, constrained spaces, ideal environments

• Most effective ray limits are a fraction of the world bounds

• Not shipped, ran out of time

Offline volumetric cache Offline surfel cache Runtime progressive
spatial-hashing cache

We experimented with precomputing the maximum ray distances across all levels, since most
effective ray limits are a tiny fraction of the world bounds. It really is the ideal environment.

We opted not to do this in lightmap space, as the memory requirements are large. And
instead evaluated offline volumetric caches, offline surfel caches, and runtime progressive
spatial hashing caches.

Unfortunately this did not ship, as we ran out of time in general. However, if I was to place
my bets on any of this, it would be the progressive runtime caching.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023320

PLATFORM OPTIMIZATIONS

That was reflections. But we're not done, while there's a heap of general optimizations, I
want to touch on a few of the most impactful ones.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023321

The things that made us able to ship with this kind of fidelity.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023322

PLATFORM OPTIMIZATIONS

• The material cat and mouse game

• Wonderful tool for content creators

• A ”challenge” for engineers

• Current raytracing pipelining requires that the per-stage GPR requirements are the worst
case GPR requirements.

• Something to revisit in the future

• A single material being streamed in can tank performance

• Why is the closest hit doing video decoding?

• Why is the closest hit doing texture space tracing?

The first problem is known to many, and that's the material cat and mouse game, while it's a
wonderful tool for content creators, it can be a challenge for engineers.

This is especially so as raytracing pipelines require the per-stage GPR is that of the worst
case.

So, if you suddenly have a single material streamed in with large requirements, performance
can tank across the board. We had a fun few cases regarding video case decoding and texture
space tracing, and by fun I mean a jira issue.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023323

PLATFORM OPTIMIZATIONS

• Determine the known-good material GPR ranges

• Limit VGPR, let the rest spill to scratch memory

• Known good content betters

• Expensive content worsens

GPR Range Outliers

V
G

P
R
 B

in
s

To combat this, we determine the known good GPR ranges, and simply limit it to that.

Any usage beyond that will spill to memory.

What this means in practice is that known good content betters while expensive content
worsens, that's fine. We want to address expensive materials separately, hit shaders should
be simple shaders.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023324

PLATFORM OPTIMIZATIONS

• Split up hit shader tables on the use

• Raytraced shadows

• Raytraced reflections

• Shadow testing pipelines do not suffer from VGPR requirements of reflection evaluation.
And vice versa.

• Can be split in a much more fine grained manner

• Bottlenecked by CPU material parameter binding costs (UE5!)

Additionally, we split up the shader tables on use, so, raytraced reflection hit shaders do not
affect raytraced shadows hit shaders, and vice versa.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023325

PLATFORM OPTIMIZATIONS

• Long raytracing shadow tails

• Unfortunate traversal paths

• Unfortunate any-hit evaluations (f.x. Hair)

2.47ms

Light Light Light Light Light

(Captured on PIX-XSX)

Another issue is tails, caused by unfortunate traversal paths, any-hit evaluations, and
anything else particular to only a few rays out of the many.

This is especially bad with numerous traces after each other and pipelining limitations.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023326

PLATFORM OPTIMIZATIONS

• Hide tails and latency with overlapped execution

• Batch as many raytacing calls together as possible

• F.x. 32 lights with long tails becomes one effective tail

• Virtually eliminates the problem

• Overlapped passes must share the same VGPR scratch layout!

1.66ms, -32%

(Captured on PIX-XSX)

To combat this, we hide tails and their associated latency with batching.

So, if you have 32 lights, all their tails become one long tail. In this particular light we went
from 2.47ms to 1.66ms on XSX, 32% reduction.

This comes at a cost of increased memory, the more batched traces the more memory you
need to keep alive at a time. Also, for those messing with scratch spaces, be very careful with
the overlapped passes and shared scratch layouts.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023327

PLATFORM OPTIMIZATIONS

• Raytracing reflection tails

• Overlap? Not possible, inter-stage dependecy

Frame Time 32.5ms

(Captured on PIX-XSX)

So, for reflections we'd want to do the same, but can't, as each stage depends on the last.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023328

PLATFORM OPTIMIZATIONS

• Async compute to the rescue!

• Graphics queue has higher priority by default

• Kickoff and sync points are half a frame apart

• Reduce allocated wave limit to 50% for async reflections

• Gain in the milliseconds, on average ~2.5ms

• Carefully manage async compute and graphics scratch spaces!

Frame Time 30.15ms (- 2.35ms)

(Captured on PIX-XSX)

To combat this we offload it to async compute, and specifically reduce the allocated wave
limit to 50%.

Our reflection kick off and sync point are half a frame apart, we let the graphics work run as
undisturbed as possible, especially given the resource requirements.

The gains are in the milliseconds, in this particular case 2.35ms on XSX.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023329

PLATFORM OPTIMIZATIONS

• Acceleration structure building not free

• BLAS skinned builds expensive

• TLAS building not making effective use of hardware

Frame Time 30.5ms

(Captured on PIX-XSX)

Unfortunately, there are similar problems with acceleration structure building, skinning builds
are expensive and TLAS building is not making effective use of hardware.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023330

PLATFORM OPTIMIZATIONS

• Schedule on async compute

• Gains in the milliseconds

• Even on PC (~1/2 ms)

Frame Time 29.6ms (- 0.9ms, - 80% ☺)

(Captured on PIX-XSX)

So, offload it to async compute as well. In this particular case we save 0.9ms, a reduction of
80% on XSX. Practically free at this point.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023331

PLATFORM OPTIMIZATIONS

• This talk covered the large features

• Thousands of smaller optimizations

• Not very interesting to talk about

• Combined contribution had a large effect on performance

• Months of tracking down GPU crashes across platforms

• Thank you for vendors for the extensive help

And that's mostly it. Again, this talk covered the large features, but I must reiterate that we
have thousands of smaller optimizations across the board that combined had a large effect on
performance. They are just not that interesting to talk about.

And, as usual, the many months spent on tracking down GPU crashes, a big thank you to the
vendors here. Thank you!

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023332

KEY TAKEAWAYS

So, besides the technical and algorithmic bits, what are we to take away?

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023333

KEY TAKEAWAYS

• Algorithmic and platform optimizations are great

• But doesn’t get us all the way

• What landed us in budget is optimizations for our content

• Any generalization we can make due to content particularities

• Raytracing not far from matching rasterized performance

• Our belief that we will eventually match and exceed it

From my side, algorithmic and platform optimizations are great, but they don't get us all the
way.

We need to optimize for the content that we have, and generalization or assumption you can
make because of it.

And, it is my belief that we aren't that far from matching rasterized performance, it is my
personal opinion that we'll eventually not only match, but exceed it.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023334

OUR VISION

• Ground Truth

• Minimize shortcuts

• Pure runtime raytracing + Accurate cached lighting

• Long range light attenuation radius

• Consistency

• Materials to respond correctly in all situations

• Virtually all lights to have shadows (raytraced)

• Virtually all surfaces to have accurate reflections (raytraced)

• Observation

• Train to discern subtleties

• Photo reference

• Digital Doubles

To summarize our journey, I would like to get back to our vision.

We have shown how we followed the ground truth, avoiding typical real-time shortcuts, and
investing in raytracing and accurate lighting.

We have shown how we pursued consistency in the materials through a new expressive BRDF
and Realis, and also in lighting by allowing for accurate shadows and reflections during
gameplay.

Finally, we shown how we learnt from the real world through observation, and used that as
the true ground truth for us to follow.

Advances in Real-Time Rendering in Games course, SIGGRAPH 2023335

THANK YOU

Special thanks to Glen Schofield & Natasha Tatarchuk

Special thanks to Sony, AMD & Microsoft

Andy Yelland

Atsushi Seo

Brandon Ehle

Chan Sarinyamas

Chris Stone

Demetrius Leal

Eddy Toomey

Edu Sanchez

Glauco Longhi

Hampus Siversson

Jay Ryness

Jonathan Hudgins

John Lee

Jon Robins

Jorge Segura

Kim Libreri

Luke Iwanski

Marcin Gollent

Maria Gavara

Mark James

Nora Falcon

Scott Defreitas

Stacey Hirata

Steve Papoutsis

Bernat Munoz Garcia

Tobias Fast

John Hartwig

Ameer Jalil

Jonas Gustavsson

Keri Taylor

Francois Guthmann

Pierre-Yves Boers

Sebastien Vince

AMD

Pavel Martishevsky

Phillip Profitt

Jack Elliot

Jordan Saunders

Cole Brooking

Troy Smith

Nico May

James Standard

Adam Miles

David Cook

Microsoft

That concludes our talk.

Thank you for your attention.

If we have some time left, we’ll be happy to answer any questions that you may have.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: OUR VISION
	Slide 11: OUR VISION
	Slide 12: OUR VISION
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Eye Reflection
	Slide 37
	Slide 38: What causes the Sparkle of the eye?
	Slide 39
	Slide 40: Thin Film Interference
	Slide 41
	Slide 42: PBR vs. Reality
	Slide 43: Working with robust references
	Slide 44: IMPLICT VS EXPLICIT BRDF BEHAVIOUR
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: BRDF Slice
	Slide 53: BRDF Slice
	Slide 54: BRDF Slice
	Slide 55: BRDF Slice
	Slide 56: BRDF Slice
	Slide 57: MERL Database
	Slide 58: MERL Database
	Slide 59: Merl Database CLASSIFICATION
	Slide 60: Looking for Patterns
	Slide 61: BRDF EXPRESIVENESS
	Slide 62: BRDF EXPRESIVENESS
	Slide 63: BRDF EXPRESIVENESS
	Slide 64: BRDF EXPRESIVENESS
	Slide 65
	Slide 66
	Slide 67: Callisto BRDF: DEsign Principles
	Slide 68: Callisto BRDF
	Slide 69: Callisto BRDF: diffuse fresnel
	Slide 70: Callisto BRDF: diffuse fresnel
	Slide 71: Callisto BRDF: diffuse fresnel
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: Callisto BRDF: Retroreflection
	Slide 77: Callisto BRDF: Retroreflection
	Slide 78: Callisto BRDF: Retroreflection
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: Callisto BRDF: FRESNEL AND RETROREFLECTION
	Slide 86: Callisto BRDF: Smooth terminator
	Slide 87: Callisto BRDF: Smooth Terminator
	Slide 88
	Slide 89
	Slide 90: Callisto BRDF: Smooth terminator
	Slide 91
	Slide 92: SPECULAR Fresnel Falloff
	Slide 93
	Slide 94
	Slide 95: Callisto BRDF: SPECULAR Fresnel Falloff
	Slide 96
	Slide 97
	Slide 98: Callisto BRDF Parameters
	Slide 99
	Slide 100: Callisto BRDF WORKFLOW
	Slide 101: Callisto BRDF WORKFLOW
	Slide 102: Callisto BRDF WORKFLOW
	Slide 103: Callisto BRDF WORKFLOW
	Slide 104: Callisto BRDF WORKFLOW
	Slide 105: Callisto BRDF WORKFLOW
	Slide 106: Callisto BRDF Slice Selection
	Slide 107: Callisto BRDF Slice Selection
	Slide 108: Callisto BRDF Slice Selection
	Slide 109: Callisto BRDF Slice Selection
	Slide 110: Callisto BRDF Slice Selection
	Slide 111: Callisto BRDF Slice Selection
	Slide 112: CALLISTO BRDF ON THE Prisoner Suit
	Slide 113: CALLISTO BRDF ON THE Prisoner Suit
	Slide 114: CALLISTO BRDF ON THE Prisoner Suit
	Slide 115: DUAL NORMAL
	Slide 116
	Slide 117: Problem: LIGHTING AND Mipmapping
	Slide 118: SPECULAR Antialiasing
	Slide 119: SPECULAR Antialiasing [Chan18]
	Slide 120: SPECULAR Antialiasing [CHAN18] Results
	Slide 121
	Slide 122: Diffuse Antialiasing
	Slide 123
	Slide 124
	Slide 125: Functional Approximation: Proxima BRDF
	Slide 126
	Slide 127
	Slide 128: Proxima BRDF
	Slide 129
	Slide 130
	Slide 131: Callisto BRDF + Proxima BRDF
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139: Polynomial Texture Maps
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145: LIGHTING CONSISTENCY GOALS
	Slide 146: LIGHTING CONSISTENCY GOALS
	Slide 147: LIGHTING CONSISTENCY GOALS
	Slide 148
	Slide 149
	Slide 150: RAYTRACED SHADOWS CONSISTENCY
	Slide 151: RAYTRACED REFLECTIONS CONSISTENCY
	Slide 152: GROUND-TRUTH GLOSSY REFRACTIONs
	Slide 153: GROUND-TRUTH GLOSSY REFRACTIONs
	Slide 154: GROUND-TRUTH GLOSSY REFRACTIONs
	Slide 155: LIGHTING CONSISTENCY GOALS
	Slide 156: The problem: Corridors
	Slide 157: The problem: Corridors
	Slide 158: HULL-BASED LIGHT CULLING
	Slide 159: HULL-BASED LIGHT CULLING
	Slide 160
	Slide 161: Exposure Zone System
	Slide 162
	Slide 163: Light rig
	Slide 164
	Slide 165: Bloom DIGITAL DOUBLE
	Slide 166: RIVER Digital double
	Slide 167: Blood DIGITAL DOUBLE
	Slide 168: OUR Blood color STUDY
	Slide 169: OUR Blood color STUDY
	Slide 170: PHOTOREALISM THROUGH TRADITIONAL VFX
	Slide 171: Blood studies
	Slide 172: Blood studies
	Slide 173: Blood studies
	Slide 174: Blood studies
	Slide 175: Blood SPATTERS
	Slide 176: Blood SPATTERS
	Slide 177: Blood studies
	Slide 178: Blood studies
	Slide 179: BRAIN DRIPS
	Slide 180
	Slide 181: DEVELOPMENT METHODOLOGY
	Slide 182
	Slide 183
	Slide 184: REALIS
	Slide 185
	Slide 186
	Slide 187: REALIS
	Slide 188: REALIS
	Slide 189: REALIS
	Slide 190
	Slide 191: REALIS
	Slide 192: REALIS
	Slide 193: REALIS
	Slide 194: REALIS
	Slide 195: REALIS
	Slide 196: REALIS
	Slide 197: REALIS
	Slide 198: REALIS
	Slide 199: REALIS
	Slide 200: REALIS
	Slide 201: REALIS
	Slide 202: REALIS
	Slide 203: REALIS
	Slide 204: REALIS
	Slide 205: REALIS
	Slide 206: REALIS
	Slide 207: REALIS
	Slide 208: REALIS
	Slide 209
	Slide 210
	Slide 211: RAYTRACED SHADOWS
	Slide 212
	Slide 213: RAYTRACED SHADOWS
	Slide 214: RAYTRACED SHADOWS
	Slide 215: RAYTRACED SHADOWS
	Slide 216: RAYTRACED SHADOWS
	Slide 217: RAYTRACED SHADOWS
	Slide 218: RAYTRACED SHADOWS
	Slide 219: RAYTRACED SHADOWS
	Slide 220: RAYTRACED SHADOWS
	Slide 221: RAYTRACED SHADOWS
	Slide 222: RAYTRACED SHADOWS
	Slide 223: RAYTRACED SHADOWS
	Slide 224: RAYTRACED SHADOWS
	Slide 225: RAYTRACED SHADOWS
	Slide 226: RAYTRACED SHADOWS
	Slide 227: RAYTRACED SHADOWS
	Slide 228: RAYTRACED SHADOWS
	Slide 229: RAYTRACED SHADOWS
	Slide 230: RAYTRACED SHADOWS
	Slide 231: RAYTRACED SHADOWS
	Slide 232: RAYTRACED SHADOWS
	Slide 233: RAYTRACED SHADOWS
	Slide 234: RAYTRACED SHADOWS
	Slide 235: RAYTRACED SHADOWS
	Slide 236: RAYTRACED SHADOWS
	Slide 237: RAYTRACED SHADOWS
	Slide 238: RAYTRACED SHADOWS
	Slide 239: RAYTRACED SHADOWS
	Slide 240: RAYTRACED SHADOWS
	Slide 241: RAYTRACED SHADOWS
	Slide 242: RAYTRACED SHADOWS
	Slide 243
	Slide 244: RAYTRACED SHADOWS
	Slide 245: RAYTRACED SHADOWS
	Slide 246: RAYTRACED SHADOWS
	Slide 247: RAYTRACED SHADOWS
	Slide 248: RAYTRACED SHADOWS
	Slide 249: RAYTRACED SHADOWS
	Slide 250: RAYTRACED SHADOWS
	Slide 251: RAYTRACED SHADOWS
	Slide 252: RAYTRACED SHADOWS
	Slide 253: RAYTRACED SHADOWS
	Slide 254: RAYTRACED SHADOWS
	Slide 255
	Slide 256: RAYTRACED SHADOWS
	Slide 257: RAYTRACED SHADOWS
	Slide 258: RAYTRACED SHADOWS
	Slide 259: RAYTRACED SHADOWS
	Slide 260: RAYTRACED SHADOWS
	Slide 261: RAYTRACED SHADOWS
	Slide 262: RAYTRACED SHADOWS
	Slide 263: RAYTRACED SHADOWS
	Slide 264: RAYTRACED SHADOWS
	Slide 265: RAYTRACED SHADOWS
	Slide 266: RAYTRACED SHADOWS
	Slide 267: RAYTRACED SHADOWS
	Slide 268
	Slide 269
	Slide 270: RAYTRACED REFLECTIONS
	Slide 271: RAYTRACED REFLECTIONS
	Slide 272: RAYTRACED REFLECTIONS
	Slide 273: RAYTRACED REFLECTIONS
	Slide 274: RAYTRACED REFLECTIONS
	Slide 275: RAYTRACED REFLECTIONS
	Slide 276
	Slide 277: RAYTRACED REFLECTIONS
	Slide 278: RAYTRACED REFLECTIONS
	Slide 279: RAYTRACED REFLECTIONS
	Slide 280: RAYTRACED REFLECTIONS
	Slide 281: RAYTRACED REFLECTIONS
	Slide 282: RAYTRACED REFLECTIONS
	Slide 283: RAYTRACED REFLECTIONS
	Slide 284: RAYTRACED REFLECTIONS
	Slide 285: RAYTRACED REFLECTIONS
	Slide 286: RAYTRACED REFLECTIONS
	Slide 287: RAYTRACED REFLECTIONS
	Slide 288: RAYTRACED REFLECTIONS
	Slide 289: RAYTRACED REFLECTIONS
	Slide 290
	Slide 291
	Slide 292: RAYTRACED REFLECTIONS
	Slide 293: RAYTRACED REFLECTIONS
	Slide 294: RAYTRACED REFLECTIONS
	Slide 295: RAYTRACED REFLECTIONS
	Slide 296: RAYTRACED REFLECTIONS
	Slide 297: RAYTRACED REFLECTIONS
	Slide 298: RAYTRACED REFLECTIONS
	Slide 299: RAYTRACED REFLECTIONS
	Slide 300: RAYTRACED REFLECTIONS
	Slide 301: RAYTRACED REFLECTIONS
	Slide 302: RAYTRACED REFLECTIONS
	Slide 303: RAYTRACED REFLECTIONS
	Slide 304: RAYTRACED REFLECTIONS
	Slide 305: RAYTRACED REFLECTIONS
	Slide 306: RAYTRACED REFLECTIONS
	Slide 307: RAYTRACED REFLECTIONS
	Slide 308: RAYTRACED REFLECTIONS
	Slide 309: RAYTRACED REFLECTIONS
	Slide 310: RAYTRACED REFLECTIONS
	Slide 311: RAYTRACED REFLECTIONS
	Slide 312: RAYTRACED REFLECTIONS
	Slide 313: RAYTRACED REFLECTIONS
	Slide 314: RAYTRACED REFLECTIONS
	Slide 315: RAYTRACED REFLECTIONS
	Slide 316: RAYTRACED REFLECTIONS
	Slide 317: RAYTRACED REFLECTIONS
	Slide 318: RAYTRACED REFLECTIONS
	Slide 319: RAYTRACED REFLECTIONS
	Slide 320
	Slide 321
	Slide 322: PLATFORM OPTIMIZATIONS
	Slide 323: PLATFORM OPTIMIZATIONS
	Slide 324: PLATFORM OPTIMIZATIONS
	Slide 325: PLATFORM OPTIMIZATIONS
	Slide 326: PLATFORM OPTIMIZATIONS
	Slide 327: PLATFORM OPTIMIZATIONS
	Slide 328: PLATFORM OPTIMIZATIONS
	Slide 329: PLATFORM OPTIMIZATIONS
	Slide 330: PLATFORM OPTIMIZATIONS
	Slide 331: PLATFORM OPTIMIZATIONS
	Slide 332
	Slide 333: KEY TAKEAWAYS
	Slide 334: OUR VISION
	Slide 335: Thank You

