
My name is Diede (dee-duh) Apers, I’m a Rendering Engineer 
at Frostbite.

And in this presentation, I will provide an update on Global 
Illumination Based on Surfels which is being used in 
several game productions powered by Frostbite.
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The agenda for today covers a quick introduction to GIBS and 
the productions that are using it.

We’ll go over some improvements that we have made to our 
probe and surfel systems, as well as optimizations to our 
compute and ray tracing pipeline.

Finally, I’ll show some visual results as well as a performance 
breakdown, and there should be some time left for 
questions after.
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Frostbite ships a lot of games, each with their own unique 
requirements. For this reason, Frostbite has several GI 
systems available depending on the game’s needs.

Flux provides high quality but fully precomputed diffuse 
global illumination while Enlighten provides partial 
dynamic updates. GiGrid is used to stream irradiance 
volumes in the form of probes for both systems.

However, using these systems can be very costly to author 
during production. We are also limited in capability in the 
cases of; large and open worlds, dynamic environments 
with destruction, and procedural or user generated 
content.
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We introduced Global Illumination Based on Surfels as an 
option to lift these restrictions.
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All inputs to our GI system are fully dynamic, we can move 
meshes, change materials and add lights at runtime. No 
authoring is required to run GIBS initially, of course 
authoring can still be done to improve quality and/or 
performance where needed.

Surfel GI started as a research projected at EA SEED, and we 
have been collaborating when them ever since we 
introduced GIBS to Frostbite, which we presented at the 
Advances in 2021.
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We gave a thorough description of the entire GIBS system 
then, so I will not be going into the details already 
described there. We showed that the system is fully 
functional and dynamic and runs on on the current 
generation consoles. We introduced two separate 
systems; there's the surfels which decouple the ray tracing 
rate from the shading rate, which is quite important for 
performance. We also introduced probes used to sample 
irradiance at arbitrary locations in the scene. This allows 
sampling of indirect lighting for draws that are not going 
through our deferred lighting pipeline,  such as 
transparent objects.

However, back then we used content from a game that had 
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already been released, and as such GIBS had not yet 
shipped. One of the problems we faced was performance 
with a total average gpu time for GIBS of 6-7ms. Frostbite 
games usually ship at 60fps and don't have 6ms to spare 
generally.
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In these past 3 years we did not introduce any new systems. 
We still use ray tracing, surfels and probes. Instead, we've 
done incremental improvements to our surfels and probes 
systems, as well as our infrastructure for ray tracing. A 
significant number of optimizations went in. Most of these 
optimizations have had no impact on the quality of the 
indirect light itself, but there are a few which introduce 
bias to allow for fewer ray intersection tests. I'll provide 
numbers on these later and talk about those optimizations 
separately.

GIBS is now used in multiple game productions, one of which 
is a stadium sports title and has recently shipped, as well 
as an open world action game which is still in production.
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Our first shipping release is College Football 25, which came 
out earlier this month. They ship exclusively on current 
generation consoles, which support hardware accelerated 
ray tracing. The game allows you to play in over 130 
stadiums, and each of those can run at a different time of 
day. CFB25 fully relies on GIBS for all indirect diffuse 
lighting.
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The second production is Skate, which is still in development. 
They intend to target a large range of devices, from 
mobile up to consoles and PC. On lower-end devices they 
use Enlighten in combination with GiGrid for their indirect 
diffuse lighting. However, GIBS allows them to scale up 
and stay competitive on high-end devices, as well as 
provide consistency in lighting with user generated 
content.
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Here's a quick overview of the system. Every frame, GIBS 
takes in our GBuffer, as seen on the top left of the 
diagram, to spawn surfels. We also build a Top-Level 
Acceleration Structure (TLAS) that can be used for ray 
tracing to estimate indirect lighting.

Both our Surfel and Probe systems use ray tracing to update 
their irradiance estimates each frame. We update our 
persistent surfels, which have been spawned in previous 
frames, as well as any newly spawned frames to make 
sure they get a good initial estimate.

And finally, we apply both the surfel and the probe lighting 
(for certain probe lit objects) to the screen by producing 
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an indirect light buffer that we plug into our Deferred 
Tiled Lighting system.

Lighting calculations that don't go through our deferred 
pipeline will simply sample the probe's clipmap volume.
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Our clipmap probe system has been rehauled, where we 
used to do hardware trilinear interpolation of Spherical 
Harmonic coefficients, we decided to use an octahedral 
representation and software interpolation of the probes, 
very similar to DDGI. However, since we already store and 
trace surfels, we are restricted on memory and ray 
budgets, especially on console.

In this image you can see the crowd in CFB which samples 
our clipmap probes. Without the variance depth 
attenuation, we get dark probes leaking through the 
stands from below. And this is what it looks like with 
attenuation enabled.
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When it comes to storage for our probes, we found that we 
need up to 3 clips to have coverage everywhere in the 
level, and to have enough density in the clip, we need 
about 100k probes, which is what we target as a 
maximum. Any gameteam can tweak the number of levels 
and the density, but our maximum target is 100k.

To match the memory budget we have for our Surfel system, 
we need to fit our probes in100mb storage, which means 
we have about 1kb available per probe. Note that we have 
about 4 bytes per component for both irradiance and 
depth. If we had just one atlas we could fit 16x16 which 
includes the 2x2 border that is required for bilinear 
filtering.
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However, we need an atlas for both irradiance and depth, so 
we could use a 12x12 and 10x10 atlas but we found that 
the depth resolution is more significant.

For these reasons we settled on a 14x14 resolution for the 
variance depth, including the 2x2 border. And a 6x6 
resolution for irradiance, this gives us 4x4 with 16 
directions.

The remaining 96 bytes we have are used for filtering data 
and other misc. data.
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When it comes to our ray budget, we have 100k rays that we 
can dispatch, which means we can only afford 1 ray per 
probe per frame. However, since we do inline convolution 
of our octahedral irradiance, we need at least 16 rays for 
this to work properly. 

This leaves us with having to amortize updates over the total 
probe count, which comes down to about 6k probes we 
can raytrace each frame.

We achieve this by considering one clipmap level per frame, 
and assigning priorities per probe therein. Probes that 
have updated locations, for example when the player 
moves, get higher prio. Probes that do not see any nearby 
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geometry, get lower priority. Finally, we simply update the 
6k probes with highest priority which allows us to stay 
within our ray budget.

This image comparison shows the full set of probes versus 
the prioritized probes per clipmap level.

Doing so introduces some update latency, so, in order to
improve the responsiveness when lighting changes, we 
drive the probes hysteresis (blend factor with historical 
data) using the same Multi-Scale Mean Estimator we have 
for our surfels. Note that we have 1 set of statistics per 
probe, which means we lack directional information, but 
this works out fine for us.
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We did not overhaul our surfel system, but we did run into 
some interesting problems I would like to cover. 

We had visual inconsistencies as well as random 
performance degradations which can both be attributed 
to the inconsistency of the normal tangent basis between 
our surfels and the actual surface they represent. 

On this row of images you can see a tree that has a lot of 
variation in both depth and shading normals, which causes 
our coverage heuristic to excessively spawn surfels, 
resulting in high densities in our acceleration grid. We 
tried reconstructing the geometric normal from depth, 
but in cases where the depth plane cannot be faithfully 
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reconstructed, we would either end up spawning a surfel 
with a bogus normal, or reject spawning surfels at all. 
Since neither for these approaches worked out well 
enough, we decided to export the vertex interpolated 
normal during gbuffer laydown.

As you can see, this results in fewer surfels being spawned 
while maintaining the same coverage as well as fewer 
high-density entries in our acceleration grid.
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When tracing a ray from a surfel origin, we need to add a 
small bias (or offset) to avoid intersection with the 
geometry the surfel spawned upon due to limited 
numerical precision.

In this underground garage, some surfels have positions that 
are very close to the ceiling. Our previous ray offset 
behaved too conservatively and allowed some rays to 
escape to the outside, which leads to light leaking, as you 
can see in this image.

We realized that determining this numerical error bound is 
non-trivial since we reconstruct surfel positions using the 
view-matrix and depth-buffer which are only known 
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during the frame in which each surfel is spawned.

Since the depth-buffer is not linear with respect to world-
space units, we end up with a reconstruction error that is 
unique per surfel. Therefore, we need store this error per 
surfel, and as such avoid skipping too much space when 
tracing rays from their surfel origin, as you can see in this 
fixed version.
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The last issue I'd like to discuss shows up when surfel 
coverage is missing. This is a bit of an extreme example, 
where the camera moved and discovered new surfaces on 
the left side on the image. Since this image represents the 
first few frames of discovering these surfaces, we have 
only spawned a select number of surfels since we 
amortize this process over multiple frames. 

Previously we already addressed this issue by having our 
surfel grid provide an average fallback per gridcell, but this 
still produces missing irradiance for grid cells that don’t 
have a surfel yet either. Instead, we now rely on the 
probes to give us an initial estimate when surfel coverage 
is low. This works well since probes have coverage 

17



effectively everywhere, and we don’t need extra storage 
or gpu cycles for a fallback anymore.
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When it comes to performance, we are mostly concerned 
with compute and hardware rt workloads since GIBS is 
GPU driven. We dispatch over 50 compute shaders each 
frame, and only 6 of those are issuing ray intersections. 
While RT dispatches are certainly spending most of our 
GPU cycles, we did spend a significant amount of time 
making sure all our compute shaders performed well on 
RDNA, which is the gpu architecture used on our target 
console platforms.

One such optimization that saves us gpu time in several 
dispatches each frame is scalarization of our surfel 
iteration loops. Evaluating surfels involves loading a lot of 
structured data, for which we get a significant reduction in 
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data traffic by utilizing the scalar memory path where 
possible.

We also need to bin surfels into our 3d acceleration structure 
twice per frame, once for the transformed persistent 
surfels, and once more to include any newly spawned 
surfels.

And finally, we classify screen tiles to determine which texels 
need surfel lighting and which ones need probe lighting, 
allowing us to only run the respective shader code.
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When it comes to performance for ray tracing specifically, we 
start by looking at the quality of our acceleration 
structures. We added debug tools and visualizations to 
help diagnose cases that are particularly bad for the 
efficiency of ray traversal. On the left you can see a debug 
view of the inside of a stadium where the heatmap 
encodes the relative cost of ray traversal per pixel, 
observe that the cost of evaluating intersections on the 
ceiling is more costly compared to other regions in the 
stadium. To help pinpoint the exact asset that causes this 
degradation, we have two additional viewmodes that 
show the estimated cost per triangle and per mesh.

With the ability the diagnose issues and validate changes, we 
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introduced several optimization stages to our offline mesh 
pipeline. We can automatically split large geometry and 
merge multiple small geometries together to improve the 
quality of our ray tracing acceleration structures. Similarly, 
mesh data can be rotated to improve alignment with the 
local axes, further improving BLAS quality.

Some platforms allow us to precompute the Bottom Level 
Acceleration Structure offline, we observe a 15% 
improvement to ray traversal when using this for static 
geometry.

Similarly, rebraiding can be used to improve ray traversal 
further, we compute a set of heuristics for each mesh 
offline, and based on a adjustable threshold we allow 
additional, or fewer instances of those meshes to be 
rebraided. Doing this selectively adds another 5% 
improvement on top.
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Ok, that said, important to note is that for the sake of 
estimating irradiance, we only consider opaque, and non 
alpha-tested geometry in our acceleration structures for 
ray tracing. Lastly, we use a simplified diffuse albedo 
instead of evaluating the entire material graph for each 
primary ray intersection.

To give you an idea, in this image we can see what the 
rasterizer produces while the view of the ray tracer looks 
like this. As you can see, not all geometry is accounted for, 
for example, the vegetation is all missing from the ray 
tracing view, and materials are limited to just diffuse 
albedo, simplified down to one color per mesh-material 
subset.
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Note that this workflow is still manual, but we have 
developed a system to help automate this which we 
intend to use in the future.
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Next, we look at ways to improve the efficiency when 
traversing rays. We moved our ray tracing calls to 
compute and use inline tracing much like dxr 1.1. Each ray 
tracing dispatch uses indirect arguments which allows us 
to compact our workload while allowing to saturate the 
gpu’s resources. The async queue may be used for tracing 
when the frame allows for overlap with a geometry stage.

We always overlap our BLAS and TLAS building in async with 
our gbuffer laydown, after which we can spawn surfels 
and trace them immediately.

All this considered, it is still a challenge to keep the gpu 
utilization high for the entire duration of our ray tracing 
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workloads.
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When it comes to ray traversal specifically, we looked into
ways of reducing the number of iterations that need to be 
evaluated for each of our two distinct ray types. We have 
primary rays that originate from a surfel or probe center 
and are traced into the scene. If no geometry is 
intersected, we simply sample our environment lighting.
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Otherwise, if we did find an intersection along our ray, we 
find the closest hit and the following 3 attributes; there's 
the distance to the hit, the geometric normal of the 
intersected triangle (which we get from from an intrinsic 
on console) and the associated material id used to later 
look up the simplified diffuse albedo.
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The problem with these primary rays is that their length is 
technically infinite. We limit the length to 1000 meters, 
but we still don’t know the amount of ray intersections 
that will have to be evaluated for any of the rays in our 
list. Even when binning based on ray properties, we do not 
know which rays will be most expensive and thus cannot 
make sure to dispatch them early. This results in bubbles 
of execution by single rays causing their wavefront to be 
long-running while all other lanes might be inactive 
meanwhile, resulting in poor utilization of the hardware 
units.

For these reasons, we allow to enforce an upper bound on 
the number of iterations by setting a conservative 
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maximum as well as shortening our ray length to e.g. 20 
meters. Doing so, however, requires us to rely on a 
fallback to provide an estimate of the radiance that our 
ray carries.
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We actually have an irradiance volume available for us to 
fallback onto when tracing from surfels. When we trace a 
short ray and reach the endpoint without finding an 
intersection, we can lookup the nearest clipmap probe 
and sample its irradiance using the direction of our ray.

Doing this is certainly biased since our probes do not have 
infinite resolution (and are storing irradiance at this 
point), but we actually get a significant improvement to 
our convergence rate on top of limiting the number of ray 
intersection we need to evaluate.

This can be observed in the video, where the left side shows 
surfels tracing with a 1000-meter ray length and thus no 
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fallback, compared to just 20 meters with fallback on the 
right side.

The inside of this building is particularly challenging for 
convergence since most of the indirect diffuse lighting is 
coming from the outside.  Our clipmap volume already has 
coverage inside of this building, long before any surfels 
are spawned.
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For secondary rays, which happen when such primary ray did 
not miss and instead found the closest surface. We a trace 
a ray from that point to estimate the direct light 
contribution. To do this efficiently, we go over N number 
of candidates using reservoir sampling, and we select one 
light sample to shoot a shadow ray towards. Instead of 
reducing the number of iterations for these secondary 
“shadow” rays, we instead look to reduce numbers of rays 
need to be traced. When the selected light source has a 
shadow map available, we can tap that instead of tracing a 
ray, resulting in a significant reduction of ray intersection 
requests.
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Here’s a set of screenshots captured in a stadium in College 
Football 25. This view shows the indirect diffuse lighting 
produced by GIBS, dynamically during runtime.
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These are the probe locals which are used to sample indirect 
diffuse lighting on the crowd as well as the players on the 
pitch.
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Surfels are used to provide indirect diffuse lighting on all 
static geometry such as the stands and stadium geometry.
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Direct diffuse lighting goes ontop.
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And this is the final image.

33



And this shows the same term in Skate
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Probes here are generally not used much directly, and
behave more as a cache for surfel rays and surfel coverage 
fallback.
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These are the surfel locations
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Direct diffuse ontop
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And the final image.
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When it comes to performance, we have a camera 
flythrough on Skate, which we ran on XBSX at 1440p 
resolution without any upscaling. We target 60fps and 
allow for a maximum of 200k rays per frame. During this 
run we have about 100k surfels alive at any one frame, we 
constantly spawn and recycle surfels. When it comes to 
probes, we used 3 clipmaps with reduced density in 
height, totaling around 25k probes.

This graph shows a portion of this flythrough with some of 
our optimization disabled as a baseline. We spend about 
0.5ms on compute work that is not directly related to ray 
tracing. Another 0.5ms is spent each frame to apply all 
surfels to the main view at quarter rate and upscaling to 
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1440p. Each frame we update a portion of our probes, 
which takes 0.7ms with ray tracing inclusive. And finally, 
the biggest cost is related to spawning and raytracing 
surfels at 1.64ms. Surfel timings tend to vary a lot 
depending on how many surfels are active, and how many 
new surfels are spawned in any given frame.

All of GIBS’ gpu time combined takes about 3.2ms on 
average in this run, with the highest mark hitting 4ms in 
this run. 

Note that this is already a significant improvement over the 
6ms average we had in 2021, although those timing were 
on PS5 and in a different game.
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Looking at some of the optimizations I talked about, this 
table shows our baseline and the cumulative 
improvement of each of our additional optimizations. 

Offline BLAS and selective rebraiding shave off 0.35ms 
together. Adding our ray limiting and shadowmap 
sampling shaves off another 0.33ms on top.

This brings us down to a total average gpu time of 2.5ms, 
without going over the 3ms mark during the entire run. 

Looking at the graph again, we see that Misc. and Apply are 
unaffected by these optimizations, but Probes spend 34% 
less time tracing due to the shadowmap sampling, and 

40



surfels about 60% less due to the ray shortening and 
fallback to probes. Notice also that there is much less 
variability in the surfel duration across frames.
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Some notes about performance in CFB25 specifically; due to 
the nature of their game, ray tracing instances have a lot 
of overlap and we generally do not have any lower-detail 
meshes available to fallback on to improve ray traversal 
efficiency. This means that every ray we trace is 
expensive.

CFB runs at 60 frames per second during gameplay, and 
30fps outside of gameplay. GIBS is fully active and 
dynamic during 30hz mode and fits into budget snugly. 
However, during 60hz we only have a 2ms budget which 
means we need to compromise here.

The CFB team was able to play into some of their game’s 
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constraints for this, were all stadium geometry and 
lighting is determined once during level load. This allowed 
them to expend more surfel and ray budget during the 
30hz preload sequence and halt any irradiance updates 
when going into 60hz gameplay. During gameplay, GIBS is 
in a frozen state and we only apply the surfel and probe 
lighting to the screen each frame, which allows us to stay 
under 2ms of gpu time.
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Some things we already had or tried out the passed 3 years 
did not end up working out. 

In our 2021 talk we showed how ray binning improved our 
ray traversal performance. This is no longer the case due 
to having fewer rays with less redundancy as well as more 
optimized traversal. Worth noting though, is that running 
a compaction pass based on ray properties (e.g. needs 
shadow ray), is still important to keep hardware utilization 
high.

Early on, when overhauling our probe system, we tried 
running with just 1 ray per probe per frame by 
accumulating the intermediate radiance in a “backbuffer” 
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atlas and later convolve into the “frontbuffer” atlas. 
However, we ultimately settled for inline convolution 
mostly due to the added memory cost of double-buffering 
of the depth atlas and the overhead copying probe data 
around every frame.

We also tried different approaches to apply our surfels to the 
screen, since this is a constant cost each frame. The 
complexity of doing so depends on the number of surfels 
as well as the screen resolution. One experiment we 
ended up discarding was a stochastic approach where 
we’d only evaluate a fixed number of surfels per texel 
using restir. However, in the end, the naïve approach is 
still faster at halfres (quarter rate) with a cheap spatial 
upscale, especially when using scalarized loads for all 
surfel data to reduce bandwidth.
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To conclude, we have shown that GIBS allows for fully 
dynamic diffuse global illumination. In Skate this allows 
higher fidelity lighting and consistency with user 
generated content. On College Football 25, GIBS saves a 
lot of time authoring, especially in their combinatorial 
explosion of many stadiums with multiple times of day.

Previously, GIBS was considered a 30hz feature on console, 
but after all our optimizations we managed to unlock 
60hz, fully dynamic in Skate by staying under 4ms, and 
while CFB has only a 2ms budget, we can deactivate parts 
of the system during gameplay.

GIBS is fully featured on our lowest spec platforms by 
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keeping our surfel and probe system under 100mb and 
100k rays per frame. Specifically, on XBSS we fit within 
500mb for the entirety of GIBS including all raytracing 
resources.
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Thank you Natalya for hosting us a second time to talk about 
GIBS. Peter-Pike for reviewing our slides and providing 
valuable feedback.

This work involved a lot of talented engineers working on ray 
tracing across Frostbite and SEED. Thank you to our 
partners at Skate, as well as College Football, and many 
other individuals across EA Sports Rendering and Lighting.
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If you are interested in learning more about College Football 
25’s production, which includes details on their use of 
GIBS, make sure to check out the talk they gave here at 
SIGGRAPH 2024.
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That’s the end of my talk, thank you very much for listening, 
I’m happy to answer any of your questions regarding GIBS.
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