
My name is Diede (dee-duh) Apers, I’m a Rendering Engineer
at Frostbite.

And in this presentation, I will provide an update on Global
Illumination Based on Surfels which is being used in
several game productions powered by Frostbite.

1

The agenda for today covers a quick introduction to GIBS and
the productions that are using it.

We’ll go over some improvements that we have made to our
probe and surfel systems, as well as optimizations to our
compute and ray tracing pipeline.

Finally, I’ll show some visual results as well as a performance
breakdown, and there should be some time left for
questions after.

2

3

Frostbite ships a lot of games, each with their own unique
requirements. For this reason, Frostbite has several GI
systems available depending on the game’s needs.

Flux provides high quality but fully precomputed diffuse
global illumination while Enlighten provides partial
dynamic updates. GiGrid is used to stream irradiance
volumes in the form of probes for both systems.

However, using these systems can be very costly to author
during production. We are also limited in capability in the
cases of; large and open worlds, dynamic environments
with destruction, and procedural or user generated
content.

4

We introduced Global Illumination Based on Surfels as an
option to lift these restrictions.

4

All inputs to our GI system are fully dynamic, we can move
meshes, change materials and add lights at runtime. No
authoring is required to run GIBS initially, of course
authoring can still be done to improve quality and/or
performance where needed.

Surfel GI started as a research projected at EA SEED, and we
have been collaborating when them ever since we
introduced GIBS to Frostbite, which we presented at the
Advances in 2021.

5

We gave a thorough description of the entire GIBS system
then, so I will not be going into the details already
described there. We showed that the system is fully
functional and dynamic and runs on on the current
generation consoles. We introduced two separate
systems; there's the surfels which decouple the ray tracing
rate from the shading rate, which is quite important for
performance. We also introduced probes used to sample
irradiance at arbitrary locations in the scene. This allows
sampling of indirect lighting for draws that are not going
through our deferred lighting pipeline, such as
transparent objects.

However, back then we used content from a game that had

6

already been released, and as such GIBS had not yet
shipped. One of the problems we faced was performance
with a total average gpu time for GIBS of 6-7ms. Frostbite
games usually ship at 60fps and don't have 6ms to spare
generally.

6

In these past 3 years we did not introduce any new systems.
We still use ray tracing, surfels and probes. Instead, we've
done incremental improvements to our surfels and probes
systems, as well as our infrastructure for ray tracing. A
significant number of optimizations went in. Most of these
optimizations have had no impact on the quality of the
indirect light itself, but there are a few which introduce
bias to allow for fewer ray intersection tests. I'll provide
numbers on these later and talk about those optimizations
separately.

GIBS is now used in multiple game productions, one of which
is a stadium sports title and has recently shipped, as well
as an open world action game which is still in production.

7

Our first shipping release is College Football 25, which came
out earlier this month. They ship exclusively on current
generation consoles, which support hardware accelerated
ray tracing. The game allows you to play in over 130
stadiums, and each of those can run at a different time of
day. CFB25 fully relies on GIBS for all indirect diffuse
lighting.

8

The second production is Skate, which is still in development.
They intend to target a large range of devices, from
mobile up to consoles and PC. On lower-end devices they
use Enlighten in combination with GiGrid for their indirect
diffuse lighting. However, GIBS allows them to scale up
and stay competitive on high-end devices, as well as
provide consistency in lighting with user generated
content.

9

Here's a quick overview of the system. Every frame, GIBS
takes in our GBuffer, as seen on the top left of the
diagram, to spawn surfels. We also build a Top-Level
Acceleration Structure (TLAS) that can be used for ray
tracing to estimate indirect lighting.

Both our Surfel and Probe systems use ray tracing to update
their irradiance estimates each frame. We update our
persistent surfels, which have been spawned in previous
frames, as well as any newly spawned frames to make
sure they get a good initial estimate.

And finally, we apply both the surfel and the probe lighting
(for certain probe lit objects) to the screen by producing

10

an indirect light buffer that we plug into our Deferred
Tiled Lighting system.

Lighting calculations that don't go through our deferred
pipeline will simply sample the probe's clipmap volume.

10

11

Our clipmap probe system has been rehauled, where we
used to do hardware trilinear interpolation of Spherical
Harmonic coefficients, we decided to use an octahedral
representation and software interpolation of the probes,
very similar to DDGI. However, since we already store and
trace surfels, we are restricted on memory and ray
budgets, especially on console.

In this image you can see the crowd in CFB which samples
our clipmap probes. Without the variance depth
attenuation, we get dark probes leaking through the
stands from below. And this is what it looks like with
attenuation enabled.

12

When it comes to storage for our probes, we found that we
need up to 3 clips to have coverage everywhere in the
level, and to have enough density in the clip, we need
about 100k probes, which is what we target as a
maximum. Any gameteam can tweak the number of levels
and the density, but our maximum target is 100k.

To match the memory budget we have for our Surfel system,
we need to fit our probes in100mb storage, which means
we have about 1kb available per probe. Note that we have
about 4 bytes per component for both irradiance and
depth. If we had just one atlas we could fit 16x16 which
includes the 2x2 border that is required for bilinear
filtering.

13

However, we need an atlas for both irradiance and depth, so
we could use a 12x12 and 10x10 atlas but we found that
the depth resolution is more significant.

For these reasons we settled on a 14x14 resolution for the
variance depth, including the 2x2 border. And a 6x6
resolution for irradiance, this gives us 4x4 with 16
directions.

The remaining 96 bytes we have are used for filtering data
and other misc. data.

13

When it comes to our ray budget, we have 100k rays that we
can dispatch, which means we can only afford 1 ray per
probe per frame. However, since we do inline convolution
of our octahedral irradiance, we need at least 16 rays for
this to work properly.

This leaves us with having to amortize updates over the total
probe count, which comes down to about 6k probes we
can raytrace each frame.

We achieve this by considering one clipmap level per frame,
and assigning priorities per probe therein. Probes that
have updated locations, for example when the player
moves, get higher prio. Probes that do not see any nearby

14

geometry, get lower priority. Finally, we simply update the
6k probes with highest priority which allows us to stay
within our ray budget.

This image comparison shows the full set of probes versus
the prioritized probes per clipmap level.

Doing so introduces some update latency, so, in order to
improve the responsiveness when lighting changes, we
drive the probes hysteresis (blend factor with historical
data) using the same Multi-Scale Mean Estimator we have
for our surfels. Note that we have 1 set of statistics per
probe, which means we lack directional information, but
this works out fine for us.

14

We did not overhaul our surfel system, but we did run into
some interesting problems I would like to cover.

We had visual inconsistencies as well as random
performance degradations which can both be attributed
to the inconsistency of the normal tangent basis between
our surfels and the actual surface they represent.

On this row of images you can see a tree that has a lot of
variation in both depth and shading normals, which causes
our coverage heuristic to excessively spawn surfels,
resulting in high densities in our acceleration grid. We
tried reconstructing the geometric normal from depth,
but in cases where the depth plane cannot be faithfully

15

reconstructed, we would either end up spawning a surfel
with a bogus normal, or reject spawning surfels at all.
Since neither for these approaches worked out well
enough, we decided to export the vertex interpolated
normal during gbuffer laydown.

As you can see, this results in fewer surfels being spawned
while maintaining the same coverage as well as fewer
high-density entries in our acceleration grid.

15

When tracing a ray from a surfel origin, we need to add a
small bias (or offset) to avoid intersection with the
geometry the surfel spawned upon due to limited
numerical precision.

In this underground garage, some surfels have positions that
are very close to the ceiling. Our previous ray offset
behaved too conservatively and allowed some rays to
escape to the outside, which leads to light leaking, as you
can see in this image.

We realized that determining this numerical error bound is
non-trivial since we reconstruct surfel positions using the
view-matrix and depth-buffer which are only known

16

during the frame in which each surfel is spawned.

Since the depth-buffer is not linear with respect to world-
space units, we end up with a reconstruction error that is
unique per surfel. Therefore, we need store this error per
surfel, and as such avoid skipping too much space when
tracing rays from their surfel origin, as you can see in this
fixed version.

16

The last issue I'd like to discuss shows up when surfel
coverage is missing. This is a bit of an extreme example,
where the camera moved and discovered new surfaces on
the left side on the image. Since this image represents the
first few frames of discovering these surfaces, we have
only spawned a select number of surfels since we
amortize this process over multiple frames.

Previously we already addressed this issue by having our
surfel grid provide an average fallback per gridcell, but this
still produces missing irradiance for grid cells that don’t
have a surfel yet either. Instead, we now rely on the
probes to give us an initial estimate when surfel coverage
is low. This works well since probes have coverage

17

effectively everywhere, and we don’t need extra storage
or gpu cycles for a fallback anymore.

17

18

When it comes to performance, we are mostly concerned
with compute and hardware rt workloads since GIBS is
GPU driven. We dispatch over 50 compute shaders each
frame, and only 6 of those are issuing ray intersections.
While RT dispatches are certainly spending most of our
GPU cycles, we did spend a significant amount of time
making sure all our compute shaders performed well on
RDNA, which is the gpu architecture used on our target
console platforms.

One such optimization that saves us gpu time in several
dispatches each frame is scalarization of our surfel
iteration loops. Evaluating surfels involves loading a lot of
structured data, for which we get a significant reduction in

19

data traffic by utilizing the scalar memory path where
possible.

We also need to bin surfels into our 3d acceleration structure
twice per frame, once for the transformed persistent
surfels, and once more to include any newly spawned
surfels.

And finally, we classify screen tiles to determine which texels
need surfel lighting and which ones need probe lighting,
allowing us to only run the respective shader code.

19

When it comes to performance for ray tracing specifically, we
start by looking at the quality of our acceleration
structures. We added debug tools and visualizations to
help diagnose cases that are particularly bad for the
efficiency of ray traversal. On the left you can see a debug
view of the inside of a stadium where the heatmap
encodes the relative cost of ray traversal per pixel,
observe that the cost of evaluating intersections on the
ceiling is more costly compared to other regions in the
stadium. To help pinpoint the exact asset that causes this
degradation, we have two additional viewmodes that
show the estimated cost per triangle and per mesh.

With the ability the diagnose issues and validate changes, we

20

introduced several optimization stages to our offline mesh
pipeline. We can automatically split large geometry and
merge multiple small geometries together to improve the
quality of our ray tracing acceleration structures. Similarly,
mesh data can be rotated to improve alignment with the
local axes, further improving BLAS quality.

Some platforms allow us to precompute the Bottom Level
Acceleration Structure offline, we observe a 15%
improvement to ray traversal when using this for static
geometry.

Similarly, rebraiding can be used to improve ray traversal
further, we compute a set of heuristics for each mesh
offline, and based on a adjustable threshold we allow
additional, or fewer instances of those meshes to be
rebraided. Doing this selectively adds another 5%
improvement on top.

20

Ok, that said, important to note is that for the sake of
estimating irradiance, we only consider opaque, and non
alpha-tested geometry in our acceleration structures for
ray tracing. Lastly, we use a simplified diffuse albedo
instead of evaluating the entire material graph for each
primary ray intersection.

To give you an idea, in this image we can see what the
rasterizer produces while the view of the ray tracer looks
like this. As you can see, not all geometry is accounted for,
for example, the vegetation is all missing from the ray
tracing view, and materials are limited to just diffuse
albedo, simplified down to one color per mesh-material
subset.

21

Note that this workflow is still manual, but we have
developed a system to help automate this which we
intend to use in the future.

21

Next, we look at ways to improve the efficiency when
traversing rays. We moved our ray tracing calls to
compute and use inline tracing much like dxr 1.1. Each ray
tracing dispatch uses indirect arguments which allows us
to compact our workload while allowing to saturate the
gpu’s resources. The async queue may be used for tracing
when the frame allows for overlap with a geometry stage.

We always overlap our BLAS and TLAS building in async with
our gbuffer laydown, after which we can spawn surfels
and trace them immediately.

All this considered, it is still a challenge to keep the gpu
utilization high for the entire duration of our ray tracing

22

workloads.

22

When it comes to ray traversal specifically, we looked into
ways of reducing the number of iterations that need to be
evaluated for each of our two distinct ray types. We have
primary rays that originate from a surfel or probe center
and are traced into the scene. If no geometry is
intersected, we simply sample our environment lighting.

23

Otherwise, if we did find an intersection along our ray, we
find the closest hit and the following 3 attributes; there's
the distance to the hit, the geometric normal of the
intersected triangle (which we get from from an intrinsic
on console) and the associated material id used to later
look up the simplified diffuse albedo.

24

The problem with these primary rays is that their length is
technically infinite. We limit the length to 1000 meters,
but we still don’t know the amount of ray intersections
that will have to be evaluated for any of the rays in our
list. Even when binning based on ray properties, we do not
know which rays will be most expensive and thus cannot
make sure to dispatch them early. This results in bubbles
of execution by single rays causing their wavefront to be
long-running while all other lanes might be inactive
meanwhile, resulting in poor utilization of the hardware
units.

For these reasons, we allow to enforce an upper bound on
the number of iterations by setting a conservative

25

maximum as well as shortening our ray length to e.g. 20
meters. Doing so, however, requires us to rely on a
fallback to provide an estimate of the radiance that our
ray carries.

25

We actually have an irradiance volume available for us to
fallback onto when tracing from surfels. When we trace a
short ray and reach the endpoint without finding an
intersection, we can lookup the nearest clipmap probe
and sample its irradiance using the direction of our ray.

Doing this is certainly biased since our probes do not have
infinite resolution (and are storing irradiance at this
point), but we actually get a significant improvement to
our convergence rate on top of limiting the number of ray
intersection we need to evaluate.

This can be observed in the video, where the left side shows
surfels tracing with a 1000-meter ray length and thus no

26

fallback, compared to just 20 meters with fallback on the
right side.

The inside of this building is particularly challenging for
convergence since most of the indirect diffuse lighting is
coming from the outside. Our clipmap volume already has
coverage inside of this building, long before any surfels
are spawned.

26

For secondary rays, which happen when such primary ray did
not miss and instead found the closest surface. We a trace
a ray from that point to estimate the direct light
contribution. To do this efficiently, we go over N number
of candidates using reservoir sampling, and we select one
light sample to shoot a shadow ray towards. Instead of
reducing the number of iterations for these secondary
“shadow” rays, we instead look to reduce numbers of rays
need to be traced. When the selected light source has a
shadow map available, we can tap that instead of tracing a
ray, resulting in a significant reduction of ray intersection
requests.

27

28

Here’s a set of screenshots captured in a stadium in College
Football 25. This view shows the indirect diffuse lighting
produced by GIBS, dynamically during runtime.

29

These are the probe locals which are used to sample indirect
diffuse lighting on the crowd as well as the players on the
pitch.

30

Surfels are used to provide indirect diffuse lighting on all
static geometry such as the stands and stadium geometry.

31

Direct diffuse lighting goes ontop.

32

And this is the final image.

33

And this shows the same term in Skate

34

Probes here are generally not used much directly, and
behave more as a cache for surfel rays and surfel coverage
fallback.

35

These are the surfel locations

36

Direct diffuse ontop

37

And the final image.

38

When it comes to performance, we have a camera
flythrough on Skate, which we ran on XBSX at 1440p
resolution without any upscaling. We target 60fps and
allow for a maximum of 200k rays per frame. During this
run we have about 100k surfels alive at any one frame, we
constantly spawn and recycle surfels. When it comes to
probes, we used 3 clipmaps with reduced density in
height, totaling around 25k probes.

This graph shows a portion of this flythrough with some of
our optimization disabled as a baseline. We spend about
0.5ms on compute work that is not directly related to ray
tracing. Another 0.5ms is spent each frame to apply all
surfels to the main view at quarter rate and upscaling to

39

1440p. Each frame we update a portion of our probes,
which takes 0.7ms with ray tracing inclusive. And finally,
the biggest cost is related to spawning and raytracing
surfels at 1.64ms. Surfel timings tend to vary a lot
depending on how many surfels are active, and how many
new surfels are spawned in any given frame.

All of GIBS’ gpu time combined takes about 3.2ms on
average in this run, with the highest mark hitting 4ms in
this run.

Note that this is already a significant improvement over the
6ms average we had in 2021, although those timing were
on PS5 and in a different game.

39

Looking at some of the optimizations I talked about, this
table shows our baseline and the cumulative
improvement of each of our additional optimizations.

Offline BLAS and selective rebraiding shave off 0.35ms
together. Adding our ray limiting and shadowmap
sampling shaves off another 0.33ms on top.

This brings us down to a total average gpu time of 2.5ms,
without going over the 3ms mark during the entire run.

Looking at the graph again, we see that Misc. and Apply are
unaffected by these optimizations, but Probes spend 34%
less time tracing due to the shadowmap sampling, and

40

surfels about 60% less due to the ray shortening and
fallback to probes. Notice also that there is much less
variability in the surfel duration across frames.

40

Some notes about performance in CFB25 specifically; due to
the nature of their game, ray tracing instances have a lot
of overlap and we generally do not have any lower-detail
meshes available to fallback on to improve ray traversal
efficiency. This means that every ray we trace is
expensive.

CFB runs at 60 frames per second during gameplay, and
30fps outside of gameplay. GIBS is fully active and
dynamic during 30hz mode and fits into budget snugly.
However, during 60hz we only have a 2ms budget which
means we need to compromise here.

The CFB team was able to play into some of their game’s

41

constraints for this, were all stadium geometry and
lighting is determined once during level load. This allowed
them to expend more surfel and ray budget during the
30hz preload sequence and halt any irradiance updates
when going into 60hz gameplay. During gameplay, GIBS is
in a frozen state and we only apply the surfel and probe
lighting to the screen each frame, which allows us to stay
under 2ms of gpu time.

41

42

Some things we already had or tried out the passed 3 years
did not end up working out.

In our 2021 talk we showed how ray binning improved our
ray traversal performance. This is no longer the case due
to having fewer rays with less redundancy as well as more
optimized traversal. Worth noting though, is that running
a compaction pass based on ray properties (e.g. needs
shadow ray), is still important to keep hardware utilization
high.

Early on, when overhauling our probe system, we tried
running with just 1 ray per probe per frame by
accumulating the intermediate radiance in a “backbuffer”

43

atlas and later convolve into the “frontbuffer” atlas.
However, we ultimately settled for inline convolution
mostly due to the added memory cost of double-buffering
of the depth atlas and the overhead copying probe data
around every frame.

We also tried different approaches to apply our surfels to the
screen, since this is a constant cost each frame. The
complexity of doing so depends on the number of surfels
as well as the screen resolution. One experiment we
ended up discarding was a stochastic approach where
we’d only evaluate a fixed number of surfels per texel
using restir. However, in the end, the naïve approach is
still faster at halfres (quarter rate) with a cheap spatial
upscale, especially when using scalarized loads for all
surfel data to reduce bandwidth.

43

To conclude, we have shown that GIBS allows for fully
dynamic diffuse global illumination. In Skate this allows
higher fidelity lighting and consistency with user
generated content. On College Football 25, GIBS saves a
lot of time authoring, especially in their combinatorial
explosion of many stadiums with multiple times of day.

Previously, GIBS was considered a 30hz feature on console,
but after all our optimizations we managed to unlock
60hz, fully dynamic in Skate by staying under 4ms, and
while CFB has only a 2ms budget, we can deactivate parts
of the system during gameplay.

GIBS is fully featured on our lowest spec platforms by

44

keeping our surfel and probe system under 100mb and
100k rays per frame. Specifically, on XBSS we fit within
500mb for the entirety of GIBS including all raytracing
resources.

44

Thank you Natalya for hosting us a second time to talk about
GIBS. Peter-Pike for reviewing our slides and providing
valuable feedback.

This work involved a lot of talented engineers working on ray
tracing across Frostbite and SEED. Thank you to our
partners at Skate, as well as College Football, and many
other individuals across EA Sports Rendering and Lighting.

45

If you are interested in learning more about College Football
25’s production, which includes details on their use of
GIBS, make sure to check out the talk they gave here at
SIGGRAPH 2024.

46

That’s the end of my talk, thank you very much for listening,
I’m happy to answer any of your questions regarding GIBS.

47

48

