
© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

ACHIEVING SCALABLE
PERFORMANCES FOR LARGE SCALE

GAME COMPONENTS WITH CBTS

This presentation is a follow-up of our HPG paper that we presented just a couple of
days ago.

The paper is called “Concurrent Binary Trees for Large-Scale Game Components”...

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

…and most of the content of the paper is shown here, including…

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

4 pages of implementation details shown in red!

The reason I’m showing these is that it turns out that since we wrote the paper 6
months ago, Anis re-worked the implementation to make it even faster.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

implementation details

So what we describe in the paper is now more or less deprecated already!

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

(simplified) implementation details

And so in this presentation Anis will share all the details of his new implementation.

Before he does so, I will quickly recap what the paper is about to bring everyone up to
speed.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

(simplified) implementation details
more details in this talk!

The paper introduces a new algorithm to deal with large-scale game components.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

A large-scale game component is typically what makes the virtual world of your game
look “big”.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

Taking a few video games as example, that would be terrains, …

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Red Dead Redemption 2
Rockstar

terrains

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

…, oceans, …

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Red Dead Redemption 2
Rockstar

terrains

Assassin's Creed Origins
Ubisoft

oceans

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

… or entire planets.

In each of these screenshots, pretty much everything except the characters in the
foreground is rendered using a dedicated system.

This dedicated system is what we refer to a “large-scale game component”.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Red Dead Redemption 2
Rockstar

terrains

Assassin's Creed Origins
Ubisoft

oceans

Star Citizen
Cloud Imperium Games

planets

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

Most of the time, such components occupy a lot of pixels so it’s important to have a
set of efficient algorithms to render them as fast as possible.

The goal of our paper is to contribute to this set of efficient algorithms, …

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Red Dead Redemption 2
Rockstar

terrains

Assassin's Creed Origins
Ubisoft

oceans

Star Citizen
Cloud Imperium Games

planets

“one component, lots of pixels”

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

…which can typically be classified into two categories.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Red Dead Redemption 2
Rockstar

terrains

Assassin's Creed Origins
Ubisoft

oceans

Star Citizen
Cloud Imperium Games

planets

“one component, lots of pixels”

2 sub-problems:

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

First there’s the data-generation category, which addresses how to generate textures,
sprites, instances, etc.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Red Dead Redemption 2
Rockstar

terrains

Assassin's Creed Origins
Ubisoft

oceans

Star Citizen
Cloud Imperium Games

planets

“one component, lots of pixels”

“Rendering Water in Horizon Forbidden West”
SG‘22

“Large Scale terrain rendering in Call of Duty”
SG’23

2 sub-problems: 1) data generation

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

Second the triangulation / rendering category, which focuses on how to render this
data.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Red Dead Redemption 2
Rockstar

terrains

Assassin's Creed Origins
Ubisoft

oceans

Star Citizen
Cloud Imperium Games

planets

“one component, lots of pixels”

“Rendering Water in Horizon Forbidden West”
SG‘22

“Large Scale terrain rendering in Call of Duty”
SG’23

“Simulating Tropical Weather in Farcry 6”
GDC‘22

“Concurrent Binary Trees for Large-scale Terrain
Rendering” - SG’21

2 sub-problems: 1) data generation 2) rendering

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

Our paper contributes only to the latter (so we won’t be discussing data-generation
here) with a triangulation method capable of handling very large environments that
can be explored at any different scales.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Red Dead Redemption 2
Rockstar

terrains

Assassin's Creed Origins
Ubisoft

oceans

Star Citizen
Cloud Imperium Games

planets

“one component, lots of pixels”

“Rendering Water in Horizon Forbidden West”
SG‘22

“Large Scale terrain rendering in Call of Duty”
SG’23

“Simulating Tropical Weather in Farcry 6”
GDC‘22

“Concurrent Binary Trees for Large-scale Terrain
Rendering” - SG’21

2 sub-problems: 1) data generation 2) rendering
our contribution

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

And actually, our contribution is an improvement over something called “Concurrent
Binary Trees” (CBTs), which we presented in the same course 3 years ago.

I like to refer to our improvement as “CBT version 2”, or simply CBT-V2. I will explain
what CBTs are in just a minute.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Red Dead Redemption 2
Rockstar

terrains

Assassin's Creed Origins
Ubisoft

oceans

Star Citizen
Cloud Imperium Games

planets

“one component, lots of pixels”

“Rendering Water in Horizon Forbidden West”
SG‘22

“Large Scale terrain rendering in Call of Duty”
SG’23

“Simulating Tropical Weather in Farcry 6”
GDC‘22

“Concurrent Binary Trees for Large-scale Terrain
Rendering” - SG’21

2 sub-problems: 1) data generation 2) rendering
our contribution: “CBT-V2”

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

Before I do just that, here is a look at what CBT-V2 can render.

Let’s have a look at a video that captures the result of our method, which runs at
250+FPS on a PS5 level hardware at full HD resolution.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

•

To provide a better sense of scale of what our CBTV2 produces, we are going to have
a look at how dense the triangulation of this shot is.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

Here is an alternative view of the same shot and we are going to zoom into it until we
reach the resolution of the mesh

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

In terms of numbers, it turns out the full resolution mesh of our Earth model, i.e.,
without any form of level-of-detail as we do here, would require exabytes of data.

An exabyte is a million terabytes, so it would not even fit in a large SSD.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

→ full-resolution mesh requires exabytes* of data…
(*) 1 exabyte = 1,000,000 terabytes

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

This prevents the use of LOD systems like Nanite, which requires the full resolution
mesh as input.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

→ full-resolution mesh requires exabytes* of data…
(*) 1 exabyte = 1,000,000 terabytes

“A Deep Dive into Nanite Virtualized” - SG’21
 Geometry Clusters + DAG

… so we can’t use this:

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

Note that in UE5.3, you could still handle very large meshes using their very own
large-scale game component, which consists in coupling two representations: one for
close scale, and the other for far away scales.

Unfortunately, hybrid representation are hard to use especially with free-flight
cameras because it becomes really tricky to set the location of the transition between
both representations.

A nice advantage of our method is that it relies on a single representation so you don’t
need to worry about these issues.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

→ full-resolution mesh requires exabytes* of data…
(*) 1 exabyte = 1,000,000 terabytes

“A Deep Dive into Nanite Virtualized” - SG’21
 Geometry Clusters + DAG

… so we can’t use this:

Unreal Engine 5.3 Water Documentation

alternative in UE 5.3:

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

Right, now I am going to quickly explain what a concurrent binary tree (CBT) is and
how our method works with them, then Anis will dive into the details.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

A concurrent binary tree of CBT is a full binary tree (so each node has exactly two
children except for the leaves) with two main parts.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

The first part is a bitfield located at the bottom of the tree.

So the leaf nodes only store binary values.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

The second part is a sum-reduction tree of this bitfield.

So all remaining nodes store the number of green bits, i.e, bits set to one, in its
corresponding subtree.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

This means that the root node gives the total number of green bits.

In addition, the sum-reduction tree makes it possible to iterate over the green bits,
even if the green bits aren’t located sequentially in the bitfield.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

These properties makes it possible to use a CBT as memory pool manager that tracks
allocated and available memory.

A memory pool is simply an array of whatever data you want to store and we set its
capacity to that of the bitfield.

We then track allocated entries using green bits and available memory with red ones.

This way the root of the CBT gives us how much memory is available / allocated.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 34 18 19 20 42 22 46 48 25 26 27 35 43 47

1 14 3 0 5 15 4 12 13 10 11 7 1 5 7

3 12 12 2 6 13 13 14 15 15 9 10 7 8 1

6 0 null null null 4 0 11 14 null null null 2 6 8

uint32_t available_memory();
uint32_t allocated_memory();

We can then implement a simple allocation and de-allocation operator as follows.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 34 18 19 20 42 22 46 48 25 26 27 35 43 47

1 14 3 0 5 15 4 12 13 10 11 7 1 5 7

3 12 12 2 6 13 13 14 15 15 9 10 7 8 1

6 0 null null null 4 0 11 14 null null null 2 6 8

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

For allocation we set a bit to one and update the sum-reduction tree.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 34 18 19 20 42 22 46 48 25 26 27 35 43 47

1 14 3 0 5 15 4 12 13 10 11 7 1 5 7

3 12 12 2 6 13 13 14 15 15 9 10 7 8 1

6 0 null null null 4 0 11 14 null null null 2 6 8

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

For de-allocation we set a bit to zero and again update the sum-reduction tree.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 18 19 20 42 22 46 48 25 26 27 35 43 47

1 3 0 5 15 4 12 13 10 11 7 1 5 7

3 12 2 6 13 13 14 15 15 9 10 7 8 1

6 null null null 4 0 11 14 null null null 2 6 8

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

Now here is what we do for our triangulations.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 18 19 20 42 22 46 48 25 26 27 35 43 47

1 3 0 5 15 4 12 13 10 11 7 1 5 7

3 12 2 6 13 13 14 15 15 9 10 7 8 1

6 null null null 4 0 11 14 null null null 2 6 8

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

Our method takes a halfedge mesh as input…

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 34 18 19 20 42 22 46 48 25 26 27

1 14 3 0 5 15 4 12 13 10 11 7

3 12 12 2 6 13 13 14 15 15 9 10

6 0 null null null 4 0 11 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

… and produces a triangle for each halfedge (feel free to go back and forth between
this slide and the previous one).

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 34 18 19 20 42 22 46 48 25 26 27

1 14 3 0 5 15 4 12 13 10 11 7

3 12 12 2 6 13 13 14 15 15 9 10

6 0 null null null 4 0 11 14 null null null

We then compress the 3 vertices of each triangle into a single integer value that we
call a heapID and store it in a dedicated entry of the memory pool.

In this example we have 12 triangles so we require 12 slots in the memory pool.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 14 3 0 5 15 4 12 13 10 11 7

3 12 12 2 6 13 13 14 15 15 9 10

6 0 null null null 4 0 11 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

As an example, the triangle 23 is stored in slot 7.

In addition to the heapID, we also store neighborhood information with pointers.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 14 3 0 5 15 4 12 13 10 11 7

3 12 12 2 6 13 13 14 15 15 9 10

6 0 null null null 4 0 1171 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

Continuing with triangle 23, the neighbors are triangle 24, which is located at slot 8…

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 14 3 0 5 15 4 8 13 10 11 7

3 12 12 2 6 13 13 15 15 9 10

6 0 null null null 4 0 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

… triangle 27, which is located at slot 11 …

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 14 3 0 5 15 4 8 13 10 11 7

3 12 12 2 6 13 13 11 15 15 9 10

6 0 null null null 4 0 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

… and triangle 17, which is located at slot 1.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 14 3 0 5 15 4 8 13 10 11 7

3 12 12 2 6 13 13 11 15 15 9 10

6 0 null null null 4 0 1 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

And naturally we do this for each triangle.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 2 3 0 5 6 4 8 9 10 11 7

3 0 1 2 6 4 5 11 7 8 9 10

6 7 null null null 8 0 1 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

The reason we store this information is because we implement a bisection scheme
that can split triangles into two new ones.

Naively bisecting a triangle would produce a T-junction, which would result in cracks
in the final surface.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 2 3 0 5 6 4 8 9 10 11 7

3 0 1 2 6 4 5 11 7 8 9 10

6 7 null null null 8 0 1 14 null null null

But thanks to the neighborhood information, we can propagate bisections across
multiple triangles to guarantee crack-free surfaces.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 2 3 0 5 6 4 8 9 10 11 7

3 0 1 2 6 4 5 11 7 8 9 10

6 7 null null null 8 0 1 14 null null null

Last thing for me: the memory pool we use for our demo is 128k wide, which requires
7 MB of memory in total.

That concludes my overview of the paper.

The key takeaway here is that CBTs provide a way to allocate, release, and iterate
over all the elements of a memory pool.

And as Anis will show, all this can be done efficiently on the GPU.

Your turn Anis!

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

“Concurrent Binary Trees for Large-Scale Game Components” HPG24

bitfield

sum-reduction tree

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 2 3 0 5 6 4 8 9 10 11 7

3 0 1 2 6 4 5 11 7 8 9 10

6 7 null null null 8 0 1 14 null null null

Note: our demo uses a 128k memory pool (requires 7 MB of memory)

We’re going to dig into some of the implementation details that allowed us to reach
reasonable performance numbers with this method.

That said, we’ll not go into code details due to the limited time we have.

The full source code of the demo is released and is available for you to explore and
play with it!

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine
(Simplified implementation details)

First, We’ll precise the implementation of the CBT.

We’d like to store the CBT in the group shared memory to make the access more
efficient when reading and writing.

As an example, we’ll use the 128k elements CBT in this presentation, but as we
mentioned before we can go higher (or lower) depending on the needs of the
application

The CBT needs to be readable and writable from worker threads. We could use
uint32_t to benefit from the atomic intrinsics, but there is an issue with that:

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

54

// Store in shared memory, atomic friendly

groupshared uint32_t gs_cbt[cbt_num_nodes];

The number of nodes of the CBT is twice the size of the bitfield, which would, if
naively stored would be around one 1MB

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

55

// Store in shared memory, atomic friendly
const uint32_t cbt_num_nodes = 2 * (128 * 1024); // 262144
groupshared uint32_t gs_cbt[cbt_num_nodes]; // 1 MB

However, the group shared memory storage is limited to 32KB on dx12 so we need a
better representation!

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

56

// Store in shared memory, atomic friendly
const uint32_t cbt_num_nodes = 2 * (128 * 1024); // 262144
groupshared uint32_t gs_cbt[cbt_num_nodes]; // 1 MB

Limited to 32 KB on DX12 !!!

Each level of the tree is defined by 4 things:
- The number of nodes within the level
- The range of values each node can represent
- The minimal size of each node to represent that range
- The final size used to represent each node

So what we’ll do is decompose the tree into multiple parts with different constraints

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

57

Level X: [Range] x Num Values, Min size, Actual Size

The first part in red that is an atomic-friendly subtree

During modification, all threads can write safely to any node of the tree.

Each node is represented by uint32_t to benefit from the atomic intrinsics. This is
stored in the group shared memory;

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level X: [Range] x Num Values, Min size, Actual Size

Iin green, we have several subtrees, each subtree will only be modified by one thread
at a time.

The size of each node is rounded to the closest power of two to represent the data
underneath. This is also stored in the group shared memory;

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)
● Thread Sub-trees (Min size, aligned on powers of 2, group shared memory)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level X: [Range] x Num Values, Min size, Actual Size

Then there are what we call virtual levels. These are not represented explicitly,

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

60

● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)
● Thread Sub-trees (Min size, aligned on powers of 2, group shared memory)
● Virtual Tree (not explicitly represented)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 11: [0, 64] x 2048, Min 7 bits (Virtual)
Level 12: [0, 32] x 4096, Min 6 bits (Virtual)
Level 13: [0, 16] x 16384, Min 5 bits (Virtual)
Level 14: [0, 8] x 32768, Min 4 bits (Virtual)
Level 15: [0, 4] x 65536, Min 3 bits (Virtual)
Level 16: [0, 2] x 131072, Min 2 bits (Virtual)

Level X: [Range] x Num Values, Min size, Actual Size

 but can be deduced from the last level

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

61

● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)
● Thread Sub-trees (Min size, aligned on powers of 2, group shared memory)
● Virtual Tree (not explicitly represented)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 11: [0, 64] x 2048, Min 7 bits (Virtual)
Level 12: [0, 32] x 4096, Min 6 bits (Virtual)
Level 13: [0, 16] x 16384, Min 5 bits (Virtual)
Level 14: [0, 8] x 32768, Min 4 bits (Virtual)
Level 15: [0, 4] x 65536, Min 3 bits (Virtual)
Level 16: [0, 2] x 131072, Min 2 bits (Virtual)

Level X: [Range] x Num Values, Min size, Actual Size

Which is the rawbitfield. This bitfield it is represented using uint64_t to benefit from
some intrinsic functions and is stored in a structured buffer outside of the shared
memory.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

62

● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)
● Thread Sub-trees (Min size, aligned on powers of 2, group shared memory)
● Virtual Tree (not explicitly represented)
● Raw Bitfield Buffer (uint64_t, StructuredBuffer)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 11: [0, 64] x 2048, Min 7 bits (Virtual)
Level 12: [0, 32] x 4096, Min 6 bits (Virtual)
Level 13: [0, 16] x 16384, Min 5 bits (Virtual)
Level 14: [0, 8] x 32768, Min 4 bits (Virtual)
Level 15: [0, 4] x 65536, Min 3 bits (Virtual)
Level 16: [0, 2] x 131072, Min 2 bits (Virtual)

Level 17: Raw 64 bits representation

Level X: [Range] x Num Values, Min size, Actual Size

And this the memory footprint of a 128k bit CBT. In the implementation, you’ll find the
layout for the other sizes of the CBT

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

63

● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)
● Thread Sub-trees (Min size, aligned on powers of 2, group shared memory)
● Virtual Tree (not explicitly represented)
● Raw Bitfield Buffer (uint64_t, StructuredBuffer)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

Level X: [Range] x Num Values, Min size, Actual Size

Now let’s look in practice what that maps to:

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

64

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT

We have two structured buffers:
- The first one stores uint32_t and contains the red and green parts of the tree
- The second stores uint64_t and contains the bitfield (in blue)

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

65

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE

In addition to that we need an allocation buffer which is a uint32_t buffer, we’ll see
how it is used in a second

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

66

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

Using the memory footprint table on the right, we can deduce the size of the tree

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

67

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;

And that defines the group shared memory space our CBT occupies. In this case the
CBT is about 3 KB, which we can consider reasonable.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

68

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

The way the memory manager is used every frame is the following.
- First we’re gonna book the worst case memory we need
- Then we’re gonna allocate a bunch of bits, that will depend on the subdivision

case we’re processing,
- We’ll finally return to the memory manager memory space what we didn’t

consume

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

69

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

Book & Allocate & Cancel

The booking and cancelling is done using these functions

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

70

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

Book & Allocate & Cancel

And this function that allows us to allocate the next available memory slot

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

71

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

Book & Allocate & Cancel

Then once all the allocations have been done, we’re gonna decode the location of the
bits that we’ve allocated

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

72

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

Decode Bit(s)

Book & Allocate & Cancel

To do so, we first have to load the CBT into shared memory for our searches, we do it
using this function, this will copy per workgroup the tree buffer into the group shader
memory

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

73

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

// Load and export
void load_buffer_to_shared_memory(uint32_t groupIndex);

Decode Bit(s)

Book & Allocate & Cancel

Then we actually operate the tree descents taking advantage of the very specific
memory layout of the CBT which helps us to accelerate significantly the operation.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

74

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

// Load and export
void load_buffer_to_shared_memory(uint32_t groupIndex);

// Find i-th bit set to zero
uint32_t decode_bit_complement(uint32_t index); Decode Bit(s)

Book & Allocate & Cancel

Then we’ll set atomically some bit to 1 (for the allocations that we’ve done) and 0 for
the bit’s we’ve deallocated.
It is done using this function that will operate directly on the bitfield buffer.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

75

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

// Load and export
void load_buffer_to_shared_memory(uint32_t groupIndex);

// Find i-th bit set to zero
uint32_t decode_bit_complement(uint32_t index);

// Atomic operations
void set_bit_atomic(uint32_t bitID, bool state);

Set Bit(s) Atomic

Decode Bit(s)

Book & Allocate & Cancel

And finally we’ll operate a sum reduction on the tree to be able to return to a valid
state. We can then take advantage of the memory layout we defined to get it
performant, but i’ll cover it a tad later.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

76

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

// Load and export
void load_buffer_to_shared_memory(uint32_t groupIndex);

// Find i-th bit set to zero
uint32_t decode_bit_complement(uint32_t index);

// Atomic operations
void set_bit_atomic(uint32_t bitID, bool state);

// Reduction (Detailed later)
void reduce(...);

Sum Reduction

Set Bit(s) Atomic

Decode Bit(s)

Book & Allocate & Cancel

And we’ll repeat this operation every frame and that defines how the CBT works as a
parallel memory manager

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

77

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

// Load and export
void load_buffer_to_shared_memory(uint32_t groupIndex);

// Find i-th bit set to zero
uint32_t decode_bit_complement(uint32_t index);

// Atomic operations
void set_bit_atomic(uint32_t bitID, bool state);

// Reduction (Detailed later)
void reduce(...);

Sum Reduction

Set Bit(s) Atomic

Decode Bit(s)

Repeat Each Frame

Book & Allocate & Cancel

On the other side, we need to specify what is the memory pool like and how it’s used

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

78

// Graphics Buffers that hold the Memory pool

As mentioned before, we need two buffers to store the HeapID and Neighbors

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

79

// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);

65
66 67

68

Then we also need to be able to store the camera relative position. Obviously, there
are the three positions of the vertices of the triangles

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

80

// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);

But we actually need to store a 4th position which allows to rebuild the parent triangle
and is required for split/merge decisions

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

81

// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);

4 positions per bisector

In addition to that, we need some temporary data, that we’ll call those update data

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

82

// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
};

At each update loop, a bisector can be in one of 5 states, unchanged, single split,
double splits (two cases) or triple split.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

83

// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
};

We encode that split state into three bits and store it in a unit32_t to use the atomic
intrinsics

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

84

// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
 // Holds the subdivision pattern of a bisector, atomic friendly
 uint32_t subdivPattern;
};

0x1 0x3 0x5 0x7

0x0

Depending on the split, we’ll need up to 3 news slots to store the location of produced
bisectors.

In this implementation, we always reuse the current bisector slot for performance and
compactness reasons

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

85

// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
 // Holds the subdivision pattern of a bisector, atomic friendly
 uint32_t subdivPattern;

 // Allocation Indices, we’re always reusing the previous bisector
 uint3 allocations = {UINT32_MAX, UINT32_MAX, UINT32_MAX};
};

0x1 0x3 0x5 0x7

0x0

One Alloc Two Allocs Two Allocs Three Allocs

The way the indices are assigned has to be consistent

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

86

// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
 // Holds the subdivision pattern of a bisector, atomic friendly
 uint32_t subdivPattern;

 // Allocation Indices, we’re always reusing the previous bisector
 uint3 allocations = {UINT32_MAX, UINT32_MAX, UINT32_MAX};
};

0x1 0x3 0x5 0x7

0x0

One Alloc Two Allocs Two Allocs Three Allocs

Previous Slot

First Alloc

Second Alloc

Third Alloc

In that way, for any split combination at an interface between two bisectors

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

87

// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
 // Holds the subdivision pattern of a bisector, atomic friendly
 uint32_t subdivPattern;

 // Allocation Indices, we’re always reusing the previous bisector
 uint3 allocations = {UINT32_MAX, UINT32_MAX, UINT32_MAX};
};

0x1 0x3 0x5 0x7

0x0

One Alloc Two Allocs Two Allocs Three Allocs

Previous Slot

First Alloc

Second Alloc

Third Alloc

We’re able to predict the neighbor data using simply the update and neighbor data of
the current and neighbor bisectors.

This is important and it is the cornerstone of the sync free parallel implementation

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

88

// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
 // Holds the subdivision pattern of a bisector, atomic friendly
 uint32_t subdivPattern;

 // Allocation Indices, we’re always reusing the previous bisector
 uint3 allocations = {UINT32_MAX, UINT32_MAX, UINT32_MAX};
};

0x1 0x3 0x5 0x7

0x0

One Alloc Two Allocs Two Allocs Three Allocs

Previous Slot

First Alloc

Second Alloc

Third Alloc

In addition to that we need an array to store additional flags and neighbors
propagation data

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Memory Pool)

89

// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
 // Holds the subdivision pattern of a bisector, atomic friendly
 uint32_t subdivPattern;

 // Allocation Indices, we’re always reusing the previous bisector
 uint3 allocations = {UINT32_MAX, UINT32_MAX, UINT32_MAX};

 // Visibility and modification flags of a bisector
 uint32_t flags;

 // Used for patching neighbors after modifications
 uint2 propagation;
};

And with that, we’ve defined the CBT implementation and the Memory pool layout.

Now let’s look at the update routine itself, each block on the right maps to one or
multiple compute shader

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

So for a given triangulation, there is a corresponding memory pool

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine

Reset

Classify

Split

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

Most of the passes will be an indirect dispatch based on the a given set of bisectors.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine

Reset

Classify

Split

Indirect Dispatches

Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

The set of bisectors will change based on the pass

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine

Reset

Classify

Split

Indirect Dispatches

Thread Thread Thread

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

Thread

and the subset will be specified at each pass of the pipeline

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine

Reset

Classify

Split

Indirect Dispatches

Thread Thread Thread Thread

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

ThreadThread

Alright, the first step of the pipeline is “Reset”

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine

Classify

Split

Reset

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

This pass is a single thread dispatch that:
- prepares the allocations for the frame
- resets the bisector queues for indirect dispatches

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Reset)

Reset

Classify

Split

m_cmdBuffer->dispatch(1, 1, 1); // One thread

CPU

// CBT function
cbt_new_frame();

// Bisector queues for indirect dispatches
reset_queues();

GPU
Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

For the second pass, “Classify”, each thread will run for one active bisector

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Classify)

Reset

Classify

Split

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

State Keep Keep Keep Keep Keep Merge Keep Split Merge Keep Keep Keep Keep Merge Keep Merge

m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49

CPU

GPU
Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

The idea is to classify each bisector in one of 3 states, Keep, Merge or Split.
Depending on what we’re trying to achieve the criteria for these operations can
change, but for the demo here are the ones we used

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Classify)

Reset

Classify

Split

m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49

CPU

GPU

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

State Keep Keep Keep Keep Keep Merge Keep Split Merge Keep Keep Keep Keep Merge Keep Merge

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

First, we do a NdotV test and flag it for merge if it fails

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Classify)

Reset

Classify

Split

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

State Keep Keep Keep Keep Keep Merge Keep Split Merge Keep Keep Keep Keep Merge Keep Merge

m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49

// Is the current bisector visible?
if (NdotV < 0.0)
 return MERGE;

CPU

GPU
Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

We then intersect one or multiple frustums and flag it for merge if it does not intersect
any of them

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Classify)

Reset

Classify

Split

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

State Keep Keep Keep Keep Keep Merge Keep Split Merge Keep Keep Keep Keep Merge Keep Merge

m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49

// Is the current bisector visible?
if (NdotV < 0.0)
 return MERGE;

// Does the bisector intersect the camera(s) frustum(s)
if (not intersect_frustum(...))
 return MERGE;

CPU

GPU
Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

Then we’ll project the 4 vertices and evaluate the projected area of the triangle and
the parent triangle

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Classify)

Reset

Classify

Split

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

State Keep Keep Keep Keep Keep Merge Keep Split Merge Keep Keep Keep Keep Merge Keep Merge

m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49

// Is the current bisector visible?
if (NdotV < 0.0)
 return MERGE;

// Does the bisector intersect the camera(s) frustum(s)
if (not intersect_frustum(...))
 return MERGE;

// Project the current triangle
float currentArea, parentArea;
project_bisector(...);

CPU

GPU
Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

We compare those area to a triangle size that is defined by the application and flag
the bisector for merge, split or keep depending on the result

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Classify)

Reset

Classify

Split

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

State Keep Keep Keep Keep Keep Merge Keep Split Merge Keep Keep Keep Keep Merge Keep Merge

m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49

// Is the current bisector visible?
if (NdotV < 0.0)
 return MERGE;

// Does the bisector intersect the camera(s) frustum(s)
if (not intersect_frustum(...))
 return MERGE;

// Project the current triangle
float currentArea, parentArea;
project_bisector(...);

if (currentArea > TRIANGLE_SIZE)
 return SPLIT;
if (parentArea < TRIANGLE_SIZE)
 return MERGE;
return KEEP;

CPU

GPU
Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

Then we move on to the “Split” pass, this will only run on the bisectors that have been
tagged for as requiring a split.

In the example that would be only the bisector with the heapid 46.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Split)

103

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

CPU

GPU

The first thing we need to do is figure out what is the worst case allocation size we
need to guarantee the propagation of this split.

If we cannot guarantee the required memory space, the split cannot go through, that
would break the LEB scheme

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Split)

104

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;

CPU

GPU

The naive solution that is 2 * depth - 1 ends up causing under tessellation issues
when moving at a high speed and this is not viable

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Split)

105

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;

CPU

GPU

book 2 * depth - 1

There is a better way of doing it that we’ll not detail in the presentation but you can
find the details in the source code we share

Once we have that estimation, we’ll try to book that amount of memory from the CBT.
Again we fail to guarantee that amount, this split won’t go through as we cannot
preserve the LEB scheme

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Split)

106

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;

CPU

GPU

book 2 * depth - 1 book smart

If we manage to book the worst case, we de-recursify the propagation algorithm into a
while loop that will split each triangle, allocate one or multiple slots, propagate the
subdivision to the twins all the bits we need until we’re done.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Split)

107

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;

// Propagate the split until we are done
uint32_t usedMemory = 1;
while (not done)
{
 if (currentDepth == twinDepth || already_split(twinID))
 {
 InterlockedOr(twinUpdateData.subdivPattern, 0x1);
 usedMemory += 1;
 allocate_next_available_slot();
 done = true;
 }
 else
 {
 InterlockedOr(twinUpdateData.subdivPattern, rightSuddiv ? 0x3 : 0x5);
 usedMemory += 2;
 allocate_next_available_slot(); allocate_next_available_slot();
 move_to_twin();
 }
}

CPU

GPU

So in this case we do the first allocation, but we have a T junction so we continue on
our path

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Split)

108

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;

// Propagate the split until we are done
uint32_t usedMemory = 1;
while (not done)
{
 if (currentDepth == twinDepth || already_split(twinID))
 {
 InterlockedOr(twinUpdateData.subdivPattern, 0x1);
 usedMemory += 1;
 allocate_next_available_slot();
 done = true;
 }
 else
 {
 InterlockedOr(twinUpdateData.subdivPattern, rightSuddiv ? 0x3 : 0x5);
 usedMemory += 2;
 allocate_next_available_slot(); allocate_next_available_slot();
 move_to_twin();
 }
}

CPU

GPU

Which leads us to doing two more allocations and we’re good to go.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Split)

109

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;

// Propagate the split until we are done
uint32_t usedMemory = 1;
while (not done)
{
 if (currentDepth == twinDepth || already_split(twinID))
 {
 InterlockedOr(twinUpdateData.subdivPattern, 0x1);
 usedMemory += 1;
 allocate_next_available_slot();
 done = true;
 }
 else
 {
 InterlockedOr(twinUpdateData.subdivPattern, rightSuddiv ? 0x3 : 0x5);
 usedMemory += 2;
 allocate_next_available_slot(); allocate_next_available_slot();
 move_to_twin();
 }
}

CPU

GPU

Finally we’re return to the CBT the memory space that we didn't allocate

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Split)

110

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;

// Propagate the split until we are done
uint32_t usedMemory = 1;
while (not done)
{
 if (currentDepth == twinDepth || already_split(twinID))
 {
 InterlockedOr(twinUpdateData.subdivPattern, 0x1);
 usedMemory += 1;
 allocate_next_available_slot();
 done = true;
 }
 else
 {
 InterlockedOr(twinUpdateData.subdivPattern, rightSuddiv ? 0x3 : 0x5);
 usedMemory += 2;
 allocate_next_available_slot(); allocate_next_available_slot();
 move_to_twin();
 }
}

// Return the memory that we did not use
cancel_memory_booking(maxMemory - usedMemory);

CPU

GPU

The next step “Decode”, runs on the bisectors that have been flagged for a
subdivision, (46 and 27 in this case),

This will associate each allocated slot with a free bit of the CBT

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Decode)

111

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27

CPU

GPU

For this pass we need to load the CBT into the shared memory first

The number of bits set to 1 of the subdivision pattern gives us the number of decodes
we need to do.

We do those decodes and store them in the update data

Once this is done, we move on to the next step

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Decode)

112

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27

// We need to load the CBT into the shared memory
load_buffer_to_shared_memory(...);

// Depending on the subdivision pattern, the number of bits we need to allocate varies
uint32_t numAllocations = countbits(updateData.subdivPattern);

// Allocate the bits
for (uint32_t allocIdx = 0; allocIdx < numAllocations; ++allocIdx)
 updateData.allocations[allocIdx] = decode_bit_complement(...);

CPU

GPU

The following pass, “Bisect”, that runs on the same set of bisectors than the decode
pass, aka every bisector that will be splitted

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Bisect)

113

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27

CPU

GPU

Based on the subdivision pattern of the current bisector and and the one of its
neighbors, we’ll modify the heap ID and adjust neighbor pointers.

This only partially updates the neighbors and we still have problematic interfaces
(marked in red in the example) that will be resolved in the following pass

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Bisect)

114

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27

void update_bisectors(uint32_t ID0, uint32_t ID1, …)
{
 // Depending on the pattern and the neighbors pattern
 // Modify the neighbors, heapID and flag which subdivision needs to be propagated
}

// Depending on the subdivision pattern, we need to modify the allocated bisectors
if (subdivPattern == 0x1)
 update_bisectors(currentID, upData.allocation[0]);

else if (subdivPattern == 0x3 ||subdivPattern == 0x5)
 update_bisectors(currentID, upData.allocation[0], upData.allocation[1]);

else if (subdivPattern == 0x7)
 update_bisectors(currentID, upData.allocation[0], upData.allocation[1], upData.allocation[2]);

CPU

GPU

Reset

Classify

Split

Decode

This will produce the new state of the triangulation

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Bisect)

115

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27

void update_bisectors(uint32_t ID0, uint32_t ID1, …)
{
 // Depending on the pattern and the neighbors pattern
 // Modify the neighbors, heapID and flag which subdivision needs to be propagated
}

// Depending on the subdivision pattern, we need to modify the allocated bisectors
if (subdivPattern == 0x1)
 update_bisectors(currentID, upData.allocation[0]);

else if (subdivPattern == 0x3 ||subdivPattern == 0x5)
 update_bisectors(currentID, upData.allocation[0], upData.allocation[1]);

else if (subdivPattern == 0x7)
 update_bisectors(currentID, upData.allocation[0], upData.allocation[1], upData.allocation[2]);

CPU

GPU

Reset

Classify

Split

Decode

And finally we’ll update the bits of the CBT based on the number of allocations that
were required for this split

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Bisect)

116

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27

void update_bisectors(uint32_t ID0, uint32_t ID1, …)
{
 // Depending on the pattern and the neighbors pattern
 // Modify the neighbors, heapID and flag which subdivision needs to be propagated
}

// Depending on the subdivision pattern, we need to modify the allocated bisectors
if (subdivPattern == 0x1)
 update_bisectors(currentID, upData.allocation[0]);

else if (subdivPattern == 0x3 ||subdivPattern == 0x5)
 update_bisectors(currentID, upData.allocation[0], upData.allocation[1]);

else if (subdivPattern == 0x7)
 update_bisectors(currentID, upData.allocation[0], upData.allocation[1], upData.allocation[2]);

// Atomic modification of the bitfield
for (uint32_t allocIdx = 0; allocIdx < numAllocations; ++allocIdx)
 set_bit_atomic(upData.allocation[allocIdx], true);

CPU

GPU

Reset

Classify

Split

Decode

The next step, “Propagate Bisect”, will process these problematic interfaces by
changing the neighbors when required

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Propagate Bisect)

117

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(PROPAGATE_SPLIT_BISECTORS); // HeapIDs: 93

CPU

GPU

Reset

Classify

Split

Decode

The patching routine has to take into account if the neighbor was split (and how it was
split, once, twice or thrice) and adjust the neighbors accordingly

That covers it for the split part of the algorithm. Now we need to process the merges,
It is roughly the same approach as the splits, but simpler as there are no propagation
to account for.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Propagate Bisect)

118

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(PROPAGATE_SPLIT_BISECTORS); // HeapIDs: 93

// Did the neighbor split ?
if (was_split(neighborID)
 // Adjust based on the subdivision pattern of the neighbor
else
 adjust_neighbors(neighborID, currentID);

CPU

GPU

Reset

Classify

Split

Decode

The first pass is “Prepare simplify”, This dispatch will run on the 4 bisectors that have
been flagged for simplification

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Prepare Simplify)

119

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MERGE_BISECTORS); // HeapIDs: 42, 43, 48, 49

CPU

GPU

Reset

Classify

Split

Decode

To avoid synchronization and racing conditions, the bisector with the smallest heapID
in the four is in charge of checking and registering for the simplification.

In the example, that would be the bisector with the heapID 42

(Actually in practice, we don’t enqueue the bisectors with odd heap IDs into the merge
queue as an optimization)

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Prepare Simplify)

120

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MERGE_BISECTORS); // HeapIDs: 42, 43, 48, 49

// The bisector with the smallest heapID of the 4 is in charge of doing the operation

CPU

GPU

Reset

Classify

Split

Decode

We can easily identify which one it is using the depth of the bisectors and their
heapIDs

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Prepare Simplify)

121

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MERGE_BISECTORS); // HeapIDs: 42, 43, 48, 49

// The bisector with the smallest heapID of the 4 is in charge of doing the operation
if (heapID % 2 != 0 || pairDepth != currentDepth)
 return;

if (twinHeapID < heapID
 || twinDepth != currentDepth
 || twinPairDepth != currentDepth)
 return;

CPU

GPU

Reset

Classify

Split

Decode

That bisector is then in charge of making sure they all required a merge operation and
if it is the case, it will enqueue for the next step

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Prepare Simplify)

122

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MERGE_BISECTORS); // HeapIDs: 42, 43, 48, 49

// The bisector with the smallest heapID of the 4 is in charge of doing the operation
if (heapID % 2 != 0 || pairDepth != currentDepth)
 return;

if (twinHeapID < heapID
 || twinDepth != currentDepth
 || twinPairDepth != currentDepth)
 return;

// All four bisectors need to request a merge and be at the same depth
if (!merge_request(currentID)
 || !merge_request(pairID)
 || !merge_request(twinID)
 || !merge_request(twinPairID))
 return;

// This bisector need to process the simplification
enqueue_for_simplify(currentID);

CPU

GPU

Reset

Classify

Split

Decode

Which is the “Simplify” step, this will only run for the bisector 42 in
this case

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Simplify)

123

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SIMPLIFY_BISECTORS); // HeapIDs: 42

CPU

GPU

Reset

Classify

Split

Decode

We update the bisectors that will remain (the ones with the smallest heapIDs for each
pair, 42 and 48 in this case) and free the one other ones (43 and 49).

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Simplify)

124

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SIMPLIFY_BISECTORS); // HeapIDs: 42

// Update the current bisector and free it’s pair
update_bisector(currentID);
free_bisector_slot(pairID);

// Update the twin bisector and free it’s pair
update_bisector(twinID);
free_bisector_slot(twinPairID);

CPU

GPU

Reset

Classify

Split

Decode

The same way than for split, we update the heapID and only partially the neighbors
that will be updated in the following pass. This generates the new triangulation.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Simplify)

125

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SIMPLIFY_BISECTORS); // HeapIDs: 42

// Update the current bisector and free it’s pair
update_bisector(currentID);
free_bisector_slot(pairID);

// Update the twin bisector and free it’s pair
update_bisector(twinID);
free_bisector_slot(twinPairID);

CPU

GPU

Reset

Classify

Split

Decode

Then we set the bits in the CBT to zero for the unused slots

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Simplify)

126

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SIMPLIFY_BISECTORS); // HeapIDs: 42

// Update the current bisector and free it’s pair
update_bisector(currentID);
free_bisector_slot(pairID);

// Update the twin bisector and free it’s pair
update_bisector(twinID);
free_bisector_slot(twinPairID);

// Set the bits to zero
set_bit_atomic(pairID, false);
set_bit_atomic(twinPairID, false);

CPU

GPU

Reset

Classify

Split

Decode

In this last step of the modification “Propagate simplify”, we
dispatch on the bisectors that generated an inconsistency in the
neighbors

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Propagate Simplify)

127

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(PROPAGATE_SIMPLIFY_BISECTORS); // HeapIDs: 21, 24

CPU

GPU

Reset

Classify

Split

Decode

And depending on if the neighbors were merged we or not, the
routine needs to take account if the bisector was deleted, etc

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Propagate Simplify)

128

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(PROPAGATE_SIMPLIFY_BISECTORS); // HeapIDs: 21, 24

// Was the neighbor merged ?
if (was_merged(neighborID)
{
 if (was_deleted(neighborID)
 adjust_neighbors(neighborPairID, currentID);
 else
 adjust_neighbors(neighborID, currentID);
}
else
 adjust_neighbors(neighborID, currentID);

CPU

GPU

Reset

Classify

Split

Decode

And with that we’ve processed our split and merge requests and
have a coherent and LEB compatible triangulation

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Propagate Simplify)

129

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(PROPAGATE_SIMPLIFY_BISECTORS); // HeapIDs: 21, 24

// Was the neighbor merged ?
if (was_merged(neighborID)
{
 if (was_deleted(neighborID)
 adjust_neighbors(neighborPairID, currentID);
 else
 adjust_neighbors(neighborID, currentID);
}
else
 adjust_neighbors(neighborID, currentID);

CPU

GPU

Reset

Classify

Split

Decode

But we’re not done yet, there are couple steps left before we get to the end of our
update routine.
We did modify the bit field in the previous steps, but the tree now doesn’t match
anymore. The next one is operating a sum reduction on the CBT’s tree

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Reduction)

130

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

CPU Commands Reset

Classify

Split

Decode

Let’s again take the example of the 128k CBT

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Reduction 128K)

131

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

CPU Commands

Level 0: [0, 131072] x 1
Level 1: [0, 65536] x 2
Level 2: [0, 32768] x 4
Level 3: [0, 16384] x 8
Level 4: [0, 8192] x 16
Level 5: [0, 4096] x 32
Level 6: [0, 2048] x 64

Level 7: [0, 1024] x 128
Level 8: [0, 512] x 256
Level 9: [0, 256] x 512
Level 10: [0, 128] x 1024

Level 17: Raw 64 bits representation

Reset

Classify

Split

Decode

First we do a reduction to move from our bitfield to the first explicitly stored level of the
tree

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Reduction 128K)

132

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch(1024 / 4 / 64); // REDUCE_PREPASS

CPU Commands

Level 0: [0, 131072] x 1
Level 1: [0, 65536] x 2
Level 2: [0, 32768] x 4
Level 3: [0, 16384] x 8
Level 4: [0, 8192] x 16
Level 5: [0, 4096] x 32
Level 6: [0, 2048] x 64

Level 7: [0, 1024] x 128
Level 8: [0, 512] x 256
Level 9: [0, 256] x 512
Level 10: [0, 128] x 1024

Level 17: Raw 64 bits representation
Prepass

Reset

Classify

Split

Decode

Then another pass within the pet-thread atomic part of the tree

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Reduction 128K)

133

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch(1024 / 4 / 64); // REDUCE_PREPASS
m_cmdBuffer->dispatch(512 / 64); // REDUCE_FIRST_PASS

CPU Commands

Level 0: [0, 131072] x 1
Level 1: [0, 65536] x 2
Level 2: [0, 32768] x 4
Level 3: [0, 16384] x 8
Level 4: [0, 8192] x 16
Level 5: [0, 4096] x 32
Level 6: [0, 2048] x 64

Level 7: [0, 1024] x 128
Level 8: [0, 512] x 256
Level 9: [0, 256] x 512
Level 10: [0, 128] x 1024

Level 17: Raw 64 bits representation
Prepass

First Pass

Reset

Classify

Split

Decode

Finally one single workgroup will do the full sum reduction on the atomic friendly tree.
With that we’re able to do the have the full tree updated at a reasonable cost.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Reduction 128K)

134

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch(1024 / 4 / 64); // REDUCE_PREPASS
m_cmdBuffer->dispatch(512 / 64); // REDUCE_FIRST_PASS
m_cmdBuffer->dispatch(1); // REDUCE_SECOND_PASS

CPU Commands

Level 0: [0, 131072] x 1
Level 1: [0, 65536] x 2
Level 2: [0, 32768] x 4
Level 3: [0, 16384] x 8
Level 4: [0, 8192] x 16
Level 5: [0, 4096] x 32
Level 6: [0, 2048] x 64

Level 7: [0, 1024] x 128
Level 8: [0, 512] x 256
Level 9: [0, 256] x 512
Level 10: [0, 128] x 1024

Level 17: Raw 64 bits representation
Prepass

First Pass

Second Pass

Reset

Classify

Split

Decode

To illustrate what i mean by reasonable, here you can see a table that recaps the
reduction time for each CBT size that we provide in our demo and for 3 GPUs (Intel
Arc 770, AMD 6650 XT and Nvidia 4090)

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Reduction 128K)

135

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch(1024 / 4 / 64); // REDUCE_PREPASS
m_cmdBuffer->dispatch(512 / 64); // REDUCE_FIRST_PASS
m_cmdBuffer->dispatch(1); // REDUCE_SECOND_PASS

CPU Commands

Level 0: [0, 131072] x 1
Level 1: [0, 65536] x 2
Level 2: [0, 32768] x 4
Level 3: [0, 16384] x 8
Level 4: [0, 8192] x 16
Level 5: [0, 4096] x 32
Level 6: [0, 2048] x 64

Level 7: [0, 1024] x 128
Level 8: [0, 512] x 256
Level 9: [0, 256] x 512
Level 10: [0, 128] x 1024

Level 17: Raw 64 bits representation
Prepass

First Pass

Second Pass

Reset

Classify

Split

Decode

The next step is processing the modified bisectors to ensure that the positions are up
to date

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

136

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU

Reset

Classify

Split

Decode

As we mentioned before, the geometry information is encoded using the heapID and
if we break it down to a binary representation, it would look something like this

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

137

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode

The final position is obtained using a chain of matrix multiplications, each bit of the
heapID will correspond to one of two matrices

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

138

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode

These are the two matrices we use for the demo

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

139

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode

There are two issues here:
- First, even if the output position are stored using simple precision floating point and
camera relative, we have to do the multiplications in double space (otherwise we
break the floating points due to precisions issues due to to our method)
- Depending on the subdivision level, we can have up to 64 3x3 matrix multiplications
to evaluate which is a lot

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

140

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU
Up to 64 3x3 double matmul

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode

The first thing we can do is split this multiplication into two 32 3x3 float multiplications
with a 3x3 double matmul at the middle which reduces the ALU consumption and
better uses the FLOPS of the card, but is still not good enough

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

141

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode

If we decompose the heap ID into sequences of bits of equal size

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

142

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode

00000
00001
00010
00011

11111

The way we can accelerate this even more is by building what we call a matrix cache,
it is a premultiplication of all combinations over a certain number of levels (in practice,
we’ve measure that a depth of 5 is the best speedup/size compromise because we
need to load this into shared memory as we’ll be accessing it quite a bit).

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

143

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

Matrix cache to speed up the evaluation (Depth 5)

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode

00000
00001
00010
00011

11111

By doing this, we reduce the number of matrices to up to two sets of 6 3x3 mat muls
and one double 3x3 matmul which allows us to get very reasonable execution times
as you’ll see in a second.

This shader executes only for modified bisectors which is a fraction of the total
bisectors

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

144

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

Matrix cache to speed up the evaluation (Depth 5)

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1

6 3x3 float matmul X2 + 1 3x3 double matmul

Reset

Classify

Split

Decode

00000
00001
00010
00011

11111

In practice, we would load the matrix cache into shared memory

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

145

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

// Load the matrix cache
load_leb_matrix_cache_to_shared_memory(...);

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

Matrix cache to speed up the evaluation (Depth 5)

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1

6 3x3 float matmul X2 + 1 3x3 double matmul

Reset

Classify

Split

Decode

00000
00001
00010
00011

11111

We would flatten the heapID into 4 positions (3 for the current bisector and 1 for the
parent)

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

146

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

// Load the matrix cache
load_leb_matrix_cache_to_shared_memory(...);

// Flatten the heapIDs
double3 bisectorPos[4];
evaluate_positions(heapID);

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

Matrix cache to speed up the evaluation (Depth 5)

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1

6 3x3 float matmul X2 + 1 3x3 double matmul

Reset

Classify

Split

Decode

And then we would apply a transformation to map this to a spherical planet and
convert it to relative world space

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)

147

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

// Load the matrix cache
load_leb_matrix_cache_to_shared_memory(...);

// Flatten the heapIDs
double3 bisectorPos[4];
evaluate_positions(heapID);

// Apply planet coord remapping, camera relative positioning
_PositionRWSBufferRW[4 * currentID] = to_rws_planet_coord(bisectorPos[0]);
_PositionRWSBufferRW[4 * currentID + 1] = to_rws_planet_coord(bisectorPos[1]);
_PositionRWSBufferRW[4 * currentID + 2] = to_rws_planet_coord(bisectorPos[2]);
_PositionRWSBufferRW[4 * currentID + 3] = to_rws_planet_coord(bisectorPos[3]);

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

Matrix cache to speed up the evaluation (Depth 5)

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1

6 3x3 float matmul X2 + 1 3x3 double matmul

Reset

Classify

Split

Decode

00000
00001
00010
00011

11111

Finally to all existing positions, we would apply the relevant deformation, for the earth
it would be the result of a bunch of FFTs and the moon we use the displacement
maps that the NASA provides on it’s website, plus a bunch of noise functions for high
frequency details

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Deformation)

148

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

Moon

Earth

Reset

Classify

Split

Decode

These produced positions would then be used for the rendering rasterized or ray
traced

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Deformation)

149

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

DeformationRendering

move_to_twin

Reset

Classify

Split

Decode

But also for the following frame to operate the classification

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Deformation)

150

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

// Project the current triangle
float currentArea, parentArea;
project_bisector(...);

if (currentArea > TRIANGLE_SIZE)
 return SPLIT;
if (parentArea < TRIANGLE_SIZE)
 return MERGE;

return KEEP;

Rendering

move_to_twin

Reset

Classify

Split

Decode

And with that, we are ready to render our mesh to screen

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

•

The last thing we would like to cover is the performance numbers of the method, this
is a screenshot of a capture of the demo running at the surface of the earth

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Performance

In our case, we’re interested by this section, highlighted in red

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Performance

This table recaps the timings for each of the passes that we’ve explained. We did the
profiling on three GPUs:

- The Arc 770
- the AMD 6650 XT which is roughly equivalent to a PS5
- A higher end GPU, the Nvidia 4090

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Performance

Rendered at 1920x1080 - CBT 128K

The important bit there is that we’re able to stay at reasonable cost at all time and
less than 0.2ms on a hardware equivalent to a PS5 which is more than reasonable
given the achievements of the method

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Performance

Rendered at 1920x1080 - CBT 128K

The rest of the pipeline is dependent on the actual deformation that we’d use and the
general structure of the rendering pipeline.
For the demo we’re using a visibility buffer followed by a material pass.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Performance

Visibility buffer & Material Pass

These are numbers we got for the AMD 6650 XT, but these are really dependent on
how you generate your surface data really.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Performance

In addition to that i’d like to share some number ray tracing related. The method is
compatible with real-time hardware ray tracing and given that the number of primitives
remains quite “low”, we’re able to get something decent even by doing a full rebuild
every frame of the tlas and blas

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Performance

And that’s it. The full code of the demo that we’ve show is open-source and can be
found in the github that is linked here.
Also, don’t hesitate to check the paper for more detailed explanations about the
method, in the meantime, we are available for questions

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Questions

https://github.com/AnisB/large_cbt

