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ACHIEVING SCALABLE 
PERFORMANCES FOR LARGE SCALE 

GAME COMPONENTS WITH CBTS



This presentation is a follow-up of our HPG paper that we presented just a couple of 
days ago. 

The paper is called “Concurrent Binary Trees for Large-Scale Game Components”...
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…and most of the content of the paper is shown here, including…
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4 pages of implementation details shown in red! 

The reason I’m showing these is that it turns out that since we wrote the paper 6 
months ago, Anis re-worked the implementation to make it even faster. 
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So what we describe in the paper is now more or less deprecated already!
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And so in this presentation Anis will share all the details of his new implementation. 

Before he does so, I will quickly recap what the paper is about to bring everyone up to 
speed.
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The paper introduces a new algorithm to deal with large-scale game components. 
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A large-scale game component is typically what makes the virtual world of your game 
look “big”.
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Taking a few video games as example, that would be terrains, … 
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…, oceans, … 
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… or entire planets.

In each of these screenshots, pretty much everything except the characters in the 
foreground is rendered using a dedicated system.

This dedicated system is what we refer to a “large-scale game component”. 
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Most of the time, such components occupy a lot of pixels so it’s important to have a 
set of efficient algorithms to render them as fast as possible.

The goal of our paper is to contribute to this set of efficient algorithms, …
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…which can typically be classified into two categories. 
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First there’s the data-generation category, which addresses how to generate textures, 
sprites, instances, etc. 
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Second the triangulation / rendering category, which focuses on how to render this 
data.
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Our paper contributes only to the latter (so we won’t be discussing data-generation 
here) with a triangulation method capable of handling very large environments that 
can be explored at any different scales.
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And actually, our contribution is an improvement over something called “Concurrent 
Binary Trees” (CBTs), which we presented in the same course 3 years ago. 

I like to refer to our improvement as “CBT version 2”, or simply CBT-V2. I will explain 
what CBTs are in just a minute.
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Before I do just that, here is a look at what CBT-V2 can render. 

Let’s have a look at a video that captures the result of our method, which runs at 
250+FPS on a PS5 level hardware at full HD resolution.
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To provide a better sense of scale of what our CBTV2 produces, we are going to have 
a look at how dense the triangulation of this shot is.
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Here is an alternative view of the same shot and we are going to zoom into it until we 
reach the resolution of the mesh
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In terms of numbers, it turns out the full resolution mesh of our Earth model, i.e., 
without any form of level-of-detail as we do here, would require exabytes of data. 

An exabyte is a million terabytes, so it would not even fit in a large SSD.
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This prevents the use of LOD systems like Nanite, which requires the full resolution 
mesh as input.
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Note that in UE5.3, you could still handle very large meshes using their very own 
large-scale game component, which consists in coupling two representations: one for 
close scale, and the other for far away scales.

Unfortunately, hybrid representation are hard to use especially with free-flight 
cameras because it becomes really tricky to set the location of the transition between 
both representations. 

A nice advantage of our method is that it relies on a single representation so you don’t 
need to worry about these issues.
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Right, now I am going to quickly explain what a concurrent binary tree (CBT) is and 
how our method works with them, then Anis will dive into the details.
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A concurrent binary tree of CBT is a full binary tree (so each node has exactly two 
children except for the leaves) with two main parts. 
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The first part is a bitfield located at the bottom of the tree. 

So the leaf nodes only store binary values.
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The second part is a sum-reduction tree of this bitfield. 

So all remaining nodes store the number of green bits, i.e, bits set to one, in its 
corresponding subtree.  
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This means that the root node gives the total number of green bits. 

In addition, the sum-reduction tree makes it possible to iterate over the green bits, 
even if the green bits aren’t located sequentially in the bitfield.
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These properties makes it possible to use a CBT as memory pool manager that tracks 
allocated and available memory.

A memory pool is simply an array of whatever data you want to store and we set its 
capacity to that of the bitfield.

We then track allocated entries using green bits and available memory with red ones. 

This way  the root of the CBT gives us how much memory is available / allocated.
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1 14 3 0 5 15 4 12 13 10 11 7 1 5 7

3 12 12 2 6 13 13 14 15 15 9 10 7 8 1

6 0 null null null 4 0 11 14 null null null 2 6 8

uint32_t available_memory();
uint32_t allocated_memory();



We can then implement a simple allocation and de-allocation operator as follows. 
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For allocation we set a bit to one and update the sum-reduction tree.
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For de-allocation we set a bit to zero and again update the sum-reduction tree.
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Now here is what we do for our triangulations.
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Our method takes a halfedge mesh as input…
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Data

16 34 18 19 20 42 22 46 48 25 26 27

1 14 3 0 5 15 4 12 13 10 11 7

3 12 12 2 6 13 13 14 15 15 9 10

6 0 null null null 4 0 11 14 null null null

uint32_t available_memory();
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… and produces a triangle for each halfedge (feel free to go back and forth between 
this slide and the previous one).
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uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 34 18 19 20 42 22 46 48 25 26 27

1 14 3 0 5 15 4 12 13 10 11 7

3 12 12 2 6 13 13 14 15 15 9 10

6 0 null null null 4 0 11 14 null null null



We then compress the 3 vertices of each triangle into a single integer value that we 
call a heapID and store it in a dedicated entry of the memory pool. 

In this example we have 12 triangles so we require 12 slots in the memory pool.
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Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 14 3 0 5 15 4 12 13 10 11 7

3 12 12 2 6 13 13 14 15 15 9 10

6 0 null null null 4 0 11 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();



As an example, the triangle 23 is stored in slot 7. 

In addition to the heapID, we also store neighborhood information with pointers. 
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Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 14 3 0 5 15 4 12 13 10 11 7

3 12 12 2 6 13 13 14 15 15 9 10

6 0 null null null 4 0 1171 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();



Continuing with triangle 23, the neighbors are triangle 24, which is located at slot 8…
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Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 14 3 0 5 15 4 8 13 10 11 7

3 12 12 2 6 13 13 15 15 9 10

6 0 null null null 4 0 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();



… triangle 27, which is located at slot 11 …
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Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 14 3 0 5 15 4 8 13 10 11 7

3 12 12 2 6 13 13 11 15 15 9 10

6 0 null null null 4 0 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();



… and triangle 17, which is located at slot 1. 
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sum-reduction tree

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 14 3 0 5 15 4 8 13 10 11 7

3 12 12 2 6 13 13 11 15 15 9 10

6 0 null null null 4 0 1 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();



And naturally we do this for each triangle.
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Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 2 3 0 5 6 4 8 9 10 11 7

3 0 1 2 6 4 5 11 7 8 9 10

6 7 null null null 8 0 1 14 null null null

uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();



The reason we store this information is because we implement a bisection scheme 
that can split triangles into two new ones. 

Naively bisecting a triangle would produce a T-junction, which would result in cracks 
in the final surface.
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uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 2 3 0 5 6 4 8 9 10 11 7

3 0 1 2 6 4 5 11 7 8 9 10

6 7 null null null 8 0 1 14 null null null



But thanks to the neighborhood information, we can propagate bisections across 
multiple triangles to guarantee crack-free surfaces.
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uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 2 3 0 5 6 4 8 9 10 11 7

3 0 1 2 6 4 5 11 7 8 9 10

6 7 null null null 8 0 1 14 null null null



Last thing for me: the memory pool we use for our demo is 128k wide, which requires 
7 MB of memory in total. 

That concludes my overview of the paper. 

The key takeaway here is that CBTs provide a way to allocate, release, and iterate 
over all the elements of a memory pool.

And as Anis will show, all this can be done efficiently on the GPU. 

Your turn Anis!
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uint32_t available_memory();
uint32_t allocated_memory();

uint32_t atomic_allocation();

uint32_t atomic_deallocation();

Memory Pool 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Data

16 17 18 19 20 21 22 23 24 25 26 27

1 2 3 0 5 6 4 8 9 10 11 7

3 0 1 2 6 4 5 11 7 8 9 10

6 7 null null null 8 0 1 14 null null null

Note: our demo uses a 128k memory pool (requires 7 MB of memory)



We’re going to dig into some of the implementation details that allowed us to reach 
reasonable performance numbers with this method.

That said, we’ll not go into code details due to the limited time we have.

The full source code of the demo is released and is available for you to explore and 
play with it!
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First, We’ll precise the implementation of the CBT.

We’d like to store the CBT in the group shared memory to make the access more 
efficient when reading and writing.

As an example, we’ll use the 128k elements CBT in this presentation, but as we 
mentioned before we can go higher (or lower) depending on the needs of the 
application

The CBT needs to be readable and writable from worker threads. We could use 
uint32_t to benefit from the atomic intrinsics, but there is an issue with that:
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54

// Store in shared memory, atomic friendly

groupshared uint32_t gs_cbt[cbt_num_nodes];



The number of nodes of the CBT is twice the size of the bitfield, which would, if 
naively stored would be around one 1MB

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

55

// Store in shared memory, atomic friendly
const uint32_t cbt_num_nodes = 2 *  (128 * 1024); // 262144
groupshared uint32_t gs_cbt[cbt_num_nodes]; // 1 MB



However, the group shared memory storage is limited to 32KB on dx12 so we need a 
better representation!
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// Store in shared memory, atomic friendly
const uint32_t cbt_num_nodes = 2 *  (128 * 1024); // 262144
groupshared uint32_t gs_cbt[cbt_num_nodes]; // 1 MB

Limited to 32 KB on DX12  !!!



Each level of the tree is defined by 4 things:
- The number of nodes within the level
- The range of values each node can represent
- The minimal size of each node to represent that range
- The final size used to represent each node

So what we’ll do is decompose the tree into multiple parts with different constraints
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Level X: [Range] x Num Values, Min size, Actual Size



The first part in red that is an atomic-friendly subtree

During modification, all threads can write safely to any node of the tree.

Each node is represented by uint32_t to benefit from the atomic intrinsics. This is 
stored in the group shared memory;
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● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level X: [Range] x Num Values, Min size, Actual Size



Iin green, we have several subtrees, each subtree will only be modified by one thread 
at a time.

The size of each node is rounded to the closest power of two to represent the data 
underneath. This is also stored in the group shared memory;
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● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)
● Thread Sub-trees (Min size, aligned on powers of 2, group shared memory)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level X: [Range] x Num Values, Min size, Actual Size



Then there are what we call virtual levels. These are not represented explicitly,
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● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)
● Thread Sub-trees (Min size, aligned on powers of 2, group shared memory)
● Virtual Tree (not explicitly represented)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 11: [0, 64] x 2048, Min 7 bits (Virtual)
Level 12: [0, 32] x 4096, Min 6 bits (Virtual)
Level 13: [0, 16] x 16384, Min 5 bits (Virtual)
Level 14: [0, 8] x 32768, Min 4 bits (Virtual)
Level 15: [0, 4] x 65536, Min 3 bits (Virtual)
Level 16: [0, 2] x 131072, Min 2 bits (Virtual)

Level X: [Range] x Num Values, Min size, Actual Size



 but can be deduced from the last level
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● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)
● Thread Sub-trees (Min size, aligned on powers of 2, group shared memory)
● Virtual Tree (not explicitly represented)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 11: [0, 64] x 2048, Min 7 bits (Virtual)
Level 12: [0, 32] x 4096, Min 6 bits (Virtual)
Level 13: [0, 16] x 16384, Min 5 bits (Virtual)
Level 14: [0, 8] x 32768, Min 4 bits (Virtual)
Level 15: [0, 4] x 65536, Min 3 bits (Virtual)
Level 16: [0, 2] x 131072, Min 2 bits (Virtual)

Level X: [Range] x Num Values, Min size, Actual Size



Which is the rawbitfield. This bitfield it is represented using uint64_t to benefit from 
some intrinsic functions and is stored in a structured buffer outside of the shared 
memory.
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● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)
● Thread Sub-trees (Min size, aligned on powers of 2, group shared memory)
● Virtual Tree (not explicitly represented)
● Raw Bitfield Buffer (uint64_t, StructuredBuffer)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 11: [0, 64] x 2048, Min 7 bits (Virtual)
Level 12: [0, 32] x 4096, Min 6 bits (Virtual)
Level 13: [0, 16] x 16384, Min 5 bits (Virtual)
Level 14: [0, 8] x 32768, Min 4 bits (Virtual)
Level 15: [0, 4] x 65536, Min 3 bits (Virtual)
Level 16: [0, 2] x 131072, Min 2 bits (Virtual)

Level 17: Raw 64 bits representation

Level X: [Range] x Num Values, Min size, Actual Size



And this the memory footprint of a 128k  bit CBT. In the implementation, you’ll find the 
layout for the other sizes of the CBT
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● Atomic-friendly Sub-tree (uint32_t aligned, group shared memory)
● Thread Sub-trees (Min size, aligned on powers of 2, group shared memory)
● Virtual Tree (not explicitly represented)
● Raw Bitfield Buffer (uint64_t, StructuredBuffer)

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

Level X: [Range] x Num Values, Min size, Actual Size



Now let’s look in practice what that maps to:
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT



We have two structured buffers:
- The first one stores uint32_t and contains the red and green parts of the tree
- The second stores uint64_t and contains the bitfield (in blue)
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE



In addition to that we need an allocation buffer which is a uint32_t buffer, we’ll see 
how it is used in a second
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);



Using the memory footprint table on the right, we can deduce the size of the tree
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;



And that defines the group shared memory space our CBT occupies. In this case the 
CBT is about 3 KB, which we can consider reasonable.

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (CBT Implementation 128K)

68

Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB



The way the memory manager is used every frame is the following.
- First we’re gonna book the worst case memory we need
- Then we’re gonna allocate a bunch of bits, that will depend on the subdivision 

case we’re processing, 
- We’ll finally return to the memory manager memory space what we didn’t 

consume
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

Book & Allocate & Cancel



The booking and cancelling is done using these functions
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

Book & Allocate & Cancel



And  this function that allows us to allocate the next available memory slot
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

Book & Allocate & Cancel



Then once all the allocations have been done, we’re gonna decode the location of the 
bits that we’ve allocated
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

Decode Bit(s)

Book & Allocate & Cancel



To do so, we first have to load the CBT into shared memory for our searches, we do it 
using this function, this will copy per workgroup the tree buffer into the group shader 
memory
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

// Load and export
void load_buffer_to_shared_memory(uint32_t groupIndex);

Decode Bit(s)

Book & Allocate & Cancel



Then we actually operate the tree descents taking advantage of the very specific 
memory layout of the CBT which helps us to accelerate significantly the operation.
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

// Load and export
void load_buffer_to_shared_memory(uint32_t groupIndex);

// Find i-th bit set to zero
uint32_t decode_bit_complement(uint32_t index); Decode Bit(s)

Book & Allocate & Cancel



Then we’ll set atomically some bit to 1 (for the allocations that we’ve done) and  0 for 
the bit’s we’ve deallocated.
It is done using this function that will operate directly on the bitfield buffer.
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

// Load and export
void load_buffer_to_shared_memory(uint32_t groupIndex);

// Find i-th bit set to zero
uint32_t decode_bit_complement(uint32_t index);

// Atomic operations
void set_bit_atomic(uint32_t  bitID, bool state);

Set Bit(s) Atomic

Decode Bit(s)

Book & Allocate & Cancel



And finally we’ll operate a sum reduction on the tree to be able to return to a valid 
state. We can then take advantage of the memory layout we defined to get it 
performant, but i’ll cover it a tad later.
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

// Load and export
void load_buffer_to_shared_memory(uint32_t groupIndex);

// Find i-th bit set to zero
uint32_t decode_bit_complement(uint32_t index);

// Atomic operations
void set_bit_atomic(uint32_t  bitID, bool state);

// Reduction (Detailed later)
void reduce(...);

Sum Reduction

Set Bit(s) Atomic

Decode Bit(s)

Book & Allocate & Cancel



And we’ll repeat this operation every frame and that defines how the CBT works as a 
parallel memory manager
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Level 0: [0, 131072] x 1, Min 18 bits (rounded up to 32 bits for alignment and atomic operations)
Level 1: [0, 65536] x 2, Min 17 bits (rounded up to 32 bits for alignment and atomic operations)
Level 2: [0, 32768] x 4, Min 16 bits (bumped to 32 bits for atomic operations)
Level 3: [0, 16384] x 8, Min 15 bits (rounded up to 32 bits for alignment and atomic operations)
Level 4: [0, 8192] x 16, Min 14 bits (rounded up to 32 bits for alignment and atomic operations)
Level 5: [0, 4096] x 32, Min 13 bits (rounded up to 32 bits for alignment and atomic operations)
Level 6: [0, 2048] x 64, Min 12 bits (rounded up to 32 bits for alignment and atomic operations)

Level 7: [0, 1024] x 128, Min 11 bits (rounded up to 16 bits for alignment)
Level 8: [0, 512] x 256, Min 10 bits (rounded up to 16 bits for alignment)
Level 9: [0, 256] x 512, Min 9 bits (rounded up to 16 bits for alignment)
Level 10: [0, 128] x 1024, Min 8 bits

Level 17: Raw 64 bits representation

// Graphics Buffers that hold the CBT
RWStructuredBuffer<uint32_t> _TreeBufferRW: register(CBT_BUFFER0_BINDING_SLOT); // RED + GREEN
RWStructuredBuffer<uint64_t> _BitfieldBufferRW: register(CBT_BUFFER1_BINDING_SLOT); // BLUE
RWStructuredBuffer<uint32_t> _AllocationBufferRW: register(CBT_BUFFER2_BINDING_SLOT);

// _TreeBufferRW in the shared memory
const uint32_t tree_num_slots = (1 * 32 + 2 * 32 + ... + 1024 * 8) / 32;
groupshared uint32_t gs_cbtTree[tree_num_slots]; // ~3KB

// Memory booking
void cbt_new_frame();
void book_memory_space(uint32_t numSlots);
void cancel_memory_booking(uint32_t numSlots);

// Allocation
uint32_t allocate_next_available_slot(uint32_t bisectorID);

// Load and export
void load_buffer_to_shared_memory(uint32_t groupIndex);

// Find i-th bit set to zero
uint32_t decode_bit_complement(uint32_t index);

// Atomic operations
void set_bit_atomic(uint32_t  bitID, bool state);

// Reduction (Detailed later)
void reduce(...);

Sum Reduction

Set Bit(s) Atomic

Decode Bit(s)

Repeat Each Frame

Book & Allocate & Cancel



On the other side, we need to specify what is the memory pool like and how it’s used
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// Graphics Buffers that hold the Memory pool



As mentioned before, we need two buffers to store the HeapID and Neighbors
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// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);

65
66 67

68



Then we also need to be able to store the camera relative position. Obviously, there 
are the three positions of the vertices of the triangles
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// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);



But we actually need to store a 4th position which allows to rebuild the parent triangle 
and is required for split/merge decisions
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// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);

4 positions per bisector



In addition to that, we need some temporary data, that we’ll call those update data
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// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
};



At each update loop, a bisector can be in one of 5 states, unchanged, single split, 
double splits (two cases) or triple split.
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// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
};



We encode that split state into three bits and store it in a unit32_t to use the atomic 
intrinsics
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// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
    // Holds the subdivision pattern of a bisector, atomic friendly
    uint32_t subdivPattern;
};

0x1 0x3 0x5 0x7

0x0



Depending on the split, we’ll need up to 3 news slots to store the location of produced 
bisectors.

In this implementation, we always reuse the current bisector slot for performance and 
compactness reasons
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// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
    // Holds the subdivision pattern of a bisector, atomic friendly
    uint32_t subdivPattern;

    // Allocation Indices, we’re always reusing the previous bisector
    uint3 allocations = {UINT32_MAX, UINT32_MAX, UINT32_MAX};
};

0x1 0x3 0x5 0x7

0x0

One Alloc Two Allocs Two Allocs Three Allocs



The way the indices are assigned has to be consistent
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// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
    // Holds the subdivision pattern of a bisector, atomic friendly
    uint32_t subdivPattern;

    // Allocation Indices, we’re always reusing the previous bisector
    uint3 allocations = {UINT32_MAX, UINT32_MAX, UINT32_MAX};
};

0x1 0x3 0x5 0x7

0x0

One Alloc Two Allocs Two Allocs Three Allocs

Previous Slot

First Alloc

Second Alloc

Third Alloc



In that way, for any split combination at an interface between two bisectors
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// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
    // Holds the subdivision pattern of a bisector, atomic friendly
    uint32_t subdivPattern;

    // Allocation Indices, we’re always reusing the previous bisector
    uint3 allocations = {UINT32_MAX, UINT32_MAX, UINT32_MAX};
};

0x1 0x3 0x5 0x7

0x0

One Alloc Two Allocs Two Allocs Three Allocs

Previous Slot

First Alloc

Second Alloc

Third Alloc



We’re able to predict the neighbor data using simply the update and neighbor data of 
the current and neighbor bisectors.

This is important and it is the cornerstone of the sync free parallel implementation
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// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
    // Holds the subdivision pattern of a bisector, atomic friendly
    uint32_t subdivPattern;

    // Allocation Indices, we’re always reusing the previous bisector
    uint3 allocations = {UINT32_MAX, UINT32_MAX, UINT32_MAX};
};

0x1 0x3 0x5 0x7

0x0

One Alloc Two Allocs Two Allocs Three Allocs

Previous Slot

First Alloc

Second Alloc

Third Alloc



In addition to that we need an array to store additional flags and neighbors 
propagation data
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// Graphics Buffers that hold the Memory pool
RWStructuredBuffer<uint64_t> _HeapIDBufferRW: register(POOL_BUFFER0_BINDING_SLOT);
RWStructuredBuffer<uint3> _NeighborsBufferRW: register(POOL_BUFFER1_BINDING_SLOT);
RWStructuredBuffer<float3> _PositionRWSBufferRW: register(POOL_BUFFER2_BINDING_SLOT);
RWStructuredBuffer<UpdateData> _UpdateDataBuffer: register(POOL_BUFFER3_BINDING_SLOT);

struct UpdateData
{
    // Holds the subdivision pattern of a bisector, atomic friendly
    uint32_t subdivPattern;

    // Allocation Indices, we’re always reusing the previous bisector
    uint3 allocations = {UINT32_MAX, UINT32_MAX, UINT32_MAX};

    // Visibility and modification flags of a bisector
    uint32_t flags;

    // Used for patching neighbors after modifications 
    uint2 propagation;
};



And with that, we’ve defined the CBT implementation and the Memory pool layout.

Now let’s look at the update routine itself, each block on the right maps to one or 
multiple compute shader
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Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation



So for a given triangulation, there is a corresponding memory pool
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Reset

Classify

Split

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation



Most of the passes will be an indirect dispatch based on the a given set of bisectors.
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Reset

Classify

Split

Indirect Dispatches

Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread Thread

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation



The set of bisectors will change based on the pass 
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Reset

Classify

Split

Indirect Dispatches

Thread Thread Thread

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

Thread



and the subset will be specified at each pass of the pipeline
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Reset

Classify

Split

Indirect Dispatches

Thread Thread Thread Thread

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

ThreadThread



Alright, the first step of the pipeline is “Reset”
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Classify

Split

Reset

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation



This pass is a single thread dispatch that:
- prepares the allocations for the frame
- resets the bisector queues for indirect dispatches
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Reset

Classify

Split

m_cmdBuffer->dispatch(1, 1, 1); // One thread

CPU

// CBT function
cbt_new_frame();

// Bisector queues for indirect dispatches
reset_queues();

GPU
Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation



For the second pass, “Classify”, each thread will run for one active bisector
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Reset

Classify

Split

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

State Keep Keep Keep Keep Keep Merge Keep Split Merge Keep Keep Keep Keep Merge Keep Merge

m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49

CPU

GPU
Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation



The idea is to classify each bisector in one of 3 states, Keep, Merge or Split.
Depending on what we’re trying to achieve the criteria for these operations can 
change, but for the demo here are the ones we used
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m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49
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First, we do a NdotV test and flag it for merge if it fails
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Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

State Keep Keep Keep Keep Keep Merge Keep Split Merge Keep Keep Keep Keep Merge Keep Merge

m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49

// Is the current bisector visible?
if (NdotV < 0.0)
    return MERGE;
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We then intersect one or multiple frustums and flag it for merge if it does not intersect 
any of them
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Parallel Update Routine (Classify)

Reset
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Split

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

State Keep Keep Keep Keep Keep Merge Keep Split Merge Keep Keep Keep Keep Merge Keep Merge

m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49

// Is the current bisector visible?
if (NdotV < 0.0)
    return MERGE;

// Does the bisector intersect the camera(s) frustum(s)
if (not intersect_frustum(...))
   return MERGE;
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Then we’ll project the 4 vertices and evaluate the projected area of the triangle and 
the parent triangle
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Parallel Update Routine (Classify)

Reset
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Split

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

State Keep Keep Keep Keep Keep Merge Keep Split Merge Keep Keep Keep Keep Merge Keep Merge

m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49

// Is the current bisector visible?
if (NdotV < 0.0)
    return MERGE;

// Does the bisector intersect the camera(s) frustum(s)
if (not intersect_frustum(...))
   return MERGE;

// Project the current triangle 
float currentArea, parentArea;
project_bisector(...);
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We compare those area to a triangle size that is defined by the application and flag 
the bisector for merge, split or keep depending on the result
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Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Heap ID 16 34 18 19 20 42 22 46 48 25 26 27 35 43 47 49

State Keep Keep Keep Keep Keep Merge Keep Split Merge Keep Keep Keep Keep Merge Keep Merge

m_cmdBuffer->dispatch_indirect(ACTIVE_BISECTORS); // HeapIDs: 16, 18, 19, …..48, 49

// Is the current bisector visible?
if (NdotV < 0.0)
    return MERGE;

// Does the bisector intersect the camera(s) frustum(s)
if (not intersect_frustum(...))
   return MERGE;

// Project the current triangle 
float currentArea, parentArea;
project_bisector(...);

if (currentArea > TRIANGLE_SIZE)
   return SPLIT;
if (parentArea < TRIANGLE_SIZE)
  return MERGE;
return KEEP;
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Then we move on to the “Split” pass, this will only run on the bisectors that have been 
tagged for as requiring a split.

In the example that would be only the bisector with the heapid 46.
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m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46
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The first thing we need to do is figure out what is the worst case allocation size we 
need to guarantee the propagation of this split.

If we cannot guarantee the required memory space, the split cannot go through, that 
would break the LEB scheme
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m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;
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The naive solution that is 2 *  depth - 1 ends up causing under tessellation issues 
when moving at a high speed and this is not viable
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m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;
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There is a better way of doing it that we’ll not detail in the presentation but you can 
find the details in the source code we share

Once we have that estimation, we’ll try to book that amount of memory from the CBT. 
Again we fail to guarantee that amount, this split won’t go through as we cannot 
preserve the LEB scheme
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m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;
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If we manage to book the worst case, we de-recursify the propagation algorithm into a 
while loop that will split each triangle, allocate one or multiple slots, propagate the 
subdivision to the twins all the bits we need until we’re done.
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m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;

// Propagate the split until we are done
uint32_t usedMemory = 1;
while (not done)
{
    if (currentDepth == twinDepth || already_split(twinID))
    {
        InterlockedOr(twinUpdateData.subdivPattern, 0x1);
        usedMemory  += 1;
        allocate_next_available_slot();
        done =  true;
    }
    else
    {
        InterlockedOr(twinUpdateData.subdivPattern, rightSuddiv ? 0x3 : 0x5);
        usedMemory  += 2;
        allocate_next_available_slot(); allocate_next_available_slot(); 
        move_to_twin();
    }
}
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So in this case we do the first allocation, but we have a T junction so we continue on 
our path
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m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;

// Propagate the split until we are done
uint32_t usedMemory = 1;
while (not done)
{
    if (currentDepth == twinDepth || already_split(twinID))
    {
        InterlockedOr(twinUpdateData.subdivPattern, 0x1);
        usedMemory  += 1;
        allocate_next_available_slot();
        done =  true;
    }
    else
    {
        InterlockedOr(twinUpdateData.subdivPattern, rightSuddiv ? 0x3 : 0x5);
        usedMemory  += 2;
        allocate_next_available_slot(); allocate_next_available_slot(); 
        move_to_twin();
    }
}
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Which leads us to doing two more allocations and we’re good to go.
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m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;

// Propagate the split until we are done
uint32_t usedMemory = 1;
while (not done)
{
    if (currentDepth == twinDepth || already_split(twinID))
    {
        InterlockedOr(twinUpdateData.subdivPattern, 0x1);
        usedMemory  += 1;
        allocate_next_available_slot();
        done =  true;
    }
    else
    {
        InterlockedOr(twinUpdateData.subdivPattern, rightSuddiv ? 0x3 : 0x5);
        usedMemory  += 2;
        allocate_next_available_slot(); allocate_next_available_slot(); 
        move_to_twin();
    }
}
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Finally we’re return to the CBT the memory space that we didn't allocate
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m_cmdBuffer->dispatch_indirect(SPLIT_BISECTORS); // HeapIDs: 46

// Define how much memory we need to reserve for the worst case
// The naive solution is 2 * depth - 1, not viable, need to do better
uint32_t maxMemory = eval_max_memory(...);

// Try to book the maximum memory we would need
if (not book_memory(maxMemory)) return;

// Propagate the split until we are done
uint32_t usedMemory = 1;
while (not done)
{
    if (currentDepth == twinDepth || already_split(twinID))
    {
        InterlockedOr(twinUpdateData.subdivPattern, 0x1);
        usedMemory  += 1;
        allocate_next_available_slot();
        done =  true;
    }
    else
    {
        InterlockedOr(twinUpdateData.subdivPattern, rightSuddiv ? 0x3 : 0x5);
        usedMemory  += 2;
        allocate_next_available_slot(); allocate_next_available_slot(); 
        move_to_twin();
    }
}

// Return the memory that we did not use
cancel_memory_booking(maxMemory  - usedMemory);
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The next step “Decode”, runs on the bisectors that have been flagged for a 
subdivision, (46 and 27 in this case),

This will associate each allocated slot with a free bit of the CBT

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Decode)

111

Reset

Classify

Split

Decode

Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27
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For this pass we need to load the CBT into the shared memory first

The number of bits set to 1 of the subdivision pattern gives us the number of decodes 
we need to do.

We do those decodes and store them in the update data

Once this is done, we move on to the next step
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m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27

// We need to load the CBT into the shared memory
load_buffer_to_shared_memory(...);

// Depending on the subdivision pattern, the number of bits we need to allocate varies
uint32_t numAllocations = countbits(updateData.subdivPattern);

// Allocate the bits
for (uint32_t allocIdx = 0; allocIdx < numAllocations; ++allocIdx)
    updateData.allocations[allocIdx] = decode_bit_complement(...);
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The following pass, “Bisect”, that runs on the same set of bisectors than the decode 
pass, aka every bisector that will be splitted
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m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27
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Based on the subdivision pattern of the current bisector and and the one of its 
neighbors, we’ll modify the heap ID and adjust neighbor pointers.

This only partially updates the neighbors and we still have problematic interfaces 
(marked in red in the example) that will be resolved in the following pass
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m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27

void update_bisectors(uint32_t ID0, uint32_t ID1, …)
{
    // Depending on the pattern and the neighbors pattern
    // Modify the neighbors, heapID and flag which subdivision needs to be propagated
} 

// Depending on the subdivision pattern, we need to modify the allocated bisectors
if (subdivPattern == 0x1)
    update_bisectors(currentID, upData.allocation[0]);

else if (subdivPattern == 0x3 ||subdivPattern == 0x5)
    update_bisectors(currentID, upData.allocation[0], upData.allocation[1]);

else if (subdivPattern == 0x7)
    update_bisectors(currentID, upData.allocation[0], upData.allocation[1], upData.allocation[2]);
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This will produce the new state of the triangulation
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m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27

void update_bisectors(uint32_t ID0, uint32_t ID1, …)
{
    // Depending on the pattern and the neighbors pattern
    // Modify the neighbors, heapID and flag which subdivision needs to be propagated
} 

// Depending on the subdivision pattern, we need to modify the allocated bisectors
if (subdivPattern == 0x1)
    update_bisectors(currentID, upData.allocation[0]);

else if (subdivPattern == 0x3 ||subdivPattern == 0x5)
    update_bisectors(currentID, upData.allocation[0], upData.allocation[1]);

else if (subdivPattern == 0x7)
    update_bisectors(currentID, upData.allocation[0], upData.allocation[1], upData.allocation[2]);
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And finally we’ll update the bits of the CBT based on the number of allocations that 
were required for this split
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m_cmdBuffer->dispatch_indirect(SUBDIV_BISECTORS); // HeapIDs: 46, 27

void update_bisectors(uint32_t ID0, uint32_t ID1, …)
{
    // Depending on the pattern and the neighbors pattern
    // Modify the neighbors, heapID and flag which subdivision needs to be propagated
} 

// Depending on the subdivision pattern, we need to modify the allocated bisectors
if (subdivPattern == 0x1)
    update_bisectors(currentID, upData.allocation[0]);

else if (subdivPattern == 0x3 ||subdivPattern == 0x5)
    update_bisectors(currentID, upData.allocation[0], upData.allocation[1]);

else if (subdivPattern == 0x7)
    update_bisectors(currentID, upData.allocation[0], upData.allocation[1], upData.allocation[2]);

// Atomic modification of the bitfield
for (uint32_t allocIdx = 0; allocIdx < numAllocations; ++allocIdx)
    set_bit_atomic(upData.allocation[allocIdx], true);
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The next step, “Propagate Bisect”, will process these problematic interfaces by 
changing the neighbors when required
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m_cmdBuffer->dispatch_indirect(PROPAGATE_SPLIT_BISECTORS); // HeapIDs: 93
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The patching routine has to take into account if the neighbor was split (and how it was 
split, once, twice or thrice) and adjust the neighbors accordingly

That covers it for the split part of the algorithm. Now we need to process the merges, 
It is roughly the same approach as the splits, but simpler as there are no propagation 
to account for.
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m_cmdBuffer->dispatch_indirect(PROPAGATE_SPLIT_BISECTORS); // HeapIDs: 93

// Did the neighbor split ?
if (was_split(neighborID)
        // Adjust based on the subdivision pattern of the neighbor
else
    adjust_neighbors(neighborID, currentID);
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The first pass is “Prepare simplify”, This dispatch will run on the 4 bisectors that have 
been flagged for simplification
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m_cmdBuffer->dispatch_indirect(MERGE_BISECTORS); // HeapIDs: 42, 43, 48, 49
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To avoid synchronization and racing conditions, the bisector with the smallest heapID 
in the four is in charge of checking and registering for the simplification.

In the example, that would be the bisector with the heapID 42

(Actually in practice, we don’t enqueue the bisectors with odd heap IDs into the merge 
queue as an optimization)
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m_cmdBuffer->dispatch_indirect(MERGE_BISECTORS); // HeapIDs: 42, 43, 48, 49

// The bisector with the smallest heapID of the 4 is in charge of doing the operation
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We can easily identify which one it is using the depth of the bisectors and their 
heapIDs
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m_cmdBuffer->dispatch_indirect(MERGE_BISECTORS); // HeapIDs: 42, 43, 48, 49

// The bisector with the smallest heapID of the 4 is in charge of doing the operation
if (heapID % 2 != 0 || pairDepth != currentDepth)
    return;

if (twinHeapID < heapID 
    || twinDepth != currentDepth 
    || twinPairDepth != currentDepth)
    return;
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That bisector is then in charge of making sure they all required a merge operation and 
if it is the case, it will enqueue for the next step
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m_cmdBuffer->dispatch_indirect(MERGE_BISECTORS); // HeapIDs: 42, 43, 48, 49

// The bisector with the smallest heapID of the 4 is in charge of doing the operation
if (heapID % 2 != 0 || pairDepth != currentDepth)
    return;

if (twinHeapID < heapID 
    || twinDepth != currentDepth 
    || twinPairDepth != currentDepth)
    return;

// All four bisectors need to request a merge and be at the same depth
if (!merge_request(currentID)
    || !merge_request(pairID)
    || !merge_request(twinID)
    || !merge_request(twinPairID))
    return;

// This bisector need to process the simplification
enqueue_for_simplify(currentID);
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Which is the “Simplify” step, this will only run for the bisector 42 in 
this case
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m_cmdBuffer->dispatch_indirect(SIMPLIFY_BISECTORS); // HeapIDs: 42
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We update the bisectors that will remain (the ones with the smallest heapIDs for each 
pair, 42 and 48 in this case) and free the one other ones (43 and 49).
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m_cmdBuffer->dispatch_indirect(SIMPLIFY_BISECTORS); // HeapIDs: 42

// Update the current bisector and free it’s pair
update_bisector(currentID);
free_bisector_slot(pairID);

// Update the twin bisector and free it’s pair
update_bisector(twinID);
free_bisector_slot(twinPairID);
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The same way than for split, we update the heapID and only partially the neighbors 
that will be updated in the following pass. This generates the new triangulation.
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m_cmdBuffer->dispatch_indirect(SIMPLIFY_BISECTORS); // HeapIDs: 42

// Update the current bisector and free it’s pair
update_bisector(currentID);
free_bisector_slot(pairID);

// Update the twin bisector and free it’s pair
update_bisector(twinID);
free_bisector_slot(twinPairID);

CPU

GPU

Reset

Classify

Split

Decode



Then we set the bits in the CBT to zero for the unused slots
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Parallel Update Routine (Simplify)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(SIMPLIFY_BISECTORS); // HeapIDs: 42

// Update the current bisector and free it’s pair
update_bisector(currentID);
free_bisector_slot(pairID);

// Update the twin bisector and free it’s pair
update_bisector(twinID);
free_bisector_slot(twinPairID);

// Set the bits to zero
set_bit_atomic(pairID, false);
set_bit_atomic(twinPairID, false);

CPU

GPU

Reset

Classify

Split

Decode



In this last step of the modification “Propagate simplify”, we 
dispatch on the bisectors that generated an inconsistency in the 
neighbors
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Parallel Update Routine (Propagate Simplify)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(PROPAGATE_SIMPLIFY_BISECTORS); // HeapIDs: 21, 24

CPU

GPU

Reset

Classify

Split

Decode



And depending on if the neighbors were merged we or not, the 
routine needs to take account if the bisector was deleted, etc

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Propagate Simplify)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(PROPAGATE_SIMPLIFY_BISECTORS); // HeapIDs: 21, 24

// Was the neighbor merged ?
if (was_merged(neighborID)
{
    if (was_deleted(neighborID)
        adjust_neighbors(neighborPairID, currentID);
    else
        adjust_neighbors(neighborID, currentID);
}
else
    adjust_neighbors(neighborID, currentID);

CPU

GPU

Reset

Classify

Split

Decode



And with that we’ve processed our split and merge requests and 
have a coherent and LEB compatible triangulation
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Parallel Update Routine (Propagate Simplify)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(PROPAGATE_SIMPLIFY_BISECTORS); // HeapIDs: 21, 24

// Was the neighbor merged ?
if (was_merged(neighborID)
{
    if (was_deleted(neighborID)
        adjust_neighbors(neighborPairID, currentID);
    else
        adjust_neighbors(neighborID, currentID);
}
else
    adjust_neighbors(neighborID, currentID);

CPU

GPU

Reset

Classify

Split

Decode



But we’re not done yet, there are couple steps left before we get to the end of our 
update routine. 
We did modify the bit field in the previous steps, but the tree now doesn’t match 
anymore. The next one is operating a sum reduction on the CBT’s tree
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Parallel Update Routine (Reduction)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

CPU Commands Reset

Classify

Split

Decode



Let’s again take the example of the 128k CBT 
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Parallel Update Routine (Reduction 128K)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

CPU Commands

Level 0: [0, 131072] x 1
Level 1: [0, 65536] x 2
Level 2: [0, 32768] x 4
Level 3: [0, 16384] x 8
Level 4: [0, 8192] x 16
Level 5: [0, 4096] x 32
Level 6: [0, 2048] x 64

Level 7: [0, 1024] x 128
Level 8: [0, 512] x 256
Level 9: [0, 256] x 512
Level 10: [0, 128] x 1024

Level 17: Raw 64 bits representation

Reset

Classify

Split

Decode



First we do a reduction to move from our bitfield to the first explicitly stored level of the 
tree
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Parallel Update Routine (Reduction 128K)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch(1024 / 4 / 64); // REDUCE_PREPASS

CPU Commands

Level 0: [0, 131072] x 1
Level 1: [0, 65536] x 2
Level 2: [0, 32768] x 4
Level 3: [0, 16384] x 8
Level 4: [0, 8192] x 16
Level 5: [0, 4096] x 32
Level 6: [0, 2048] x 64

Level 7: [0, 1024] x 128
Level 8: [0, 512] x 256
Level 9: [0, 256] x 512
Level 10: [0, 128] x 1024

Level 17: Raw 64 bits representation
Prepass

Reset

Classify

Split

Decode



Then another pass within the pet-thread atomic part of the tree
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Parallel Update Routine (Reduction 128K)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch(1024 / 4 / 64); // REDUCE_PREPASS
m_cmdBuffer->dispatch(512 / 64); // REDUCE_FIRST_PASS

CPU Commands

Level 0: [0, 131072] x 1
Level 1: [0, 65536] x 2
Level 2: [0, 32768] x 4
Level 3: [0, 16384] x 8
Level 4: [0, 8192] x 16
Level 5: [0, 4096] x 32
Level 6: [0, 2048] x 64

Level 7: [0, 1024] x 128
Level 8: [0, 512] x 256
Level 9: [0, 256] x 512
Level 10: [0, 128] x 1024

Level 17: Raw 64 bits representation
Prepass

First Pass

Reset

Classify

Split

Decode



Finally one single workgroup will do the full sum reduction on the atomic friendly tree. 
With that we’re able to do the have the full tree updated at a reasonable cost.
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Parallel Update Routine (Reduction 128K)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch(1024 / 4 / 64); // REDUCE_PREPASS
m_cmdBuffer->dispatch(512 / 64); // REDUCE_FIRST_PASS
m_cmdBuffer->dispatch(1); // REDUCE_SECOND_PASS

CPU Commands

Level 0: [0, 131072] x 1
Level 1: [0, 65536] x 2
Level 2: [0, 32768] x 4
Level 3: [0, 16384] x 8
Level 4: [0, 8192] x 16
Level 5: [0, 4096] x 32
Level 6: [0, 2048] x 64

Level 7: [0, 1024] x 128
Level 8: [0, 512] x 256
Level 9: [0, 256] x 512
Level 10: [0, 128] x 1024

Level 17: Raw 64 bits representation
Prepass

First Pass

Second Pass

Reset

Classify

Split

Decode



To illustrate what i mean by reasonable, here you can see a table that recaps the 
reduction time for each CBT size that we provide in our demo and for 3 GPUs (Intel 
Arc 770, AMD 6650 XT and Nvidia 4090)
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Parallel Update Routine (Reduction 128K)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch(1024 / 4 / 64); // REDUCE_PREPASS
m_cmdBuffer->dispatch(512 / 64); // REDUCE_FIRST_PASS
m_cmdBuffer->dispatch(1); // REDUCE_SECOND_PASS

CPU Commands

Level 0: [0, 131072] x 1
Level 1: [0, 65536] x 2
Level 2: [0, 32768] x 4
Level 3: [0, 16384] x 8
Level 4: [0, 8192] x 16
Level 5: [0, 4096] x 32
Level 6: [0, 2048] x 64

Level 7: [0, 1024] x 128
Level 8: [0, 512] x 256
Level 9: [0, 256] x 512
Level 10: [0, 128] x 1024

Level 17: Raw 64 bits representation
Prepass

First Pass

Second Pass

Reset

Classify

Split

Decode



The next step is processing the modified bisectors to ensure that the positions are up 
to date

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU

Reset

Classify

Split

Decode



As we mentioned before, the geometry information is encoded using the heapID and 
if we break it down to a binary representation, it would look something like this
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Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode



The final position is obtained using a chain of matrix multiplications, each bit of the 
heapID will correspond to one of two matrices
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Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode



These are the two matrices we use for the demo
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Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode



There are two issues here:
- First, even if the output position are stored using simple precision floating point and 
camera relative, we have to do the multiplications in double space (otherwise we 
break the floating points due to precisions issues due to to our method)
- Depending on the subdivision level, we can have up to 64 3x3 matrix multiplications 
to evaluate which is a lot
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Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU
Up to 64 3x3 double matmul

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode



The first thing we can do is split this multiplication into two 32 3x3 float multiplications 
with a 3x3 double matmul at the middle which reduces the ALU consumption and 
better uses the FLOPS of the card, but is still not good enough
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Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode



If we decompose the heap ID into sequences of bits of equal size
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Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode

00000
00001
00010
00011
        
11111



The way we can accelerate this even more is by building what we call a matrix cache, 
it is a premultiplication of all combinations over a certain number of levels (in practice, 
we’ve measure that a depth of 5 is the best speedup/size compromise because we 
need to load this into shared memory as we’ll be accessing it quite a bit).
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Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

Matrix cache to speed up the evaluation (Depth 5)

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1
Reset

Classify

Split

Decode

00000
00001
00010
00011
        
11111



By doing this, we reduce the number of matrices to up to two sets of 6 3x3 mat muls 
and one double 3x3 matmul which allows us to get very reasonable execution times 
as you’ll see in a second.

This shader executes only for modified bisectors which is a fraction of the total 
bisectors
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Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

Matrix cache to speed up the evaluation (Depth 5)

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1

6 3x3 float matmul X2  + 1 3x3 double matmul

Reset

Classify

Split

Decode

00000
00001
00010
00011
        
11111



In practice, we would load the matrix cache into shared memory

© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

// Load the matrix cache
load_leb_matrix_cache_to_shared_memory(...);

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

Matrix cache to speed up the evaluation (Depth 5)

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1

6 3x3 float matmul X2  + 1 3x3 double matmul

Reset

Classify

Split

Decode

00000
00001
00010
00011
        
11111



We would flatten the heapID into 4 positions (3 for the current bisector and 1 for the 
parent)
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Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

// Load the matrix cache
load_leb_matrix_cache_to_shared_memory(...);

// Flatten the heapIDs
double3 bisectorPos[4];
evaluate_positions(heapID);

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

Matrix cache to speed up the evaluation (Depth 5)

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1

6 3x3 float matmul X2  + 1 3x3 double matmul

Reset

Classify

Split

Decode



And then we would apply a transformation to map this to a spherical planet and 
convert it to relative world space
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Parallel Update Routine (Evaluate LEB)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

m_cmdBuffer->dispatch_indirect(MODIFIED_BISECTORS);

CPU

// Load the matrix cache
load_leb_matrix_cache_to_shared_memory(...);

// Flatten the heapIDs
double3 bisectorPos[4];
evaluate_positions(heapID);

// Apply planet coord remapping, camera relative positioning
_PositionRWSBufferRW[4 * currentID] = to_rws_planet_coord(bisectorPos[0]);
_PositionRWSBufferRW[4 * currentID + 1] = to_rws_planet_coord(bisectorPos[1]);
_PositionRWSBufferRW[4 * currentID + 2] = to_rws_planet_coord(bisectorPos[2]);
_PositionRWSBufferRW[4 * currentID + 3] = to_rws_planet_coord(bisectorPos[3]);

GPU
Up to 64 3x3 double matmul

32 3x3 float matmul X2 + 1 3x3 double matmul

Matrix cache to speed up the evaluation (Depth 5)

i-th bit is 0 i-th bit is 1

HeapID = 0 0 1 0 … 0 1

6 3x3 float matmul X2  + 1 3x3 double matmul

Reset

Classify

Split

Decode

00000
00001
00010
00011
        
11111



Finally to all existing positions, we would apply the relevant deformation, for the earth 
it would be the result of a bunch of FFTs and the moon we use the displacement 
maps that the NASA provides on it’s website, plus a bunch of noise functions for high 
frequency details
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Parallel Update Routine (Deformation)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

Moon 

Earth

Reset

Classify

Split

Decode



These produced positions would then be used for the rendering rasterized or ray 
traced
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Parallel Update Routine (Deformation)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

DeformationRendering

move_to_twin

Reset

Classify

Split

Decode



But also for the following frame to operate the classification
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Parallel Update Routine (Deformation)
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Bisect

Propagate Bisect

Prepare Simplify

Simplify

Propagate Simplify

Reduction

Evaluate LEB

Deformation

// Project the current triangle 
float currentArea, parentArea;
project_bisector(...);

if (currentArea > TRIANGLE_SIZE)
   return SPLIT;
if (parentArea < TRIANGLE_SIZE)
  return MERGE;

return KEEP;

Rendering

move_to_twin

Reset

Classify

Split

Decode



And with that, we are ready to render our mesh to screen
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The last thing we would like to cover is the performance numbers of the method, this 
is a screenshot of a capture of the demo running at the surface of the earth
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In our case, we’re interested by this section, highlighted in red
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Performance



This table recaps the timings for each of the passes that we’ve explained. We did the 
profiling on three GPUs:

- The Arc 770
-  the AMD 6650 XT which is roughly equivalent to a PS5
- A higher end GPU, the Nvidia 4090
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Rendered at 1920x1080 - CBT 128K



The important bit there is that we’re able to stay at reasonable cost at all time and 
less than 0.2ms on a hardware equivalent to a PS5 which is more than reasonable 
given the achievements of the method
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The rest of the pipeline is dependent on the actual deformation that we’d use and the 
general structure of the rendering pipeline.
For the demo we’re using a visibility buffer followed by a material pass.
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These are numbers we got for the AMD 6650 XT, but these are really dependent on 
how you generate your surface data really.
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In addition to that i’d like to share some number ray tracing related. The method is 
compatible with real-time hardware ray tracing and given that the number of primitives 
remains quite “low”, we’re able to get something decent even by doing a full rebuild 
every frame of the tlas and blas
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And that’s it. The full code of the demo that we’ve show is open-source and can be 
found in the github that is linked here.
Also, don’t hesitate to check the paper for more detailed explanations about the 
method, in the meantime, we are available for questions
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https://github.com/AnisB/large_cbt


