
Hi everyone, thanks for the intro Natasha.

My talk today is titled “Neural Light Grid”.

There was some smarter subtitle initially, but then I changed it to “adventures in trying

to get something useful out of ML in production”, because this talk is just about the

final solution as it is about everything that I tried and didn’t work.

Many people helped me along the way, at some point we had a more formal paper

describing these ideas and I wanted to acknowledge Peter-Pike, Ari and Pete who

worked on that too.

I’ll skip my introduction, as Natasha already did this

3

I work for Activision, in a Central Technology group. We focus mostly on the Call of

Duty franchise, and we help all our the studios achieve their goals.

We’re sort-of an R&D group, but it’s mostly the ‘D’ part, we just have a bit more

flexibility and can sometimes work on a slightly further reaching projects, but it’s not

really a typical research group, we’re very much involved in day-to-day production

Ok, so what is this talk about?

As I’m sure you’ve noticed, in the last few years there have been an explosion of

different applications of machine learning. It’s used pretty much everywhere, for

absolutely everything, there are thousands of paper coming out every year. Probably

sth like 90% of papers at SIGGRAPH this year have ML in them in some form.

And if you look at these papers – it all looks super easy!

You take some hard problem, pick a random neural network architecture, throw in

tons of data for good measure, do a brr-brr with a blender...

… and you get a spectacular success, everything works great.

And, of course I loved the idea!

Just to give you a bit of a spoiler of the rest of the talk: it was not quite like that...

But we’ll get to that

The plan for the talk is to cover a bit of what I wanted to achieve, go over a couple

most interesting things that I tried and that didn’t work, and then go over details of

what I settled on and what shipped.

Since I did a lot of work on precomputed lighting, I was naturally looking for some

application in that area.

The big question that I asked myself was: Can we use ML to modernize precomputed

lighting.

Just for some background: if you’re not familiar with Call Of Duty, it’s a first-person

action game and we heavily rely on precomputed lighting.

We mainly use a combination of lightmaps, and various volumetric represenations to

provide the diffuse component of indirect illumination.

Precomputed lighting can provide us really high quality at very little runtime cost,

because we pay that cost upfront, during development time, when we do all the heavy

calculations and store the results. At runtime we only look that information up

And while there are real time global illumination solutions and they are becoming

more widespread, they all come with non-trivial costs. Call of Duty titles run at 60Hz,

and they run at wide range of hardware, from mobile fo high-end PCs, and these

systems don’t scale well to the lower-end platorms.

We’re ok with the set of tradeoffs that precomputating lighting comes with, but we

would like to take it to the next level – for instance get to resolutions that would take

too much memory with current approaches. And we were hoping modern machine

learning could give us that.

I will start by talking about the approaches we tried, what worked, what didn’t, what

we learned from them.

Actually no, we’ll do a very quick technical primer on ML first, just for some

background, so we’re all on the same page

Machine learning is a field of study in artificial intelligence. It deals with developing

algorithms that can learn from data and generalize to data they haven’t seen before.

The most popular type of such algorithm used nowadays in ML are so called “neural

networks” – which draw some inspiration from how actual neurons work. But to be

honest is a bit of a stretch.

Under the hood, the neural network is an algorithm composed of a number of

processing steps, traditionally called “layers”.

Each layer takes some input – some multidimensional vector and produces some

output. Usually layers are parametric, so they store some values that control the thing

they do.

In the simplest form layer can be a simple matrix multiply – some vector comes in,

and gets multiplied by matrix, goes out.

Another type of layer is some non-linear operation: for instance ReLU – rectified

linear unit, which is just a fancy name for clamping any negative value to zero.

The structure of the network is usually visualized in these nice schematics. The input

is on the left, and then subsequent layers go left to rigth. I will draw layers that do

matrix multiples as blue boxes, with the number showing the dimensionality of its

output (the input size is implicit from previous layer). Yellow boxes will represent

some non-linear operation – in the example on the slide that clamping.

So the network here takes vector with 6 elements, multiplies is by 6x128 matrix,

applies the clamping, multiplies by next matrix, does next clamping, and then the next

matrix, producing 3 output.

And sometimes such combination of a dot product (=one row of matrix-vector

multiply) and non-linear operation is referred to as „neuron”

Importantly, the layer parameters, for instance values in these matrices, derived from

the data, in a process called training.

In the simplest case again, we gather a lot of „training data” – pairs of inputs to the

network together with the desired outputs.

Then we gradually tweak the parameters of the layers so that the output the network

produces for a given input is closer and closer to what we want it to be.

And how close it is is described by „loss function” – for instance a sum of sqaured

difference between components – so called L2 loss.

The algorithms that figure out how exactly tweak these parameters are usually some

derivative of gradient descent – like Adam. And they need the gradient of the loss

function which is produced by „backpropagation” which propagates the derivative of

the loss, from the very end to the earlier layers.

All this requires tons of computations in general,. The bigger the model is, the more

calculations of course, but keep in mind that it grows really quickly.

Matrix multiplies have O(n^2) complexity, so when you increase the layer by the

factor of 2, you increase the computation amount by a factor of 4.

Training itself is an iterative process and requires multiple passes to converge.

Because this high computational cost, GPUs are usually used to do the training and

evaluation efficiently.

There’s a lot of infrastructure available to help with all this – mainly in a form of

Python libraries like PyTorch or Tensorflow.

Ok, back to the main topic

Ok, lets put all this to some use!

Neural networks are great function approximators, and they can do it really efficiently

– even relatively small networks can approximate complex, multidimensional

functions with reasonable accuracy.

So we can try the simplest thing first – use the network to approximate the radiance/

the lighting distribution in some region. You can think of radiance distribution as a

function – for every position – you get some radiance.

The process would looks something like that:

We would precompute lighting within that region at some really high resolution, say

an inch density – so sth totally impractical to store directly.

Next we would train a network that given a position on the input, would give us back

that precomputed lighting on the output

This training would happen offline, and at runtime, when shading the pixel, we put the

actual position into the network and get that lighitng back.

The simplest network you can use for sth like this is a multi-layer perceptron.

It’s just a series of matrix multiplies, interleaved with some nonlinear operations. The

input gets multiplied by the first matrix, then gets processed by that non-linear

operation and so on.

This is actually the same network that i showed as an example earlier – so it takes 6

values in, does matrix multiply, then clamp to 0, matrix mulityply, another clamp,

another matrix multiply and so on. At the output we get 3 values – rgb color.

To start, our network will reconstruct the lighting only within some small region of

space, a voxel. As the input we will pass the xyz position, normalized to -1 to 1 range

and a direction in which we want to query the lighitng.

For todays standards this is a tiny model. And even like this, that middle section is

128x128 matrix multiply that’s there is already 16k multiplies – so you might already

see some problems.

And this is the result.

Just so you know what you’re looking at: this is our test scene, it’s just the secondary

lighting, the scene is generally lightmapped, except that square section in the middle

of the image which

Is this voxel from the previous slide, these section uses the neural network that was

trained offline. This this very high-resolution precomputed lighting “baked” into the

coefficients of these matrices from the previous slide.

And tbh, looks pretty good! We get this really detailed lighting, no real artifacts.

Definitely good enough to keep working on it!

First problem is of course obvious, there’s no way we can do it per pixel. I couldn’t dig

out the actual numbers for that particular test, but on PS4 where I was testing this it

was lots of milliseconds per frame something completely impractical.

So even though we used really small network for modern standards, it’s unusable if

you try to evaluate it per-pixel on anything but the latest high-end hardware, so we

need to try to work around these limitations.

Ok, if not per pixel, maybe we could do a two-stage process – first evaluate the

network to some intermediate representation, at a resolution somewhat lower than

per-pixel, and then look that up per-pixel. This would let us to share some of the

evaluation costs between the pixels.

We implemented this as virtualized volume, it was composed of 4x4x4 texel pages. If

during shading a non-existing page was accessed, it would kick off a compute job to

evaluate the network for that page in the next frame.

For this we cannot output just RGB any more, because we don’t know the surface

normal when evaluating the network. But that’s easy – since we’re working with

diffuse lighting, we can train the network to output spherical harmonics.

There’s a small caveat here, outputting just straight SH can generate subpar results,

because different coefficients have different ranges, so if you ever want to play with

sth similar, I found that thing that works best is just outputting a diffuse RGB in 9

different direction, and converting this to SH – it’s a bijection, so 1:1 mapping, and you

do it with a matrix multiply.

.

Here are some screenshots from these prototypes. The scene is divided into voxels

and we did that baking and training process for all the voxels, and rendered using that

virtualized volume.

As you can see it generally looked pretty good and worked pretty well!

We could decide decide how many bricks to fill every frame, so we can do perf

budgeting. Generating 128 bricks a frame was enough to avoid popping, and would

take aroung 1ms on ps4. The per-pixel lookup was now super-cheap, as it was just a

couple of texture lookups and an SH eval.

Of course there were some small problems here and there:

Because of how the scene was divided into voxels there were some discontinuities on

the boundaries, which you can see here and there on these images.

Then, things in the distance would generate too many bricks, so we dealt with this by

introducing cascaded volume. This in turn exposed some problems with light leaking

through the geometry when voxels became too large in the distance and also

generated some discontinuities between the cascades.

There’s also quite a bit bit of a noise from not fully converged training, there is some

noise from the bake but generally nothing that couldnt be be solved with some good,

old fashioned engineering.

So we have this nice, high resolution lighting, everything runs at 60hz, even on a 12

year old hardware – where’s the catch?

Well the catch is that we went a bit too crazy with the amount of precomputations.

First there’s the baking part. We have a really high performance baking tool, but to

bake the lighting at this 1 inch resolution for that small test scene took between 1 and

2 hours, on my 32 core i9 (we bake on the CPU)

What’s even worse: it took around 16h to train all these networks – on a pretty decent

Titan RTX - and it’s just a tiny test scene, that normally takes like 20 seconds to bake

lighting.

The scene is really small - there is around 500 voxels there, and each voxel take only

around 2 minutes to train – but it just all very quickly adds up.

So even tough it looked really promising, it quickly became clear, that there’s no way

we can afford bake times like this in production. I’m sure things could be massively

optimized in that pipeline, but even it we made it an order of magnitude faster, it

would still be an order or magnitude, if not more, too slow

It was clearly not the way.

So if the baking time is big part of the problem, maybe we could modernize the entire

pipeline, end-to-end, including the baking, with ML?

In machine learning, there is a concept called representation learning – which means

that the data is transformed and represented in some multidimentional so-called

„latent” space. The points in this latent space have some intrinsic meaning to the

system, for instance similar objects – for however you define similar – end up being

close in the latent space.

So grand idea number 2: learn a latent space of radiance distributions – so we can

represent the lighting in some area just with a single, multidimensional vector. We

have all the super nicely lit past Call Of Duty maps, so tons of data to derive such

space. And once we have that, instead of baking the lighting within a voxel, training

the network etc like before – we would just need to efficiently find the latent

represenation of a voxel.

The runtime could take that latent vector and generate the high resolustion radiance

at any point from that.

In 2018 there was this great paper from DeepMind, “Neural scene representation and

rendering”, which introduced Generative Query Networks.

The general idea was that the system was given a scene and some number of

observations of that scene – just renderings from some number of viepoints. These

observations were passed through a network 1 – representation network to form get

their latent representation – one for each observation.

Then these were combined – just added in practice – to form an aggregated

representation. And from that, network number two - decoder network could perform

novel view synthesis, render from new positions

The great thing was that the aggregated representation was probabilistic, it was a

Gaussian distribution in the latent space. So the system had a notion of how certain it

was about the structure of the scene – if the provided observations were NOT enough

to accurately reason about the scene, the variance of that distribution would be large.

But additional observations could be provided and accumulated with the earlier ones

to get a representation with smaller variance – something that could be done

iteratively.

This general scheme was something that could be potentially used to bake high-

resolution lighting, in an iterative way:

say we had the network trained to produce a latent representation of the lightgin from

some number of points – like on the left of the diagram – we would bake the lighting in

those points and the network gives us a latent representation The representation

would be a gaussian distribution, so mean and variance.

If these points were enough to reason about the radiance distribution, the resulting

variance would be small, and we would be done. But if the variance was large, we

could just bake more points, go through the diagam again -provide more observations

and get a tighter distribution

Once we’re happy, we save the representation, just the mean of the Gaussian, and at

runtime would use it together with a general decoder network to go from latent

representation to radiance at any point.

So the whole network for the voxel from the previous system is now getting replaced

with a *single* latent description of that voxel and a decoder network that is shared

between all the voxels.

We implemented all this, but this is what it looked like… hmm… not quite the result I

was hoping for.

I mean there are areas that kind-of-maybe look somewhat along the lines of doing

something reasonable, but generally no, it’s a big mess

When investigating the insides of the system the encoder part was working

reasonably well and behaving as expected – for simpler lighting distributions – like

freespace - it was enough to just bake a single set of points to get representation with

low variance. For areas with complex geometry, it needed more samples.

But then the decoder just couldn’t generate anything reasonable out of it.

So is the encoder not doing the right thing? Maybe the decoder should use different

architecture? Maybe we need more data? Maybe it’s something else entirely? That’s

the kind of questions you ask yourself, and the problem is that it’s tricky to know for

sure

So what was the problem?

Well, I was just way too conservative with the size of everything – in the end, I still

wanted it to work in real-time, so I was keeping the decoder size pretty moderate –

with 128-wider layers, or when I was feeling brave I would go to 192- or 256-wide

layers..

It turned out that to decode anything even remotely reasonable we need much much

more expressive power in the decoder. It had to be larger, trained on more data and

generally more flexible.

However even a still fairly simple architecture with 6 layers, 512-wide would take 3

milliseconds to decode a single 4x4x4 brick of our virtualized volume, decoding 128

that was needed for visual stability would be over 300ms. Ups.

And it didn’t even look good - this is what it looked like with 6 layers 512 wide – it

barely starts to resemble anything useful

This is even larger decoder, i think 768 or 1024 wide layers. Is does look slightly

better, but is still far far from the quality that we’re after, even though it takes around

10ms to decode 4x4x4 brick

I spent way too much time trying to figure out some better solution. I experimented

with smaller voxels, which were somewhat behaving better, but at a cost of much

higher memory consumption and problems with aliasing in the distance. I tried tons of

different architectures for the decoder, convolutional approaches, LSTM,

transformers, normalizing flows, I analyzed how activation layers or input encoding

affects the result – but generally the common theme was: if anything looks even

remotely promising, it’s already way too costly either on the precomputation side, on

runtime side or memory wise – or sometimes all three. So at some point, I put this

idea on the backburner.

But goddamit, all these neural networks work so well for everyone! There has to be

something there, I need to get something out of that!

Ok, lets take a step back and try to think what these failed attempts had in common.

My conclusion was that I was expecting too much from them. I wanted to reconstruct

complex, detailed signal from super compressed representation. Yes, neural

networks can generate complex data – look at DALLe, Stable Diffusion etc – but the

cost of evaluting these model is enormous compared to what we can do at real-time

rates, it’s orders of magnitude away. Smaller models have much much more

moderate results. Super-resolution using deep learning is a good example here – the

managable models do a decent job doing upscaling by a factor of 2 – generating 16

pixels from 4 – and even they are pretty large.

But I learned quite a lot during all this exploration, so maybe there is something that

we could use. Everything seems to indicate that we should stick to smaller models so

mayber we could develop one that would improve some of the systems we curretly

use?

Just to give you a brief overview of what we use in the game:

we have lightmaps both 2d and 3d, which are really hard to beat – because they are

super

we have skylight which is our internal name for a volumetric system used in the

distance,a lower LOD for lighitng, based on moving basis decomposition that Ari

talked about at EGSR few years ago,

And we have lightgid – it’s a variation of an irradiance volume used to provide lighting

for dynamic objects, volumetric effects etc

you can just query it at arbitrary point in space to get the radiance there.

We talked about it in this course in 2017. It was based on a tetrahedral mesh

connecting probes and it was starting to show its age. It was using quite a bit of

memory, The way it dealt with rejecting unwanted probes, to avoid leaking, was a bit

problematic, because it wasn’t c0 continuous. It was also difficult to deal with it on

large maps and so on. Long story short it was definitely something that could be

improved.

Our lightgrid is sampled asynchronously, into 3d texture which were then used during

actual rendering. Usually during a frame, we perform in the order of several tens of

thousands lookups – for characters, particles, volumetric effects etc. The cost of the

lookup is only somewhat important, as we don;t do that many.

But what is really important in the context of using ML for that, the spectral content of

the signal is much lower. Since we resample it anyway, we dont store super high

frequency details in the lightgrid. So we can hope it will be much easier to represent it

with a model we can afford.

So we drew some conclustions for the earlier lessons and came up with a model like

this

This is a cross section of the test map, showing radiance acorss some flat plane,

viewed from above. This can give you some idea of the signal we’re trying to encode.

You can see the bright blue outside areas, some darker insides, light falling through

doorways etc.

We create a grid of nodes across that, somewhat like probes

Since all these earlier experiments ehibited these hard edge on the voxel boundaries,

wa wanted to incorporate a smooth interpolation from the very beginning to get rid of

these.

Each of these networks is supposed to reconstruct the lighting around it – takes in the

local position and direction as an input and returns the lighting. And because each

point is influences by 4 of these, we evaluate 4 and interpolate the results.

So we took that whole lighting for the entire volume of the level and train all these

network to output that baked lighting…

And this is what came out of - reconstruction on the left, reference on the right.

As you can see, they are really, really close, neural version can represent the lighting

discontinuities at the walls really well. The bright lighting stops nicely at the edges,

there’s no leaking.

Again now the denisty of this grid is much closer to the frequencies of the signal we

want to approximate. We can do much better job with the reconstruction because we

simply don’t need to hallucinate that much.

So is that it? Are we done?

Of course not! We’re talking about replacing a system that we had working for over 6

years, with tons of tentacles everywhere.

For instance, we very much rely on the fact that our lighting representation is linear –

to do runtime compositing – we talked about it in the UberBake paper in 2020. We

cannot really use networks, as the representation because they are non-linear and

cannot be easily composed.

If you look closly at this last prototype it at it's heart, still an irradiance volume -

modernized, ML-powered but still irradiance volume - you have a grid, you interpolate

between the nodes, but the nodes are networks instead of just irradiance probes.

So what would we need to do to actually still use the irradiance probes but get some

of the benefits of neural representation?

btw, Pete Shirley, my boss worked wit me on all this as well, is one of the authors

of the original irradiance volume paper, he was very happy to go back to this topic

after 30 years.

We’ve been traditionally thinking about reconstructing lighting with irradiance volume,

as simply blending/interpolating between the stored values. This is how it was

originally described, and this is how it is most often approached.

But in this form irradiance volumes have some serious drawbacks, more importantly

they dont care about geometry and just interpolate lighting through it, generating

leaking like here

And solutoins for these problems are pretty ad hoc, we add some visibility information

to the probes, to discard ones behind walls, we nudge the lookup position (like on the

right), but its all pretty error prone

What we want it sth like this, a better, unified way to reconstruct the correct lighting.

And there’s actually a simple way to do this. We just need to properly formulate this

reconsstruction with the irradiance volume.

So formally speaking:

we have some domain S, and we want to approximate the radiance L over this

domain with the approximated radiance Lhat. The Lhat is a weighted sum of some

number of probes, Lp each weighted by some weighing function Phi, that varies

spatially.

We want the difference between the two, indicated here with the Loss function symbol

L, integrated over the entire domain to be minimized, by figuring out the radiance

stored in the probes, Lp, and the weighing functions.

In the typical irradiance volume the the weighting functions phi, are just trilinear

interpolation function, fixed. You can try to incorporate visibility into these, like in our

old system, or DDGI, but it doesn’t really mean that you minimize the reconstruction

error, or at least not in any principled way.

But we can do a proper thing and actually find weighting functions that give us the

optimizal reconstruction.

If you were to remember only one thing from that presentation, try to remember that

slide, it’s easily the most important one – don’t treat the reconstructing lighting from

probe as some ad-hoc blending, but as an actual minimization problem

TLDR of our solution: we use proper weighting functions.

So the solution we ended up with is a modern version if irradiance volume - bunch of

probes in some data structure and a representation of their weighting functions. When

sample lighting, we find which probes influence the sampling position, we evaluate

their weighting functions and blend them accordingly.

The solution that we actually ended up with and shipped was, as you can see much

more modest compared to what we started with.

We will now go over these individual elements in somewhat random order.

First lets look at the weighting functions. If we describe them in some parametric form

we can solve for them, based on the minimization problem from two slides before.

The simplest way is to just discretize these functions - point sample them - and use

some gradient descent algorithm to minimize the error, just L2 in the simplest case,

We generate 8192 random points in the space around each probe, this give a good

coverage of space, while still being manageable.

And if we then visualize functions they behave pretty much exactly as you would

expect – in free space they just look like a simple interpolation kernel, if there’s some

boundary, a wall for instance, they abruptly stop on it. They pretty much ignore small

obstacles, but smoothly wrap around large one. They are continuous in free space.

Solving for these functions is the proper thing to do. It is however a global problem –

because all the functions overlap and interact with each other, everything needs to be

solved for simultaneously, creating one, possibly very large system – and as you

might expect, it makes it pretty slow, too slow for production.

So instead of solving them, we generate them, one by one, completely independently,

but in a way that gives us results similar to what they are when solved for

The process somewhat similar to volumetric scattering. We start from the probe

position in the center. Every point of our discretization that’s visible from that center

position gets a weight that’s equal to the trilinear interpolation weight. Next we run 2

“diffusion” passes where each point that hasn’t received any contribution yet looks at

its closest neighbors and gathers their weight, with some hand-tweaked Gaussian

falloff. You can see the process on some example case. This visualization will be

used in the next slides too, this is how we debug display the discretized weighting

function: these are just the points from the discretization, but only ones on some

plane, so it’s easier to analyze. In the first step we get this initial radial pattern from

the center, but it’s occluded on the back-right by a piece of wall. In the next two steps

that function gradually creeps over the edge and smooths out.

This is a bunch of examples of the generate functions vs the learned ones – learned

ones on the left, generated on the right.

As you can se they are not identical, but they behave in a very similar way.

This whole generation process relies on knowing which of the points see which of

their neighbors. Since each probe has over 8 thousands points, and there’s usually

few hundred thousands probes on a map, just naively testing these connections

would be prohibitively slow. To speed it up, we do a bunch of things.

First, we use the same pattern of these points for every probe, so we can precompute

some things. Next, we only analyze visibility to the closest 32 neighbors for each

point. All these numbers btw are just a result of some experiments, they are some

balance between the quality of representation and computational cost.

This still gives over 260 thousands connections, so we group them and put these

links in a BVH tree. Then, for every probe we do BVH-vs-BVH test against the scene

to quickly discard big groups of connections that don’t intersect with any of the scene

geometry. Only the connections that potentially hit anything are actually tested using

regular ray intersection tests. All this allows us to compute all these intersections for a

typical scene of around 200k probes in under a minute.

The lighting that we store in the probes is also not solved for, for the same reasons.

It’s instead integrated over the support of the weighting function.

So we first bake a low-quality lighting for a subset of our support points, 256 of them –

again 256 just hit the right balance.. Next, using the mutual visibility of the points, we

propagate the lighting to the *visible* neighbors of each points. Once every point has

its lighting, we multiply it by the value of the weighting function and sum up all the

contributions.

This has a big advantage over just point-sampling the radiance – which happens

when you render a cubemap at the probe location – because it spatially filters the

radiance signal over the support of the probe. This eliminates significant spatial

aliasing that is present with point-sampled radiance/visibility (it manifests itself by a

large dependence of the probe radiance on its location, small perturbation in probe

position can massively change the entire reconstructed signal around it).

For runtime evaluation, we turn this point representatio of the weighting functions into

a very small neural network.

It takes local xyz position as an input, has two hidden layers, 8-wide, and uses

LeakyReLU activation – LeakyReLu is just a different non-linear activation function,

similar to ReLU but instead of clamping the negative values it multiplies them by a

small number – in the simplest term it helps with the training and gives the network a

bit more expressive power

The network outputs a single value – the weight at the given position.

For training these, we wrote our own implementation of Adam, and our own back

propagation optimized for these small networks, as PyTorch was way too slow in

such small, constrained scenario – in our tests the CPU version of PyTorch could be

around 100x slower than our custom code, and the GPU PyTorch was only 15%

faster than our CPU code (everything measured on AMD 5995WX + RTX 3090).

There is a bunch of details here and there that are important to the process – for

instance, many of the support points will fall inside the geometry – and that’s actually

good. They don’t need to contribute to the loss during optimization, and the network is

free to do anything it needs in these regions, which makes the training process much

more efficient. We get this validity information from our baking pipeline, as a by-

product of the lighting calculations.

Another thing worth mentioning are situations when the center position, the location of

the probe, ends up inside the geometry. The generated weighting function in such

case is incorrect, all empty. I won’t go into details of how to deal with it, but we simply

generate the weightig function slightly differently

We start by generating the lighitng for all the support points. We then perform

clustering of them in RGB space – to group areas that have similar brightness, to

ensure that if there’s some hard discontinuity, the generated weighting function wont

bleed over. We pick the largest cluster and find its connected component in 3d space

– as even a continous chunk in RGB can be disjoint spatially. We take the largest

connected component and every point in it gets an initial weight equal to the trilinear

kernel. Next we proceed with the spatial diffusion process ass before.

Lstory short it all naturally fits into the whole framework, and doesn’t really pose any

problems. We don’t need to nudge the probe or hack it in any way, it all just relies on

the weighting function

The probes are organized in a fairly standard hierarchy – it’s a tree with a subdivision

factor of 4 on every axis, so each node can have up to 64 children. The tree is 3

levels deep maximum. Each node in the tree stores a payload that’s a brick of probes

- that can be 2x2x2 – with probes just in the corners, 3x3x3 with extra probe in the

center or 5x5x5. Neighboring nodes share the edge and corner probes, and corner

and edge probes are shared between neighbors.

But we’re not done yet! Despite having a really fast optimizer, it’s still too slow to

optimize the network for every weighting function. Just to give you some idea, my

Threadripper can do around 60-80 weighting functions a second – that means around

an hour for a decently sized map – a bit too slow for our taste.

But if you think of this whole training process it’s sort of a function, right? It takes the

weighting function as an input and produces some network coefficents as the output.

Of course it’s a complicated multidimensional function, that we have no way of

decribing.

But guess what’s great at approximating such functions! Neural networks

So we train *another* network that approximates the training process. It takes the

generated function as an input and directly, without any iterative process, produces

coefficients of the network that approximate that weighting function on the output.

We call this network a “generator network” and it’s a form of so-called hypernetwork,

which is a form of meta learning (as least we think so, and some people very firmly try

to tell us that it is not)

We basically took a bunch of maps and generated weighting functions for them. Then

we randomly shifted things and generated more weighting function, altogether around

4TB of training data. We train this network completely offline, this time with PyTorch,

on the GPU,. It takes around 18h to train it to convergence, but it’s not an issue as we

do it only once. Then we export it from PyTorch and use it during the bake. Whenever

lighters light a map, this gets evaluated for every probe. Again, we have a custom

SSE code for that, just to take advantage of the known structure of the network and

shave off some seconds from the inference times

That network is a 6 layer percepron with LeakyReLU activations and skip

connections. But the actual architecture is not really that crucial here, the network is

pretty resiliant to changes. this particular setup hit some sweet spot for us, any further

increase of the size came with minimal improvements, so we just sticked to that.

As an input it takes a PCA projection of the weighting functions, its first 512

coefficients. The PCA basis is derived from the whole training set and limits the size

of the input, - we only pass the first 512 coefficients – again, this was a good balance

between the evaluation time and quality.

The generator network pretty much eliminates the need to do any training for majority

of the functions –we just put in the weighting function in, get the coefficients on the

other end and we’re done. But there are situations, where the result is not ideal,

maybe there was too little of certain types of functions in the training data – like in the

example here, where the initial output from the generator network leaks through the

wall a bit. But this is of course not a problem, because we can just take it and run

regular optimization further, starting from what the generator network gave us, and

after a bit of training it’s all good.

This is the schematics of the complete system: we start with the weighting functions,

we push them through the generator network to get the first-pass representation,

which we can further refine if needed

Now for some results

First the obligatory Sponza shot. This is evaluated per-pixel. Even though the density

of the probes is really low, the results are still acceptable, there are no leaking

artifacts

This is the ground truth for that, of course it’s much better quality, but given how little

memory it takes, it’s not half bad

Another compulsory test, Cornell Box, with 8 probes.

Here we compare it to the diffuse component of the DDGI, that relies on the low

resolution, octahedral depth maps to discard occluded probes – the weighting

functions are implicit, based on these depth buffers. At such a low probe density, it

suffers from some discontinuity artifacts, despite using more memory

Here are the error plots – in general they are pretty similar in terms of magnitude, but

the NLG one changes smoothly which is an important characteristic

This is cornell box again, with much higher density of probes, this is 9x9x9 probes.

NLG in such setup looks pretty much the same as DDGI, but uses much less memory

Here are the error plots

Here are some screenshots from shipped maps, for demonstration again rendered

with per-pixel evaluation, which we don’t do.

Here’s some other map, this time with the probes so you can see the density.

Here are some example precomputation times for a bunch of maps. The largest cost

is lighting calculations, next visibility. We report the number of functions separately

from the number of probes, since we run a de-dupping pass and combine identical

weighting functions.

As you can see the generator network is extremely efficient way of getting the final

representation, even though it’s not always perfect.

On my pretty strong machine, it can process around 60 thousands probes per

second, while direct optimization of the networks runs at around 50-60 probes per

second on the same machine. The generator network is crucial part of the whole

system, without it, it wouldn’t be practical to do it in production.

And even though we have an enormous compute farm all this baking happens so

often, and there’s so much demand for that, that it’s impossible for us to do this any

other way than locally, on the lighters machine (just like the rest of the baking)

Here are memory numbers for the same scenes. We usually save around 33% of the

memory compared to out old system. DDGI is quite a bit more expensive memory

wise, because every probe needs to store a unique 2 channel depth buffer, that totals

around 1KB

The percentages are compared to the neural lightgrid memory usage.

Here we have the performance number. First part of the table is for per-pixel

evaluation. This is pretty costly, especially on the last gen Playstation 4, on newer

platforms it becomes manageable. And a significant part of that cost if the hierarchy

traversal, which is tied to some of our needs and could be significantly simplified to

reduce it, so there is lots of headroom for improvement here, which we never looked

into.

But like I said before, we don’t really evaluate this per pixel, we resample to a texture,

so the number of lookups is much lower. Actually, to measure it reliably we had to

crank it up by a factor of 64, otherwise the measurements were just lost in the noise.

Altogether that forms a nice solution that we were pretty happy with.

The only thing that’s kind-of not perfect is the lookup cost – it’s a bit too high in

general case. Since we resample to auxiliary data structure, we don’t really mind, but

it would be great if this could be use directly per-pixel too.

And when wrapping some things up, we actually found such representation

Two years ago, there was a paper on SIGGRAPH that introduced ReLU fields. It’s a

nice short paper to read if you have a bit of free time, but if you don’t it’s pretty much

just a texture with floating point values that you saturate after the lookup, pretty much

like an SDF. The values in that texture, the field, are learned to represent 1d

functions. They are of course extremely fast to evaluate, and they are pretty good at

representing discontinuities – so they seem like a nice fit for representing weighting

functions.

Unfortunately, one of their intrinsic characteristic is that the gradient of the

reconstructed function is always perpendicular to the discontinuity, so they do a poor

job with things like the function on the top right – which is a 2d version of a typical

weighting function.

To fix this, we augment the ReLU field, with another, additional, learned field. We

allow for arbitrary values in the other field and we process it with sigmoid function to

get it into 0-1 range. It is not strictly necessary, but it stabilizes the learning process

by unifying the learning rates between the two fields.

The output of this thing we called a “product field” is a product of these two

components. It can represent both smooth functions as well as arbitrary

discontinuities. The ReLU part mostly models hard edges, while the sigmoid deals

with smooth area. It’s still super fast to evaluate but now also perfect as

representation of our weighting functions.

One big advantage that the product field has over the network is that every function

can use a product field with different resolution –complex functions can use higher

resolution ones, simple functions can allocate smaller fields. It all still goes through

the exact same code, it’s just a matter of doing some scaling of the uvs before

performing the lookup.

This is an example of some random function approximated with a product field of

increasing resolution 3x3x3, 5x5x5, 7x7x7, 9x9x9

Everything else stays exactly the same, we only replace just the weighting function

representation. We still have the same structure, same generation process.

Instead of a single generator network we now have 4 of them, and we evaluate them

all to find the optimal resolutions. The plots on the right are the error plots of the

approximation as a function of product field size. They generally flat out at some

point, and this is the resolution that we pick.

This process still can use some work, as the resolution found through analyzing the

outputs from the generator network sometimes doesn’t match the resolution from

direct optimization.

These are the timings for a full screen lookup of the product field version. As you

might expect, hierarchy traversal is the dominant cost now, the actual function

evaluation is only a small part of the overall cost, so if we were to use per-pixel we

would definitely look for some improvements for the hierarchy.

This is a comparison of the product field and MLP representations.

As a final comment for that: we currently stick with the MLP version, as in our case

the perf saving are not noticeable, and since moving to the product field is a non-zero

production cost, we just never had any hard motivation.

And one slide with some drawbacks.

In the end it’s still a volumetric representation, much sharper, but it can leak. For us

it’s not really a problem, since we resample and we don’t really use values that are

super close to wall, so we can be pretty sloppy. We can for instance afford to not to

refinement of many probes, and just rely on the generator network to speed up the

precomputation times – but I’m well aware that’s not always the case. If you want to

reconstruct per-pixel you need more precise representation, and you will need to

spend extra time optimizing these representations to a higher precision.

And that was our journey through getting ML solution in a shipped game. It did work,

yes. Is it perfect, no. It did work for us, we’re happy with the result, but we have a very

particular case, your milage may vary

	Slide 1: NEURAL LIGHT GRID
	Slide 2: INTRODUCTION
	Slide 3: MICHAŁ IWANICKI
	Slide 4: INTRODUCTION
	Slide 5: INTRODUCTION
	Slide 6: INTRODUCTION
	Slide 7: INTRODUCTION
	Slide 8: INTRODUCTION
	Slide 9: THE PLAN
	Slide 10: THE BIG QUESTION
	Slide 11: MOTIVATION
	Slide 12: MOTIVATION
	Slide 13: MOTIVATION
	Slide 14: THE PATH or the things that didn’t work
	Slide 15: INTERMISSION or a quick primer on ML
	Slide 16: MACHINE LEARNING
	Slide 17: MACHINE LEARNING
	Slide 18: MACHINE LEARNING
	Slide 19: MACHINE LEARNING
	Slide 20: THE PATH or the things that didn’t work
	Slide 21: IDEA 1
	Slide 22: MULTI-LAYER PERCEPTRON
	Slide 23: MULTI-LAYER PERCEPTRON
	Slide 24: MULTI-LAYER PERCEPTRON
	Slide 25: A NOTE ON RECONSTRUCTING SH
	Slide 26: MULTI-LAYER PERCEPTRON
	Slide 27: MULTI-LAYER PERCEPTRON
	Slide 28: MULTI-LAYER PERCEPTRON
	Slide 29: MULTI-LAYER PERCEPTRON
	Slide 30: IDEA 2
	Slide 31: GENERATIVE QUERY NETWORK [ESLAMI2018]
	Slide 32: GENERATIVE QUERY NETWORK
	Slide 33: GENERATIVE QUERY NETWORK
	Slide 34: GENERATIVE QUERY NETWORK
	Slide 35: GENERATIVE QUERY NETWORK
	Slide 36: GENERATIVE QUERY NETWORK – BIGGER DECODER
	Slide 37: GENERATIVE QUERY NETWORK – EVEN BIGGER DECODER
	Slide 38: IDEAS 3-N
	Slide 39: TIME OF DESPAIR
	Slide 40: PIVOT
	Slide 41: HOW CAN WE LEVERAGE ALL THIS?
	Slide 42: LIGHT GRID
	Slide 43: NEW PLAN
	Slide 44: NEW PLAN
	Slide 45: DONE?
	Slide 46: PROBLEMS WITH IRRADIANCE VOLUMES
	Slide 47: FORMALIZING IRRADIANCE VOLUME
	Slide 48: RECONSTRUCTION
	Slide 49: WEIGHTING FUNCTIONS
	Slide 50: KEY IDEA
	Slide 51: GENERATING WEIGHTING FUNCTION
	Slide 52: LEARNED VS. GENERATED
	Slide 53: LEARNED VS. GENERATED
	Slide 54: LEARNED VS. GENERATED
	Slide 55: VISIBILITY
	Slide 56: PROBE
	Slide 57: NETWORK
	Slide 58: CAVEATS
	Slide 59: CAVEATS
	Slide 60: ADAPTIVE HIERARCHY
	Slide 61: TRAINING STILL A BIT TOO SLOW
	Slide 62: HYPERNETWORK
	Slide 63: GENERATOR NETWORK - TRAINING
	Slide 64: GENERATOR NETWORK - STRUCTURE
	Slide 65: GENERATOR NETWORK
	Slide 66: COMPLETE SYSTEM
	Slide 67: RESULTS
	Slide 68: RESULTS
	Slide 69: RESULTS
	Slide 70: RESULTS – CORNELL BOX 2x2x2
	Slide 71: RESULTS – CORNELL BOX 2x2x2 - ERROR
	Slide 72: RESULTS – CORNELL BOX 9x9x9
	Slide 73: RESULTS – CORNELL BOX 9x9x9 - ERROR
	Slide 74: RESULTS
	Slide 75: RESULTS
	Slide 76: RESULTS
	Slide 77: RESULTS
	Slide 78: RESULTS
	Slide 79: RESULTS – PRECOMPUTATION TIMINGS
	Slide 80: RESULTS – MEMORY
	Slide 81: RESULTS – RUNTIME TIMINGS
	Slide 82: ARE WE DONE?
	Slide 83: SEARCH FOR ALTERNATIVE
	Slide 84: THE ALTERNATIVE – PRODUCT FIELD
	Slide 85: VARIABLE RESOLUTION
	Slide 86: VARIABLE RESOLUTION
	Slide 87: HYPERNETWORK
	Slide 88: RESULTS – RUNTIME TIMINGS
	Slide 89: PRODUCT FIELD VS NETWORK
	Slide 90: PRODUCT FIELDS
	Slide 91: DRAWBACKS
	Slide 92: CONCLUSIONS
	Slide 93: CONCLUSIONS
	Slide 94: CONCLUSIONS
	Slide 95: CONCLUSIONS
	Slide 96: ACKNOWLEDGEMENTS
	Slide 97: Q&A

