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FROM THE CALL OF DUTY PRODUCTION LESSONS

HEMISPHERICAL 
LIGHTING INSIGHTS

Hi. I’m Thomas. I’m a graphics engineer at Activision Central Tech working on lighting for Call of Duty, and today I’m going to be discussing some recent 
developments and insights from our secondary lighting pipeline.
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TOPICS

• Optimal lightmap solves 

• Hemispherical lighting model (HHD) for 
lightmap blending 

• Fast hemispherical occlusion for SH 

• Fast cone occlusion from runtime AO for SH

https://research.activision.com/

Hemispherical Lighting Insights
Technical Memo ATVI-TR-24-01 ©2024 Activision Publishing, Inc.

THOMAS ROUGHTON, PETER-PIKE SLOAN, ARI SILVENNOINEN, and PETER SHIRLEY

Fig. 1. In-game render using an IrradZ HHD lightmap, with indirect di�use lighting overlaid on the le�.

Fig. 2. In-game render without (le�) and with (right) a per-pixel AO cone multiply for indirect lighting from
a volumetric SH grid, where the cone multiply is done by solving to the HLSH model and then evaluating.
Indirect di�use lighting (without albedo) is shown in a cut-out. Evaluating SH directly leads to leakage of
light from behind the surface hemisphere on normal-mapped normals; the cone multiply eliminates this and
grounds the directional AO in a believable manner.

Precomputed lighting is crucial in many interactive applications, which commonly encode global illumination
in compact lightmaps or volumetric data structures. For precomputed lighting to interact with high-frequency
geometric detail encoded in normal maps, each surface must be able to evaluate irradiance in any direction in
its hemisphere, which requires that the precomputed lighting be represented using directional lighting models.
We present two new highly compact hemispherical lighting models, each of which can be e�ciently solved to
and blended in an advancement over the commonly-used AHD model. We show how these models can be
encoded to maintain exact reconstruction of irradiance in the vertex normal/local Z ("IrradZ"), providing a
framework for solving to IrradZ models from spherical harmonics (SH) using hemispherical least-squares and
correcting prior work where spherical methods have led to unnecessarily high error. Finally, we introduce an
e�cient method for hemisphere multiplies of quadratic SH and use it to inexpensively apply hemispherical or
cone occlusion to volumetric lighting, mitigating light leakage for normal-mapped surfaces and signi�cantly
improving the appearance of runtime ambient occlusion.

CCS Concepts: • Computing methodologies! Graphics systems and interfaces.

Additional Key Words and Phrases: lightmaps, global illumination, spherical harmonics, hemispherical lighting
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The main topics I’ll cover today are: 

- How we got better quality lightmaps using our existing runtime format through improving how we encode them. 
- Our new hemispherical lighting model that allows for more accurate lightmap blending. 
- New, fast techniques to compute hemispherical occlusion for volumetric spherical lighting, and 
- A new, efficient way to compute occlusion by a visibility cone for runtime AO. 

These techniques were published in an Activision technical memo in May, so if you’re curious for more details after the talk I’d suggest giving that a look.

https://research.activision.com/publications/2024/05/hemispherical-lighting-insights
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Before we get into the details, let’s set out some context. Call of Duty is a fast-paced first person shooter that runs on a wide range of hardware, from low-
end mobile phones to current generation consoles to high end PCs running at hundreds of frames per second. We support a wide range of content, from 
dense indoor environments to the vast scale of Warzone. This means that scalability is hugely important to us. When we’re implementing lighting techniques, 
we’re thinking about how they can scale across that performance range to deliver a great experience on all platforms, while still providing cutting-edge 
visuals on the latest hardware.
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BAKED LIGHTING

PRIMARY DIFFUSE SECONDARY DIFFUSE

TOTAL DIFFUSE FINAL LIGHTING
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For that reason, our lighting pipeline is heavily reliant on baked lighting for both direct and indirect illumination; everything you see under secondary diffuse 
here is coming from baked lighting. Much of that is indirect bounce, but it also includes the sky, emissive materials, and static and residual lights. 

The diffuse images are combined with the albedo, specular lighting, and post-processing to produce the final result.
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LIGHTMAPS

SURFACE LIGHT PROBES

LIGHT GRID
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Our baked lighting is split between three different sources. Static, simple objects use lightmaps; objects that have a more difficult lightmap parameterisation 
use a volume of local light probes, while dynamic objects resample a local volume from a grid of probes.
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AND LEAST-SQUARES ENCODING
SPHERICAL HARMONICS

Those probes are encoded using spherical harmonics, and our lightmap bake also uses spherical harmonics heavily. Spherical harmonics can get a bit of a 
scary reputation, so I want to provide a quick grounding in some of the maths behind them.
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LEAST-SQUARES ENCODING

• Approximate some signal  with the dot of some basis functions  with a 

coefficient vector : 

f(s) A(s)
a f(ω) ≈ ∑

i

aiAi(ω)

for i in 0 to coefficientCount { 
    result += coefficients[i] * basisFunctions[i].evaluate(direction) 
}

• Squared error is  

• Derivative is 

E = ∫Ω
(a ⋅ A(ω) − f(ω))2

dE
da

= 2∫Ω
A(ω) ⋅ (a ⋅ A(ω) − f(ω)) dω

I find it easiest to approach spherical harmonics by starting from the concept of a linear basis. 

We want to approximate some signal – say radiance or irradiance – for all directions on a sphere or hemisphere. We do that by defining what are called 
basis functions – functions that will give us some value for some direction – and computing a coefficient vector that gives weights for those functions. To 
reconstruct the original signal, we just sum the weighted basis functions for the direction we’re querying. 

Computing the coefficient vector in a least-squares sense uses standard least-squares techniques. We define the error to be the squared difference between 
our reconstructed value and the target function, and the derivative is our basis vector times the difference.
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LEAST-SQUARES ENCODING

• Setting derivatives to zero gives

∫Ω
(A(ω) ⋅ f(ω)) dω = (∫Ω

A(ω)AT(ω)dω) a

Projected moments Gram matrix G Basis 
coefficients

a = G−1 ∫Ω
(A(ω) ⋅ f(ω)) dω

Setting the derivatives to zero, we get this equation. On the left hand side we have what are called the moments; this is the projection of the source signal 
against the basis functions. On the right, we have what’s known as the Gram matrix, which roughly tells you how much the basis functions overlap over the 
domain, along with our coefficient vector a. To solve for a, you can multiply the basis coefficients by the inverse of the Gram matrix.  

This works for encoding into any linear basis, although the Gram matrix inverse may be more or less well-behaved depending on the source functions and 
the integration domain. 
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SPHERICAL HARMONIC ENCODING

• Spherical harmonics (denoted ) are orthonormal over the sphere:Y(ω)

a = G−1 ∫Ω
(A(ω) ⋅ f(ω)) dω

∫S
Yi(s)Yj(s)ds = {1 if i = j

0 otherwise
∴ G = I

• To least-squares encode into SH, integrate the product of the SH basis functions with your 
target. 

− For Monte-Carlo, encoding is .a =
1
N

N

∑
i

f(ωi)Y(ωi)

Spherical harmonics are special in that they’re what’s known as orthonormal over the sphere; the spherical integral of the product of any two functions in the 
set will be 1 if they’re the same function or zero if they’re not. This means the spherical Gram matrix is the identity matrix, and so the least-squares coefficient 
vector is just the moments. 

Therefore, to least-squares encode into spherical harmonics, you simply integrate the product of the SH basis functions with your target function. If you’re 
using Monte-Carlo, you just evaluate the basis in the sample direction, multiply by the sample intensity, and then sum the results. 

Note that this only applies to minimise error over a spherical domain; this will be important later.
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SPHERICAL HARMONICS
• Separated into bands  and functions within bands . 

− Each band increases in polynomial degree. 

− First two bands together are called SH2 or linear SH (four coefficients). 

− First three are SH3 or quadratic SH (nine coefficients). 

• Without normalisation factors:

l m

Y0(x, y, z) = 1

Y1(x, y, z) = [
−y

z
−x]

Y2(x, y, z) =

xy
−yz

3z2 − 1
−xz

x2 − y2

Normalisation factors are 

  (∫S
Ym

l (s)2ds)
− 1

2

Spherical harmonics are separated into bands, and each band is of increasing polynomial degree. For lighting, we usually only use the first two or three 
bands, referred to as linear SH for two bands or quadratic SH for three.  

Without the normalisation factors, these functions are pretty simple. 

The L0 band is just a constant. 

The L1 band is a rearranged version of the input vector. 

And the L2 band has combinations of each of the coefficients. 

In practice, there are also scale factors for each function, which you can derive from the orthonormality property. 
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SPHERICAL HARMONICS

Y1

Y0

Y2

Y−2 Y−1 Y0 Y1 Y2Ym
l ∑

l,m

Ym
l (n)

This shows the reconstruction of a quadratic spherical harmonics radiance probe from its individual basis functions and coefficients. These functions can go 
negative, which is represented here with black.
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SPHERICAL HARMONICS

• Linear basis, so blending does something reasonable 
(crossfade). 

• Rotationally invariant. 

• Closed form convolution with zonal harmonics (projection of 
radially symmetric functions) [SLS05]. 

− Simply scale each band. 

− For normalised cosine lobe  

(radiance  to irradiance ):r i i =

r0
2
3 r1

1
4 r2

0
− 1

24 r4
…

RADIANCE r

IRRADIANCE i

Because they’re a linear basis, spherical harmonics have well-behaved blending and interpolation. They’re also rotationally invariant, which means projecting 
a signal and then rotating is the same as rotating and then projecting. 
Another particularly useful property is that SH convolution with any radially symmetric function simply becomes a per-band scale. For example, to reconstruct 
irradiance from an SH representing radiance, you can do that by convolving the radiance SH with a normalised cosine lobe; in practice, this just means that 
you scale the linear band by 2/3rds and the quadratic band by 1/4 before reconstruction.
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LIGHTMAPS

Now that we have that grounding, let’s return to lighting. More specifically, let’s take a look at one half of our baked lighting solution: lightmaps.
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LIGHTMAPS

• Texture containing lighting information. 

• Usually store irradiance (in some form) 
[CAC+96]. 

−Low frequency, so low resolution.

A SCALAR IRRADIANCE LIGHTMAP

Ldiff = albedo ⋅ ∫Ω+ ( R(ω) cos(θ)
π ) dω

scalar irradiance

© 2024 ACTIVISION PUBLISHING, INC.

Lightmaps are textures containing some lighting information for surfaces in a scene. They’ve been used for almost thirty years, most commonly to store 
irradiance. Because irradiance tends to be low frequency, lightmaps can generally be much lower resolution than material textures. 

In scalar irradiance lightmaps, each lightmap texel contains the cosine-weighted integral of the radiance over the hemisphere; that gives you a single colour 
value that you can multiply by the surface albedo to get the reflected irradiance. This allows you to precompute global illumination or bounce lighting for static 
surfaces and then reconstruct it at runtime by simply sampling from a texture.  
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DIRECTIONAL LIGHTMAPS

SCALAR IRRADIANCE LIGHTMAP  
[CAC+96]

DIRECTIONAL LIGHTMAP 
[MCTAGGART04]
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In practice, we often want more detail than what a scalar irradiance lightmap can provide. Real-time rendering makes heavy use of normal maps to add 
higher frequency detail to coarser geometry. You’d expect a normal facing towards a bright sky to be lighter than one facing a dark wall, so we need to 
augment our scalar lightmap to encode that variation over the surface hemisphere. These augmented lightmaps are called directional lightmaps, and you 
use directional lighting models to reconstruct from them.
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DIRECTIONAL LIGHTING MODELS

AMBIENT CUBE  
[MCTAGGART04]

SPHERICAL HARMONICS  
[RH01]

AMBIENT DICE  
[IS17]

SPHERICAL GAUSSIANS  
[NP15]

H-BASIS  
[HW10]

AHD  
[CDD+99]

A number of different directional lighting models have been used over the years, which all have different trade-offs; here are just a few of them. One higher 
quality option is spherical Gaussians, which enable reconstruction of both diffuse and specular lighting; Neubelt and Pettineo presented a talk on how they 
used them in The Order: 1886 at SIGGRAPH 2015 which is well worth looking at. For our scalability needs, though, we want something more compact, and 
so we’ll start with one of the simplest models you can get: Ambient and Highlight Direction, or AHD.
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AMBIENT AND HIGHLIGHT DIRECTION

• Ambient term and a directional light. 

•  is the ambient colour,  is the directional colour,  is the light direction.Ca Cd d

I(ω) = Ca + max(n ⋅ d)Cd

Ca I(n)max(n ⋅ d)Cd+ =

RADIANCE  
ENVIRONMENT MAP

IMPORTANCE-SAMPLED  
IRRADIANCE

AHD-RECONSTRUCTED 
IRRADIANCE

AHD decomposes the lighting into an ambient light and a directional light. It’s been widely used over the years, from Quake III: Arena to The Last of Us to 
many of Activision’s own titles, and for good reason: it’s simple, efficient to evaluate, and provides good quality results. 

Image is https://polyhaven.com/a/autumn_field, CC0



© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

IRRADZ

d 1 d 2

u

I z

d̃

AHDinterpolation

Our interpolation

[SS18]

BLENDED IRRADZ

BLENDED AHD

© 2018 ACTIVISION PUBLISHING, INC.

It’s not without its problems, though. One major issue is that AHD is a nonlinear lighting model, which means that if you directly store its coefficients in a 
lightmap, it’s prone to filtering artefacts and overshooting when you blend between texels. You can see here that the blended irradiance in the hemisphere 
normal, which we call IrradZ, gets brighter than either of the endpoints.
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IRRADZ

• Scalar irradiance  

• Ambient weight  (luminance). 

• Highlight direction  (octahedral encoding).

Iz

wa

d
AHD INTERPOLATION

IRRADZ INTERPOLATION [SS18]

Ca = Izwa

Cd =
Iz(1 − wa)

dz

© 2018 ACTIVISION PUBLISHING, INC.

© 2018 ACTIVISION PUBLISHING, INC.

To address this, in 2018 our team published the IrradZ lightmap encoding, where, rather than storing the ambient and directional colour, we store and 
interpolate the scalar irradiance IrradZ and an ambient weight. We then reconstruct the AHD parameters, keeping Iz invariant in the reconstruction. In 
addition to fixing the interpolation artefacts, maintaining IrradZ ensures that values at the hemisphere or vertex normal are always exact, and improves 
accuracy for normals around it.



Iz d

wa I(n)
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These are the individual IrradZ components that make up our lightmaps, with the lit result in the bottom right. We use block encoding for our textures, so this 
all takes only 2.5 bytes per texel.
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AHD ENCODING

nv Ca =

Cd = 0
I(ω) = Ca + max(n ⋅ d)CdI(ω) = Ca + max(n ⋅ d)Cd

=

R(ω) =
(constant ambient lighting)

Okay, so let’s say you’ve decided to use AHD as your runtime lighting model, and you want to encode to it. 

Let’s look at how you do that by starting with something simple: constant ambient lighting. What’s the best AHD representation of the irradiance from that 
lighting? 

Your first guess might be that it’s straightforward: you set the ambient colour to be the ambient intensity and keep the directional intensity at zero, which gets 
you your constant colour. In reality, though, that’s not what the irradiance looks like.
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HEMISPHERE OCCLUSION
nv

In practice, as normals face away from the hemisphere normal, more and more of the incoming light gets blocked by the surface. This is called hemispherical 
occlusion, and it produces a gradient of irradiance that gets darker towards the edges. If you solve for the AHD that best represents this irradiance,
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AHD ENCODING

nv

R(ω) = Ca =
1
2

I(ω) = Ca + max(n ⋅ d)Cd

Cd =
1
2

d = nv

(constant ambient lighting)

= the irradiance from  
a hemisphere light 

Ca ×

= 1 + n ⋅ nv

2

You’re left with this encoding; C_a is half the ambient colour, C_d is also half the ambient colour, and the highlight direction is oriented with the vertex normal. 
This turns out to be exactly the equation for a hemisphere light!
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AHD ENCODING

• Constant ambient of 1, directional light in +X:

R(ω) = 1 + max(n ⋅ [1 0 0], 0)

Ca = 0.1191

Cd =
2 − Ca

dz

d = [0.3346, 0, 0.9424]

No exact solution!

• Optimal solution with IrradZ constraint:

If we try adding a directional light pointing off to the side, we get an inexact result. We can’t exactly represent the irradiance from an ambient and a 
directional light with the AHD model!
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HEMISPHERE AND HIGHLIGHT DIRECTION

• Swap out ambient term for a hemisphere light. 

• , , and  are all still used/derived from IrradZ , , and . 

• Reconstruction is:

Ca Cd d Iz wa d

I(ω) =
1 + nv ⋅ n

2
Ca + max(n ⋅ d)Cd

where  is the vertex/hemisphere normal.nv

This was the motivation for us to replace the ambient light in the reconstruction with a hemisphere light, producing what we call HHD, or Hemisphere and 
Highlight Direction. We can reuse the same IrradZ encoding and coefficients, and reconstruct using a hemisphere light to scale the ambient colour. 

Now the encoding of the irradiance from a constant ambient term plus a directional light is trivial and exact.



HEMI: 
1 + nv ⋅ n

2
Ca

DIRECTIONAL: max(n ⋅ d, 0) Cd

I(n)
HEMI CLOSE-UP
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These are the components of our reconstructed lighting. The contribution from the hemisphere light is in the top left; if you look closely you can see some 
subtle directional variation from the surface occlusion. The directional is in the top right, and they’re summed together to produce our final combined 
irradiance.
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IRRADZ SELF-BOUNCE

• Amount of light occluded by the hemisphere is 

        

• Reflected self-bounce is: 

       

where  is the material albedo.

1 −
1 + nv ⋅ n

2

α Iz ⋅ ( 1 − nv ⋅ n
2 )

α

WITHOUT SELF-BOUNCE

WITH SELF-BOUNCE

© 2024 ACTIVISION PUBLISHING, INC.

© 2024 ACTIVISION PUBLISHING, INC.

We can also use hemisphere lights to model surface self-bounce. If the irradiance from the visible hemisphere is given by a hemisphere light, the irradiance 
from the negative hemisphere must be one minus that. We can approximate the reflected irradiance to be the incident radiance, IrradZ, times the surface 
albedo. 
Conveniently, we already have the IrradZ value from our lightmap, so this is a very cheap adjustment that can make a big difference for higher-albedo 
materials. Enlighten’s radiosity system from the early 2010s used this same self-bounce trick.
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IRRADZ ENCODING

• Baked (quadratic) spherical harmonic radiance . 

• Irradiance . 

• Error 

r

i = r × [1, 2
3 , 1

4 , …]
E = ∫Ω+

(I(ω) − Y(ω) ⋅ i)2 dω

I(n) = Iz (wa ( 1 + nv ⋅ n
2 ) + (1 − wa) max (n ⋅ d, 0)

dz )

Now that we have our lighting model, it’s time to revisit how to encode it.  

In practice, our lighting environments are a bit more complicated than a constant ambient term plus a directional light. During the lightmap bake, we have 
radiance over at least a hemisphere stored as spherical harmonics, and we want to find the best approximation of the irradiance of that as HHD. Our error is 
the difference between the reconstructed irradiance and the SH irradiance. 

If you expand out the reconstruction function, we have three parameters we want to find. We have the irradiance in the hemisphere normal Iz, the ambient 
weight w_a, which linearly blends between the hemisphere light and the directional light, and the highlight direction d. We can use a different strategy for 
each. 
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IRRADZ ENCODING

I(n) = Iz (wa ( 1 + nv ⋅ n
2 ) + (1 − wa) max (n ⋅ d, 0)

dz )
Sampled or 

SH Reconstruction
Linear Least-Squares

Search

 =  

 (tangent-space SH 

sampled over the hemisphere) 

 (world-space SH on 
curved surfaces).

Iz ∫Ω+ ( R(ω) cos(θ)
π ) dω

=
2

3π
r1
0

≈ Y(nv) ⋅ i

 

(hemisphere light irradiance in SH) 

 

(directional light irradiance in SH)

a = SHConvCosine ([ π 0
3π
2 0])

d = SHConvCosine(
π
dz

Y(d))

• Search in  ( ), starting from the 

optimal linear direction. 

• Compute  and the error at each 
step. 

• For a slight error decrease, search 

for  as well in an outer loop (find the 

minimum  for each ).

θ dz

wa

ϕ
θ ϕ

wa =
(a − d)TG( i

Iz
− d)

(a − d)TG(a − d)

We can directly sample I_z in the bake or approximate it by reconstruction from the irradiance SH.  

The ambient weight is a linear parameter, so we can find it using linear least-squares. 

The highlight direction is a nonlinear parameter, so we need to search for it. Because irradiance is low-frequency and the error function is well-behaved, we 
can perform a golden section search in theta, computing w_a and the error at each step. 

There are a couple of subtleties here that are worth drawing attention to.
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IRRADZ ENCODING

• Use the hemispherical Gram matrix!

 

• For SH, , the vector of SH 
basis functions. 

• Spherical Gram minimises error over the whole 
sphere, but we don’t care about error in the lower 
hemisphere.

GΩ+ = ∫Ω+

A(ω) B(ω)T dω

A(ω) = B(ω) = Y(ω)

GΩ+ =

1
2 0

3
4 0 0 0 0 0 0

0 1
2 0 0 0

3 5
16 0 0 0

3
4 0 1

2 0 0 0
15

16 0 0

0 0 0 1
2 0 0 0

3 5
16 0

0 0 0 0 1
2 0 0 0 0

0
3 5
16 0 0 0 1

2 0 0 0

0 0
15

16 0 0 0 1
2 0 0

0 0 0
3 5
16 0 0 0 1

2 0

0 0 0 0 0 0 0 0 1
2

Gram matrix for quadratic SH 
over the hemisphere

wa =
(a − d)TG( i

Iz
− d)

(a − d)TG(a − d)

First is that for the ambient weight, it’s important we use the hemispherical Gram matrix, which you compute by integrating the product of SH basis functions 
over the hemisphere. If you use the spherical Gram matrix, you’re minimising error over the whole sphere, which wastes quality on something you’re never 
going to see.
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HEMISPHERICAL LEAST-SQUARES
IRRADIANCE (REFERENCE)

RADIANCE (REFERENCE)

AHD IRRADIANCE ( )Gsphere

AHD IRRADIANCE ERROR 
( )Gsphere

RMSE = 0.0473464

AHD IRRADIANCE ( )Ghemi

AHD IRRADIANCE ERROR 
( )Ghemi

RMSE = 0.0165971

https://polyhaven.com/a/autumn_field

Put simply, if you’re only looking up, the fact that the ground is green doesn’t matter to you, and you don’t want that in your ambient colour. You only need to 
capture that the sky is blue.

https://polyhaven.com/a/autumn_field
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IRRADZ ENCODING: FINDING d
• You can get an “optimal linear direction” from SH’s linear band:

dOptimalLinear = [−l1
1 −l−1

1 l0
1]

∥dOptimalLinear∥

Why can’t we use that?

The second subtlety is in why we need to search for the highlight direction. In the past, games have used what’s known as the “optimal linear direction”, 
which you can get from spherical harmonics by normalising and swapping the components in the linear band. Why can’t we use that?
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HHD IN LINEAR SH

Lsh = CaHemish + CdDirsh

=
π

2 [2Ca + Cd, − 3Cddy, 3(Ca + Cddz), − 3Cddx]
T

dOptimalLinear = [Cddx, Cddy, (Ca + Cddz)]
∥dOptimalLinear∥

Optimal linear direction is polluted by the hemisphere light!

Ca

Cdd

dOptimalLinear

Well, let’s look at the projection of HHD into spherical harmonics. If we then take the optimal linear direction from the linear band, we can see that the Z 
component is polluted by the hemisphere light, so the highlight direction is shifted towards the hemisphere normal. This means our directional light won’t be 
tilted enough to the side, it won’t round-trip, and we’ll get higher error. 

In a more complex example, you could also have energy in higher order spherical harmonic bands that influences the highlight direction. 



OPTIMAL LINEAR DIRECTION AND SPHERICAL ERROR (RGB AHD)

To compare visually, let’s start from using the optimal linear direction and spherical Gram matrix; this is what a lot of games, including ours, have shipped 
with in the past. Keep a close watch on the left edges of these spheres here.



SEARCHED-FOR DIRECTION AND HEMISPHERICAL ERROR (RGB AHD)

Using the searched-for direction and hemispherical error brightens up the edges, which, compared to the reference…



REFERENCE (QUADRATIC SH)

… is a much closer match. 
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IRRADZ ENCODING

Optimal linear direction and spherical error 
RGB RMSE: 3.795, 4.874, 5.159

Searched-for direction and hemispherical error 
RGB RMSE: 1.514, 1.805, 1.597

You can see the difference side by side. In this case, using a searched-for direction and the hemispherical Gram matrix more than halves the reconstruction 
error.
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AHD VS. HHD
Vienna 
Garage

Hallstatt Linz Schoenbrunn Wells

Reference

AHD

AHD RMSE 0.0865 0.0866 0.0102 0.0241 0.0857
HHD

HHD RMSE 0.0567 0.1003 0.0136 0.0205 0.0933
https://dativ.at/lightprobes/
LIGHT PROBES © BERNHARD VOGL

This solve strategy works for both AHD and HHD, and it turns out that, depending on the environments, the quality difference between AHD and HHD is 
really pretty minor, and you can construct scenarios where either wins. Given that, it’s worth asking what makes the switch to HHD worthwhile.

https://dativ.at/lightprobes/
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DYNAMIC LIGHTSETS

© 2024 ACTIVISION PUBLISHING, INC.

The answer is that HHD has a big advantage over AHD when it comes to blending. In Call of Duty, our lighting isn’t entirely static. We support multiple light 
sets that can be dynamically blended between at runtime; we might have separate lighting data for a light being on or off, or a door being open or closed. 
Crucially, these dynamic lighting updates are decoupled from the runtime lighting; multiple lightmaps are blended together into a single lightmap that’s 
sampled at runtime. If you’re curious about the details of that system, my colleague Peter-Pike Sloan gave a talk at Advances in 2020 which is well worth a 
look.
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BLENDING HHD

https://www.shadertoy.com/view/X3dGWn

LUMINANCE-
WEIGHTED BLEND OF 

 AND Ca Cdd
HHD → LINEAR SH 
BLENDING → HHD

HHD A HHD B

BLENDED LIGHTING 
(REFERENCE)

Now, HHD is still a nonlinear model, and, like we saw earlier with AHD, reconstructing from the blended parameters, bottom left, produces results pretty far 
from our reference blended lighting, top centre. On the other hand, if we project to a linear model like linear SH and then solve back to HHD the results are a 
much closer match.

https://www.shadertoy.com/view/X3dGWn
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HHD AND LINEAR SH

• We can reconstruct HHD from linear SH – same number of free parameters. 

• Reverse the projection into SH:

[bc, bx, by, bz] =
2

π
[l0, −

1

3
l1
1 , −

1

3
l−1
1 ,

1

3
l0
1]

Ca =
(2bc − Iz) − (2bc − Iz)2 − 3(b2

c − ∥bxyz∥2)

3

Cd = ∥[bx, by, bz] − Can∥ d =
[bx, by, bz] − Can

Cd

Iz = [bx, by, bz] ⋅ n

Doing this at runtime for AHD would be too expensive, but because HHD is a valid hemispherical lighting setup, it turns out that, if we have hemispherical 
data, we can directly and cheaply solve from linear SH to HHD. 

In this case, we can get I_z directly from the linear band. Then, we simply solve a quadratic for the ambient colour and then subtract it out from the 
directional colour and highlight direction. This keeps our blending shaders lightweight and significantly improves the blending quality.



© 2024 SIGGRAPH ADVANCES IN REAL-TIME RENDERING IN GAMES course. ALL RIGHTS RESERVED.

BLENDING HHD
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The difference is particularly obvious on steep normals. The solve moves energy from diverging directional lights into the hemisphere light so that the 
highlight direction can stay more grazing.



LIGHTMAPS

SURFACE LIGHT PROBES

LIGHT GRID

IMAGES © 2024 ACTIVISION PUBLISHING, INC.

That wraps up the lightmaps portion of the talk. So far, however, we’ve only really discussed half of our baked lighting. Anything that’s dynamic or doesn’t 
have a nice lightmap parameterisation gets its lighting from light probes rather than lightmaps, where the lighting at each sample is represented using 
spherical harmonics. 
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SPHERICAL HARMONICS 
AND OCCLUSION

We know how to reconstruct irradiance from spherical harmonics; just scale the bands by the cosine convolution coefficients and then reconstruct. 

When normal maps are involved, though, things get a bit more complicated.
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NO OCCLUSION
© 2024 ACTIVISION PUBLISHING, INC.

The problem with just reconstructing irradiance in the normal direction is the same one we had with AHD: we’re not accounting for hemisphere occlusion. 
That manifests as light leaks, and can produce an obvious visual mismatch between properly occluded lightmapped surfaces and surfaces using our SH 
probes, like this one.



HEMISPHERE OCCLUSION
© 2024 ACTIVISION PUBLISHING, INC.

What we want is something more like this; while not perfect, most of the objectionable light leakage on the normal maps is gone.
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HEMISPHERE MULTIPLIES

• Need to multiply off the lower hemisphere for 
radiance before converting to irradiance. 

• Equivalent to multiplying by the 
hemispherical Gram matrix. 

• Matrix applies in tangent space. 

• Quadratic SH rotations are expensive!  

− 57 multiplications/FMAs [Hable14].
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To apply hemispherical occlusion, we need to multiply the radiance by the surface hemisphere before evaluating irradiance for normal mapped normals. One 
way to represent this is through multiplication with the hemispherical Gram matrix in tangent space. Unfortunately, our lighting data is in world space, and 
rotating a quadratic SH is a fairly heavy operation.  

What if we could get away with only linear SH output from our quadratic SH input? This reduces the number of coefficients, and importantly allows us to 
avoid the rotations altogether. To see how this works, let’s decompose our tangent-space hemisphere multiplication matrix.
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QUADRATIC TO LINEAR MULTIPLY
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We can compute the constant term from the input L0 band and the tangent-space zonal L1 coefficient, which is just the dot product of the linear band with a 
swizzled normal vector. 

The linear band is a bit more complex. The tangent-space zonal component is just the scaled irradiance in the hemisphere normal. Then, we need to scale 
the non-zonal components of the linear band. Finally, we add the projected components of the quadratic band. 

It turns out to be possible to extract these components in an oriented frame. This gives us an efficient quadratic to linear hemisphere multiply.
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VERTEX SHADER LIGHTING

• In vertex shader: 

− Sample from SH grid. 

− Perform hemisphere multiply to linear SH. 

− Solve from linear SH to HHD. 

− Send  and  (in world space) to the pixel shader. 

• In pixel shader: 

− Reconstruct , where  

is the vertex normal. 

− Evaluate  

Iz Cdd

Ca = Iz − max(Cd d ⋅ nv, 0) nv

I(n) = Ca
1 + n ⋅ nv

2
+ max(Cdd ⋅ n, 0)

PER-VERTEX LIGHTING

PER-PIXEL LIGHTING

© 2024 ACTIVISION PUBLISHING, INC.

© 2024 ACTIVISION PUBLISHING, INC.

On low-end platforms, we perform this in the vertex shader, sampling from SH, multiplying by a hemisphere, and then solving to luminance HHD which gets 
passed to the pixel shader; this helps to reduce our lighting costs while still retaining normal map variation.
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PIXEL SHADER OCCLUSION: HLSH

• Modified linear SH:  

                                       

• HLSH basis functions are:  

• Radiance quadratic SH to hemisphere-occluded irradiance HLSH:

I(n) = Ca + (n ⋅ d)Cd

= Iznz + Ca(1 − nz) + cxnx + cyny

HLSH(x, y, z) = [z, 1 − z, x, y]

Ca
cx
cy

=

1

4 π
0 2203

8192 3π
0 0 0 −

7 5

128 π
0 0

0 0 0 − 2573

4096 3π
0 0 0 −

11 15

128 π
0

0 − 2573

4096 3π
0 0 0 −

11 15

128 π
0 0 0

shrad

On higher end, we perform the multiply directly in the pixel shader. To extract a bit more quality, we actually solve to a scaled version of linear SH over the 
hemisphere with the IrradZ constraint that we call HLSH, where the weight for the z basis function is always given by IrradZ. 

The matrix multiplication to produce HLSH uses the same quadratic SH components as our optimised hemisphere multiply from before, so we can use the 
same technique to perform the projection in world space.
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HEMISPHERE MULTIPLIES

QUADRATIC SH QUADRATIC SH 
(HEMISPHERE MULTIPLY) 

HLSH 
(OUR APPROXIMATION) 

Here’s what that looks like. We have quadratic SH with no occlusion on the left, a full hemisphere multiply in the centre, and HLSH on the right, all showing 
irradiance over the hemisphere. We keep the IrradZ constraint, so the hemisphere normal is exact between the full hemisphere multiply and our 
approximation. 

Our approximation loses some of the skew that full quadratic SH can have, but it’s a pretty close match otherwise, and doesn’t suffer as badly from ringing.
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HLSH
// Solve SH to HLSH, performing a hemisphere or cone multiply in the process. 
// alpha is the half-angle of the cone; cosAlpha = 0 gives a hemisphere. 
HLSHRGB SH_ProjectToHLSHConeMultiplyRGB(float3 sh[9], float3 N, float cosAlpha) { 
    float cosAlpha2 = cosAlpha * cosAlpha; 
    float cosAlpha3 = cosAlpha2 * cosAlpha; 
    float cosAlpha4 = cosAlpha2 * cosAlpha2; 

    float3 Nsh = float3(-N.y, N.z, -N.x); 
    float3 l1VectorR = float3(sh[1].r, sh[2].r, sh[3].r); 
    float3 l1VectorG = float3(sh[1].g, sh[2].g, sh[3].g); 
    float3 l1VectorB = float3(sh[1].b, sh[2].b, sh[3].b); 
    float3 l1Dot = float3(dot(Nsh, l1VectorR), dot(Nsh, l1VectorG), dot(Nsh, l1VectorB)); 
     
    float3 l1TangentComponentsR = l1VectorR - l1Dot.r * Nsh; 
    float3 l1TangentComponentsG = l1VectorG - l1Dot.g * Nsh; 
    float3 l1TangentComponentsB = l1VectorB - l1Dot.b * Nsh; 
     
    float inDirection[9]; 
    SH_InDirection(N, inDirection); 
     

// Reconstruct the zonal L2 term pZ2. 
    float3 pZ2 = 0.0; 
    for (int i = 4; i < 9; i += 1) { 
       pZ2 += inDirection[i] * sh[i]; 
    } 
    pZ2 *= sqrt(4.0 * PI / 5.0); 
         

// Compute the irradiance in the hemisphere normal. 
    float3 iZ = sh[0] * (1.0 - cosAlpha2) * inDirection[0] +  
                2.0 / 3.0 * (1.0 - cosAlpha3) * sqrt(0.75 / PI) * l1Dot +  
                0.25 * (1.0 + 2.0 * cosAlpha2 - 3.0 * cosAlpha4) * 0.5 * sqrt(5.0 / PI) * pZ2; 
     
    float3 Ca = 1.0 / (4096.0 * sqrt(PI)) * (1024.0 + cosAlpha * (-1767.0 + cosAlpha * (512.0 + 
21.0 * cosAlpha * (10.0 + cosAlpha2)))) * sh[0]; 
    Ca += 1.0 / (8192.0 * sqrt(3.0 * PI)) * (2203.0 + cosAlpha2 * (-5301.0 + cosAlpha * (2048.0 + 
105.0 * cosAlpha * (9.0 + cosAlpha2)))) * l1Dot; 
    Ca += sqrt(5.0) / (8192.0 * sqrt(PI)) * (-448.0 + cosAlpha * (1767.0 + cosAlpha * (-512.0 + 3.0 
* cosAlpha * (-659.0 + cosAlpha * (256.0 + 119.0 * cosAlpha + 15.0 * cosAlpha3))))) * pZ2; 

    float Nx2 = N.x * N.x; 
    float Ny2 = N.y * N.y; 
    float Nz2 = N.z * N.z;

    float Nxyz = float(2.0) * N.x * N.y * N.z; 
    float Ny2MinusNx2 = Ny2 - Nx2; 

float3 l2Components[3]; 
    l2Components[0] = -Nxyz * sh[7] + N.y * Nz2 * sqrt(3.0) * sh[6] - (float(2.0) * Ny2 - 
float(1.0)) * (N.z * sh[5] - N.x * sh[4]) - (Ny2MinusNx2 - 1.0) * N.y * sh[8]; 
    l2Components[1] = -Nxyz * sh[4] + N.z * (float(1.0) - Nz2) * sqrt(3.0) * sh[6]  + (float(2.0) * 
Nz2 - float(1.0)) * (N.x * sh[7] + N.y * sh[5]) + (Ny2MinusNx2) * N.z * sh[8]; 
    l2Components[2] = -Nxyz * sh[5] + N.x * Nz2 * sqrt(3.0) * sh[6] - (float(2.0) * Nx2 - 
float(1.0)) * (N.z * sh[7] - N.y * sh[4]) - (Ny2MinusNx2 + 1.0) * N.x * sh[8]; 
     
    float l1TangentComponentsScale = 1.0 / (4096.0 * sqrt(3.0 * PI)) * (cosAlpha - 1.0) * (cosAlpha 
- 1.0) * (2573.0 + cosAlpha * (2074.0 + 105.0 * cosAlpha * (6.0 + cosAlpha * (2.0 + cosAlpha)))); 
    float3 tangentComponents[3]; 
    tangentComponents[0] = l1TangentComponentsScale * float3(l1TangentComponentsR[0], 
l1TangentComponentsG[0], l1TangentComponentsB[0]); 
    tangentComponents[1] = l1TangentComponentsScale * float3(l1TangentComponentsR[1], 
l1TangentComponentsG[1], l1TangentComponentsB[1]); 
    tangentComponents[2] = l1TangentComponentsScale * float3(l1TangentComponentsR[2], 
l1TangentComponentsG[2], l1TangentComponentsB[2]); 
     
    float l2TangentComponentsScale = sqrt(15.0) / (2048.0 * sqrt(PI)) * (176.0 + cosAlpha2 * 
(-256.0 + cosAlpha * (-105.0 + cosAlpha * (128.0 + 42.0 * cosAlpha + 15.0 * cosAlpha3)))); 
    tangentComponents[0] += l2TangentComponentsScale * l2Components[0]; 
    tangentComponents[1] += l2TangentComponentsScale * l2Components[1]; 
    tangentComponents[2] += l2TangentComponentsScale * l2Components[2]; 

    float3 iZMinusCa = iZ - Ca; 
    tangentComponents[0] += iZMinusCa * Nsh.x; 
    tangentComponents[1] += iZMinusCa * Nsh.y; 
    tangentComponents[2] += iZMinusCa * Nsh.z; 
     
    HLSHRGB result; 
    result.Ca = Ca; 
    result.cx = -tangentComponents[2]; 
    result.cy = -tangentComponents[0]; 
    result.cz = tangentComponents[1]; 
    return result; 
}

This is what the code looks like; a lot of constant factors, so it all folds down fairly efficiently.  

If you have keen eyes you may notice an extra cosAlpha parameter here; we’ll get to that in a moment, but it’s set to zero for hemispheres.
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HHD AND HLSH SHADERTOY

QUADRATIC SH

QUADRATIC SH 
W/ HEMI MULTIPLY 

RGB HHD 
W/ HEMI MULTIPLY 

LUMINANCE HHD 
W/ HEMI MULTIPLY 

RGB HLSH 
W/ HEMI MULTIPLY 

LUMINANCE HLSH 
W/ HEMI MULTIPLY 

https://www.shadertoy.com/view/lcVSDh

That code is taken from a ShaderToy, which also has implementations for the oriented quadratic to linear hemisphere multiply and the HHD solve from linear 
spherical harmonics.

https://www.shadertoy.com/view/lcVSDh
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SH OCCLUSION AND AO

• Occlusion isn’t just for hemispheres. 

• Runtime AO gives a visibility cone (uniform 
weighted direction, cosine weighted visibility) 
[JWPJ20]. 

− Irradiance (visibility) from a sphere light/cone 

above the horizon is  [Snyder96]. 

 Cone angle  is given by 

.

sin2(α)cos(θ)
∴ α

cos(α) =
1 − visibility

cos(θ)

nv

θ
α

dcone

We now have a lighting setup with correct hemispherical occlusion and optimal error across objects lit by both lightmaps and SH. Why stop there, though? 
We have another dynamic component for our indirect lighting: ambient occlusion, which gives us both an occlusion factor for the scalar irradiance and an 
average unoccluded direction. A cone of radiance is equivalent to a sphere light, and we can analytically convert the cosine-weighted visibility to the cone 
angle alpha. 

We need to somehow integrate this visibility cone with our indirect lighting. In the past, bent normals have been commonly used, but that’s a fairly coarse 
approximation. Instead, what if we can multiply our spherical lighting directly by the visibility cone?
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CONE MULTIPLIES

• Gram matrix  for cone integral  is:Ga ∫
2π

0 ∫
α

0
(Y(θ, ϕ)YT(θ, ϕ)) sin(θ) dθ dϕ

Gα =

1 − cos(α)
2 0

3
4 (1 − cos2(α)) 0 0 0

5
4 (cos(α) − cos3(α)) 0 0

0 1
4 (2 − 3 cos(α) + cos3(α)) 0 0 0

3 5
16 (cos2(α) − 1)2 0 0 0

3
4 (1 − cos2(α)) 0 1

2 (1 − cos3(α)) 0 0 0
15

16 (1 + 2 cos2(α) − 3 cos4(α) 0 0

0 0 0 1
4 (2 − 3 cos(α) + cos3(α)) 0 0 0

3 5
16 (cos2(α) − 1)2 0

0 0 0 0 1
16 (1 − cos(α))3(8 + 3 cos(α)(3 + cos(α))) 0 0 0 0

0
3 5
16 (cos2(α) − 1)2 0 0 0 1

4 (2 − 5 cos3(α) + 3 cos5(α)) 0 0 0

5
4 cos(α)(1 − cos2(α)) 0

15
16 (1 + 2 cos2(α) − 3 cos4(α)) 0 0 0 1

8 (4 − 5 cos(α) + 10 cos3(α) − 9 cos5(α)) 0 0

0 0 0
3 5
16 (cos2(α) − 1)2 0 0 0 1

4 (2 − 5 cos3(α) + 3 cos5(α)) 0

0 0 0 0 0 0 0 0 1
16 (1 − cos(α))3(8 + 3 cos(α)(3 + cos(α)))

Same components as our hemisphere multiply, but with coefficients as polynomials of .cos(α)

Our hemisphere multiply is given by integrating theta from 0 to pi over 2. If we assume the visibility cone is oriented with the hemisphere normal, the matrix 
for the cone is derived by simply integrating to the cone angle instead. By swapping in this matrix, our hemisphere multiply becomes a cone multiply. 
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HLSH CONE MULTIPLY

cos(α)
0 0.125 0.250 0.375 0.5 0.625 0.750 0.875

SH CONE  
MULTIPLY

HLSH 
CONE 

MULTIPLY

You can see that using this cone multiply as part of HLSH yields pretty close visual results to the full quadratic SH multiply. We’re looking at cos(alpha) here, 
so the cone angle gets narrower as cos(alpha) increases, and 0 is the hemisphere case. 

We always take the normal for the multiply to be the cone centre. If the cone centre is oriented away from the hemisphere normal, this approximation is less 
accurate, but HLSH is fairly well behaved so the error isn’t visually objectionable. Compared to just using the scalar irradiance for AO, this can yield pretty 
dramatic visual improvements.
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NO OCCLUSION
© 2024 ACTIVISION PUBLISHING, INC.

Let’s go back to our example from before. This is the column without any occlusion. 



HEMISPHERE OCCLUSION
© 2024 ACTIVISION PUBLISHING, INC.

Adding hemisphere occlusion cleans up most of the light leaks, but there are still a couple of spots that have an unrealistic glow.



AO SCALE
© 2024 ACTIVISION PUBLISHING, INC.

Just scaling the irradiance by the AO visibility doesn’t help here, and we’ve got our light leaking back from the normal map.



AO CONE OCCLUSION
© 2024 ACTIVISION PUBLISHING, INC.

By contrast, using HLSH occlusion with a visibility cone yields massive improvements. The lighting is now looking properly integrated with the lightmapped 
wall beside it.



AO SCALE AO CONE OCCLUSION

© 2024 ACTIVISION PUBLISHING, INC.

Here’s the AO scale and the cone occlusion side by side on a different scene, where the lighting is coming from the top left. The AO scale mostly looks like 
corner darkening, as you’d expect from AO techniques, while the cone multiply has much better directionality.



AO Scale

CONE OCCLUSION

AO SCALE

© 2024 ACTIVISION PUBLISHING, INC.

And one final comparison. Look at the extra grounding shadows behind the monitor and crate, and, more subtly, the better integration of the back panel with 
the wall.
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CONCLUSIONS

• Hemispherical occlusion is important. 

• Linear bases and least-squares are 
useful tools. 

• If your function is on the hemisphere, 
compute error on the hemisphere. 

• If you can, blend in linear space. 

• Use our HLSH cone/hemisphere 
multiply.

NO OCCLUSION HEMI OCCLUSION CONE OCCLUSION

REFERENCE

AHD SPHERICAL ERROR

AHD HEMISPHERICAL ERROR

OCCLUSION IMAGES © 2024 ACTIVISION PUBLISHING, INC.

To wrap up, some key ideas I hope you take away from today.  

• Firstly: hemispherical occlusion is important! You don’t want your normal maps to glow. 
• Linear bases and least-squares are useful tools. Most of the maths here is just linear algebra and some basic multivariate calculus, and it’s easy to 

experiment with your own basis functions or derivations. 
• If your function is on the hemisphere, compute error on the hemisphere.  
• If you can, blend in linear space. It’ll be much better behaved. 
• Finally, if you’re using spherical harmonics, use our HLSH cone or hemisphere multiply! It’s an easy way to improve your visual quality, and all the code is 

up on ShaderToy.
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QUESTIONS

Thank you for your time. I’ve got a few minutes for questions.
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